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Abstract Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostri-
atal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine- tuned 
by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate 
rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic 
interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disyn-
aptically inhibit SPNs by activating α4β2 nicotinic acetylcholine receptors (nAChRs) on various 
GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow 
to compete with direct GIN- mediated feedforward inhibition. Moreover, functional nAChRs are 
also present on populations of GINs that respond only weakly to phasic activation of CINs, such 
as parvalbumin- positive fast- spiking interneurons (PV- FSIs), making the overall role of nAChRs in 
shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that 
upon synchronous optogenetic activation of corticostriatal projections blockade of α4β2 nAChRs 
shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR- dependent 
inhibition was mediated by downstream GABA release, and data suggest that the GABA source 
was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed 
decrease in spike latency caused by nAChR blockade was associated with a diminished frequency 
of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV- FSIs, 
and was occluded by pharmacologically preventing cortical activation of PV- FSIs. Taken together, 
we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We 
conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically- driven 
striatal output by ‘priming’ feedforward inhibition, a process that may shape SPN spike timing, stri-
atal processing, and synaptic plasticity.
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Introduction
As the main input nucleus of the basal ganglia, the striatum receives convergent cortical synaptic 
information, generating a computationally transformed interpretation of this information and relaying 
it to intermediate and output nuclei of the basal ganglia. Striatal output is carried exclusively by 
GABAergic striatal spiny projection neurons (SPNs), which account for ~95% of all striatal neurons 
(Gerfen and Surmeier, 2011; Silberberg and Bolam, 2015). The remaining 5% of striatal neurons are 
interneurons, most of which are GABAergic interneurons (GINs). There are several molecularly distinct 
classes of GINs that exhibit diverse intrinsic firing patterns and patterns of intrastriatal connectivity 
(Tepper et al., 2010; Muñoz- Manchado et al., 2018; Assous and Tepper, 2019). In the context of 
feedforward cortico- and thalamo- striatal transmission, the GINs’ function lies in the feedforward inhi-
bition they provide to SPNs (Tepper et al., 2004b; Assous et al., 2017). Such inhibition can fashion 
striatal output by perturbing the precise timing of SPNs or prevent their spiking altogether. The only 
non- GINs are the large, aspiny, cholinergic interneurons (CINs) (DiFiglia, 1987; Tepper and Bolam, 
2004a, Plotkin and Goldberg, 2019; Poppi et al., 2021). Despite their small numbers (approximately 
1% of striatal neurons), the acetylcholine (ACh) they release influences the entire striatal microcircuitry. 
A single CIN axon can cover a third of the striatum (in linear dimension) and has ACh release sites 
every few micrometers (DiFiglia, 1987). In fact, the striatum has the highest expression of cholinergic 
markers in the entire CNS (Mesulam et al., 1992; Contant et al., 1996). CINs are autonomous pace-
makers (Bennett and Wilson, 1999) that are largely identified as the tonically active neurons (TANs) 
of the striatum (Kimura et al., 1984; Wilson et al., 1990; Aosaki et al., 1994; Aosaki et al., 1995; 
Morris et al., 2004), firing 3–10 spikes/s in vivo. On the backdrop of this ongoing discharge, the main 
signal they convey in vivo is a pause in response to primary reward or salient stimuli associated with 
reward (Aosaki et al., 1994; Morris et al., 2004; Goldberg and Reynolds, 2011; Apicella, 2017). 
The duration of the pause in response to a brief conditioned sensory stimulus is on the order of 
200–300 ms (Kimura et al., 1984; Raz et al., 1996; Apicella et al., 1997).

CINs regulate SPNs in three main ways. The best characterized regulation is exerted via muscarinic 
ACh receptors (mAChRs). Activation of presynaptic and postsynaptic mAChRs on SPNs modulates 
synaptic transmission, synaptic plasticity, and the intrinsic excitability of SPNs by modulating various 
voltage- activated Ca2+ and K+ channels (Akins et al., 1990; Calabresi et al., 1999; Gabel and Nisen-
baum, 1999; Day et al., 2008; Goldberg et al., 2012; Zucca et al., 2018). CINs influence SPNs via 
nicotinic ACh receptors (nAChRs) as well, albeit indirectly. Activation of nAChRs on striatal dopami-
nergic fibers can evoke dopamine (DA) release (Zhou et al., 2001; Cachope et al., 2012; Threlfell 
et al., 2012; Liu et al., 2022) which, in turn, can modulate the intrinsic excitability of SPNs and synaptic 
transmission and plasticity at synaptic inputs. All of the above influences involve GPCR- linked ACh 
and DA receptors, which means that they are unlikely to dynamically affect the moment- by- moment 
processing and transmission of excitatory inputs to SPNs. Indeed, a recent study in which CINs were 
silenced optogenetically in vivo has put a lower bound on how fast mAChR- mediated effects can 
come into play. When CINs are synchronously silenced for over 500 ms, SPNs begin to show signs of 
mAChR- dependent reductions in excitability. However, that effect comes into play only after a 400 
ms delay (Zucca et al., 2018). The only known mechanisms by which CINs can rapidly affect SPN 
activity (sooner than 400 ms) involve nicotinic or muscarinic modulation of synaptic glutamate release 
or α4β2 nAChR- dependent GABA release onto the SPNs’ ionotropic GABAA receptors (Pakhotin 
and Bracci, 2007; English et al., 2011; Faust et al., 2015; Faust et al., 2016; Assous et al., 2017; 
Assous, 2021). The α4β2 nAChRs that drive disynaptic GABA release are located on GINs (English 
et al., 2011; Faust et al., 2015), and on dopaminergic nigrostriatal terminals (Nelson et al., 2014b).

Because CINs receive massive excitatory cortical and thalamic input (Lapper and Bolam, 1992; 
Thomas et al., 2000; Mamaligas et al., 2019), it is conceivable that their disynaptic inhibition of 
SPNs comes into play during bouts of cortical or thalamic activity. However, this raises a conceptual 
problem. Because cortex and thalamus can activate feedforward inhibition to SPNs via various striatal 
GINs (e.g., cortex → GIN → SPN), what is gained by recruiting an additional pathway that is necessarily 
slower and less reliable due to its additional synapse (e.g., cortex → CIN → GIN → SPN)? Moreover, 
what is the role of nAChRs on GINs, such as the parvalbumin- positive fast- spiking interneurons (PV- 
FSIs) that only weakly respond to direct activation of CINs (English et al., 2011; Nelson et al., 2014a; 
Nelson et al., 2014b)? This conceptual problem exists only if we assume that the role of CINs in 
modulating SPN function through the activation of nAChRs is anchored around their phasic activation 
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by excitatory afferents. In this study we demonstrate that ongoing CIN activity exerts a constant 
brake on SPN excitation and spike initiation via tonically activated α4β2 nAChRs located on discrete 
populations of GINs. We uncover these nicotinic effects using transgenic mice that nominally express 
channelrhodopsin- 2 (ChR2) in corticostriatal fibers (Arenkiel et al., 2007). Activation of these fibers 
creates a competition between monosynaptic cortical excitation and polysynaptic feedforward inhibi-
tion to SPNs. We show that nAChRs embedded in a GABAergic postsynaptic pathway are capable of 
controlling SPN spike timing with millisecond precision.

Results
To interrogate microcircuit- level responses of SPNs to cortical excitation of the striatum, we gener-
ated acute ex vivo brain slices from Thy1- ChR2 mice, which nominally express ChR2 in cortical neurons 

control mec

m
s

spike latency

***

m
V

ADP amplitude
**

control mec control mec

m
V *

EPSP amplitude

LED

20
 m

V

20 ms

-81 mV

control
mec

20
 m

V

20 ms

LED
-51 mV

m
s

*

control mec

spike latency

20
 m

V

20 ms
ADP

-80 mV

0.5%
1.0%
1.5%
2.0%

LED

A B C

D E F G

Thy1-ChR2

SPN

5

10

15

0

10

20

30

40

50

0

10

20

30

40

50

0

*

0

5

20

25

10

15

Figure 1. Nicotinic acetylcholine receptor (nAChR)- dependent inhibition and delay of spike latency in spiny projection neurons (SPNs) activated by 
corticostriatal fibers. (A) Left: diagram of recording configuration. An SPN is patched in an acute slice from a Thy1- ChR2 mouse. Right: 1- ms- long 470 nm 
LED pulse of increasing intensity generates excitatory postsynaptic potentials (EPSPs), or an AP followed by an afterdepolarization (ADP) in an SPN. 
(B) Examples of the effect of 10 µM mecamylamine (mec), an nAChR antagonist, on EPSP amplitude (dashed) or spike latency and ADP amplitude (solid). 
(C–E) Mecamylamine significantly shortens spike latencies (p=4.8·10–4, n=12 SPNs, signed- rank test [SRT]) (C), as well as ADP (p=2.4·10–3, n=12 SPNs, 
SRT) (D) and EPSP (p=0.03, n=6 SPNs, SRT) (E) amplitudes. (F) Examples of the effect of mecamylamine on latency of a spike triggered synaptically from 
a depolarized potential with an LED pulse. (G) Mecamylamine significantly shortens spike latencies in SPNs held at a depolarized potential (p=0.03, 
n=6 SPNs, SRT). Two- sided Wilcoxon SRT. ***p<0.001, **p<0.01, *p<0.05.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Dihydro-β-erythroidine hydrobromide (DHβE) mimics the effect of mecamylamine on striatal spiny projection neuron (SPN) spike 
latency and afterdepolarization (ADP) amplitude.

https://doi.org/10.7554/eLife.75829
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(Arenkiel et al., 2007; Aceves Buendia et al., 2019). Full- field optogenetic stimulation with a 470 nm 
LED engaged corticostriatal afferents and generated in SPNs either: excitatory postsynaptic poten-
tials (EPSPs) for low LED intensities, or – in the suprathreshold condition – an action potential (AP) 
followed by an afterdepolarization (ADP) lasting 10 s of milliseconds (Figure 1a). While ADPs were 
kinetically similar to EPSPs under our experimental conditions, we explicitly separated these measures 
because ADPs (1) can be modulated by similar cortically activated local striatal circuits that shape 
SPN spike timing and (2) peak closer to spike threshold, positioning them to influence subsequent 
spike generation (Flores- Barrera et al., 2010). Blockade of nAChRs with mecamylamine (mec; 10 µM) 
enhanced SPN responses to cortical stimulation (Figure 1b), as it shortened AP latency (Figure 1c) 
and increased both the ADP (Figure 1d) and subthreshold EPSP amplitudes (Figure 1e). Because this 
suggests that under these conditions EPSPs and ADPs are mechanistically similar, the remainder of 
this study focuses on SPN AP latency and ADP amplitude generated by just- suprathreshold LED stim-
ulation, which facilitated comparison among cells. The effects of mecamylamine were replicated in 
the presence of the α4β2 nAChR- selective antagonist, dihydro-β-erythroidine hydrobromide (DHβE) 
(10 µM, AP latency: n=8 SPNs, p=7.8·10–3, signed- rank test (SRT); ADP amplitude: n=7 SPNs, p=0.03, 
SRT; Figure 1—figure supplement 1). Because the resting membrane potential of SPNs is very hyper-
polarized compared to the depolarized potential from which spikes typically occur in vivo (Wilson 
and Groves, 1981; Stern et al., 1998), we repeated the experiment while holding the SPN with a 
constant positive current injection in the just- subthreshold region (e.g., in the –55 to –50 mV range). 
Mecamylamine shortened the latency to AP from this depolarized potential as well (Figure 1f–g). We 
note that ADPs were not consistently present under these conditions, likely because the depolarized 
potential typically eclipsed ADP amplitudes observed from rest.

Because SPNs themselves do not express nAChRs, the action of mecamylamine must be indi-
rect. Functional nAChRs are expressed at multiple loci of the striatal circuit, including afferent axonal 
terminals and intrastriatal interneurons (Nelson et al., 2014b; Faust et al., 2016; Abudukeyoumu 
et al., 2019; Assous, 2021; Abbondanza et al., 2022; Morgenstern et al., 2022). While the broad 
antagonistic actions of mecamylamine and DHβE should block nicotinic receptors at most of these 
loci, α7 nAChRs, which are predominantly expressed at corticostriatal axon terminals, may be spared 
(Solinas et al., 2007; Licheri et al., 2018; Assous, 2021). Indeed, mecamylamine did not have a 
significant effect on the strength or release probability of corticostriatal glutamatergic afferents, as 
measured by local electrical stimulation (Figure 2A- C). Blockade of α7 nAChRs with the more selec-
tive α7 antagonist methyllycaconitine (MLA; 5 µM) did not significantly alter corticostriatal afferent 
strength or release probability either (Figure 2—figure supplement 1), suggesting that nAChRs on 
these synapses are not poised to track tonic ACh release.
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Figure 2. Mecamylamine does not alter release probability of excitatory synaptic inputs. (A) Example responses of an striatal spiny projection neuron 
(SPN) to paired pulse stimulation (evoked by two local electrical stimuli separated by 50 ms), before and in the presence of mecamylamine (10 µM). 
(B) Mecamylamine had no effect on the excitatory postsynaptic current (EPSC) amplitude evoked by the first paired stimulus (P1) (p=0.59, n=15 SPNs, 
signed- rank test [SRT]). (C) Mecamylamine had no effect on the paired pulse ratio (PPR) (P2/P1, p=0.33, n=15 SPNs, SRT).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Methyllycaconitine (MLA) does not alter release probablity of excitatory synaptic inputs.

https://doi.org/10.7554/eLife.75829
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The lack of an effect of mecamylamine on presynaptic release probability suggests that mecamyl-
amine shapes SPN spike timing through postsynaptically expressed nicotinic receptors within the stri-
atum. CINs form a disynaptic circuit with SPNs, which is mediated by neuropeptide Y- neurogliaform 
(NPY- NGF) GINs (and perhaps other classes of nAChR- expressing GINs) in an nAChR- dependent 
manner (English et al., 2011; Elghaba et al., 2016; Faust et al., 2016; Assous et al., 2017; Tepper 
et  al., 2018). Consistent with the involvement of such an inhibitory polysynaptic circuit, we note 
that blockade of nAChRs reduced the latency of synaptically evoked spikes in SPNs that were held 
just- subthreshold even if the SPN membrane potential fell (Figure 1f), an observation that could be 
accounted for by GABA receptor- mediated shunting (Gustafson et al., 2006). Accordingly, blockade 
of GABAergic transmission with the GABAA and GABAB receptor antagonists SR- 95531 (10 µM) and 
CGP- 55845 (2  µM), respectively, mimicked the effect of mecamylamine on spike timing and ADP 
amplitude (Figure 3a–c). Blockade of GABA receptors fully occluded mecamylamine’s effect on both 
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Figure 3. The nicotinic acetylcholine receptor (nAChR)- dependent inhibition of corticostriatal striatal spiny projection neuron (SPN) activation is 
mediated through and saturates GABAergic inhibition. (A) Example of the occlusion of the mecamylamine effect on optogenetic synaptic activation of 
SPNs by receptor (GABAR) antagonists, 10 µM SR- 95531 (GABAAR antagonist) and 2 µM CGP- 55845 (GABABR antagonist). Distribution of spike latencies 
(B) and ADP amplitude (C) in response to application of GABAR antagonists followed by mecamylamine, showing that application of GABAR antagonist 
significantly shortens the action potential (AP) latency (p=4.6·10–3, n=13 SPNs, signed- rank test [SRT]) and enhancement of the ADP amplitude (p=2.4·10–

4, n=13 SPNs, SRT). In contrast, the subsequent mecamylamine application fails to further shorten the AP latency (p=0.0625, n=5 SPNs, SRT) or further 
enhance the ADP amplitude (p=1, n=5, SRT). (D) Example of how the mecamylamine effect saturates the GABAergic inhibition of the optogenetic 
synaptic activation of SPNs. (E–F) Distribution of spike latencies (E) and ADP amplitude (F) in response to application of mecamylamine followed by 
GABAR antagonists, showing that the subsequent application of GABAR antagonists fails to further shorten the AP latency (p=0.25, n=5 SPNs, SRT) or 
further enhance the ADP amplitude (p=0.44, n=5 SPNs, SRT).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. ChR2 expression is not observed in cortical or striatal GABAergic neurons in Thy1- ChR2 mice.

https://doi.org/10.7554/eLife.75829
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spike latency and ADP amplitude (Figure 3a–c), 
further implicating a CIN- GIN- SPN disynaptic 
circuit in mediating the actions of nAChRs. Strik-
ingly, mecamylamine prevented GABA receptor 
antagonists from further advancing spike timing 
or enhancing ADP amplitude, suggesting that 
nAChR activation can saturate GABAergic inhibi-
tion (Figure 3d–f).

While SPN spiking was driven by conver-
gently activated corticostriatal inputs in the 
above experiments, activation of monosynaptic 
GABAergic inputs due to ectopic expression of 
ChR2 cannot necessarily be ruled out. This is an 
important point, because mecamylamine’s mech-
anism of action involves nAChRs embedded in a 
GABAergic circuit. Immunohistochemical staining 
did not show any evidence of ChR2 expression 
in GABAergic neurons within the cortex or stri-
atum, including somatostatin (SOM)- expressing 
cortical neurons known to directly innervate SPNs 
(Rock et al., 2016), but did reveal ChR2- positive 
neurons in the globus pallidus (Figure 3—figure 
supplement 1). This is in addition to observations 
of ChR2 expression in GABAergic neurons of 
the substantia nigra pars reticulata in Thy1- ChR2 
mice (Pan et al., 2013; Higgs and Wilson, 2017; 
Tiroshi and Goldberg, 2019). Indeed, blockade 
of glutamate receptors to eliminate feedforward 
inhibition revealed the presence of an optoge-
netically evoked monosynaptic GABAergic input 
to SPNs (Figure  3—figure supplement 1). This 
monosynaptic input was insensitive to mecamyl-
amine, however, making it unlikely to mediate the 
observed effect of nAChRs on SPN spike timing 
(Figure 3—figure supplement 1).

CINs receive converging excitatory inputs 
from the thalamus as well as the cortex (Lapper 
and Bolam, 1992; Thomas et al., 2000). Indeed, 
targeted recordings from CINs confirmed that 
they are robustly engaged by our corticostriatal 
stimulation protocol, even displaying a lower 
stimulation threshold and shorter average delay 
to spike than SPNs (Figure  4a–c). Despite the 
observed high fidelity and speed of cortically 
evoked CIN spiking, a comparison of the temporal 
dynamics of synchronous cortical engagement of 
SPN inhibition (latency of approximately 5 ms, 
Figure  5a) vs. synchronous CIN engagement of 
GINs (latency of approximately 11 ms, English 
et  al., 2011; Nelson et  al., 2014b) shows that 
phasic activation of CINs is still not sufficiently fast 
to account for the mecamylamine- induced spike 
delay we observed in SPNs (Figure 5b). In partic-
ular, even if there are sufficient numbers of CINs 
that respond instantaneously to cortical activation 
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due to their ongoing activity, the earliest latency 
at which their phasic inhibition can influence SPNs 
is 11 ms later (English et al., 2011; Nelson et al., 
2014b). However, SPN spikes are being delayed 
beginning 5 ms after stimulation (Figure  5c 
magenta), which cannot be explained by phasic 
CIN activation.

If phasic activation of nAChRs by synapti-
cally evoked CIN activity cannot account for the 
observed delay in SPN spike initiation (due to the 
necessarily slow nature of the CIN- GIN- SPN disyn-
aptic signal), how does blocking nAChRs advance 
synaptically evoked SPN spiking? Given the 
autonomous pacemaking nature of CINs, perhaps 
the explanation is that tonic, rather than phasic, 
activation of nAChRs is key to the phenomenon. 
There are three obvious mechanisms that could 
be at play in this scenario: (1) ongoing nAChR 

activation (either tonic or phasic activation that is not time- locked with the corticostriatal stimula-
tion event leading to SPN spiking) may decrease SPN intrinsic excitability indirectly, likely by altering 
ongoing neuromodulator release (Zhou et al., 2002; Rice and Cragg, 2004); (2) the effect on SPN 
spiking may be a non- specific drug effect of mecamylamine (this is unlikely, since DHβE had the same 
effects); or (3) tonic activation of somatodendritic nAChRs may produce an ongoing depolarization of 
GINs, ultimately priming or accentuating corticostriatal feedforward inhibition.

To test the possibility that blockade of ongoing nAChR activation increases SPN excitability, we 
measured the current- voltage (IV) relationship of SPNs before and during mecamylamine applica-
tion. While there is no indication that our detected effect of mecamylamine on spike timing or ADP 
amplitude is bimodal and specific to direct pathway SPNs (dSPNs) or indirect pathway SPNs (iSPNs), 
dSPNs and iSPNs display differences in basal excitability (Gertler et al., 2008), which can compli-
cate interpretation. We therefore performed these experiments in transgenic mice where dSPNs and 
iSPNs could be identified by their fluorescent label (Shuen et al., 2008; Ade et al., 2011; Figure 6a). 

(A) Example of the autonomous discharge of a CIN 
recorded in cell- attached configuration (top) and the 
distribution of firing rates (bottom, n=15 CINs) in an 
acute striatal slice. (B) Peristimulus time histograms 
(PSTHs) of a CIN in response to optogenetic 
activation of corticostriatal fibers at various 470 nm 
LED intensities as compared to the amplitude of the 
excitatory postsynaptic potentials (EPSPs) evoked in 
a nearby SPN (insets), demonstrating that CINs are 
much more sensitive than SPNs to cortical activation. 
(C) Cumulative distribution of the latency to first 
spike of CINs recorded in cell- attached mode (green, 
n=8 CINs) as compared to the latency to first spike in 
an SPN recorded (from a resting state) in the whole- 
cell mode (n=12), before (black) and after (magenta) 
application of mecamylamine.
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Figure 5. Latency of feedforward GABAergic inhibitory postsynaptic currents (IPSCs) in striatal spiny projection 
neurons (SPNs) activated synaptically by corticostriatal fibers. (A) Left: IPSCs recorded in an SPN held at +10 mV 
before (black) and after (red) application of GABAR antagonists, reveals GABA- sensitive (purple) IPSC. Right: 
zoom- in of the GABAergic IPSCs enables estimation (fit of diagonal black line) of the latency of the feedforward 
GABA- sensitive inhibition. (B) Distribution of the latency of feedforward GABAergic inhibition to SPNs in the Thy1- 
ChR2 mouse (n=7 SPNs). (C) Schematic demonstrating that the feedforward GABAergic inhibition precedes the 
earliest timing of feedforward cholinergic disynaptic inhibition of SPNs, indicating that phasic activation of CINs 
cannot explain the nicotinic acetylcholine receptor (nAChR)- dependent delay of spike latency.
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Mecamylamine had no significant effect on the resting membrane potential or rheobase current 
of either SPN type (Figure  6b and c). Furthermore, mecamylamine did not decrease the time to 
spike in response to somatic rheobase current injection or the latency to first spike in an AP train 
induced by suprathreshold somatic current injection (Figure 6—figure supplement 1). Given that 
most data to this point came from pooled populations of SPNs, and that we observed no SPN- type- 
specific effects of mecamylamine on SPN excitability, we performed additional analysis on pooled 
SPN data. While rheobase currents were unaffected, mecamylamine decreased the responsiveness to 
several sub- rheobase amplitude currents, arguing that if anything mecamylamine may decrease the 
excitability of SPNs in some regards (Figure 6d). Mecamylamine had no effect on the firing rate of 
SPNs (Figure 6e), nor did it alter IV properties of unidentified SPNs recorded from Thy1- ChR2 mice 
(Figure 6—figure supplement 1). Taken together, reduced spike latency induced by nAChR blockade 
cannot be explained by changes in SPN intrinsic excitability.

Because mecamylamine did not increase the intrinsic excitability of SPNs, we tested if nAChR 
blockade attenuated the basal inhibitory GABAergic influence that they are under. Indeed, mecamyl-
amine significantly reduced the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in a 
mixed population of SPNs (Figure 7a–c). As SPNs lack nAChRs, the source of these attenuated sIPSCs 
is likely GINs. Indeed, various classes of GINs are excited, and their spontaneous activity is elevated, 
by tonic activation of nAChRs (Luo et al., 2013; Muñoz- Manchado et al., 2014, Ibáñez- Sandoval 
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Figure 6. Striatal spiny projection neuron (SPN) intrinsic excitability is not increased by nicotinic acetylcholine receptor (nAChR) blockade. (A) Example 
current- voltage (IV) traces of direct pathway SPNs (dSPNs) and indirect pathway SPNs (iSPNs) in the absence and presence of 10 µM mecamylamine. 
(B) Left: resting membrane potential of dSPNs (black) and iSPNs (blue) in the absence and presence of mecamylamine (all SPNs: p=0.43, n=13; dSPNs: 
p=0.16, n=7; iSPNs: p=0.87, n=6; signed- rank test [SRT]). Right: percent change in resting membrane potential after mecamylamine application. (C) Left: 
rheobase current of dSPNs and iSPNs in the absence and presence of mecamylamine (all SPNs: p=0.075, n=13; dSPNs: p=0.5, n=7; iSPNs: p=0.095, 
n=6; SRT). Right: percent change in rheobase current after mecamylamine application. (D) Voltage responses to subthreshold current injections are not 
enhanced by mecamylamine (F(11,120)=0.86, p=0.58; n=11; two- way ANOVA), though a post hoc Bonferroni test reveals a significant mecamylamine- 
induced decrease at 50 pA (p<0.05) and 75 pA (p<0.01) current injections. (E) Action potential (AP) firing frequencies in response to suprathreshold 
somatic current injections were unaffected by mecamylamine (F(20,231)=0.43, p=0.99; n=12; two- way ANOVA).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Mecamylamine does not shorten the latency of striatal spiny projection neuron (SPN) action potentials (APs) induced by somatic 
current injection, or alter somatic excitability of SPNs from Thy1- ChR2 mice.

https://doi.org/10.7554/eLife.75829
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et al., 2015, Elghaba et al., 2016; Tepper et al., 2018). Because PV- FSIs express nAChRs and convey 
strong feedforward inhibition to SPNs (Koós and Tepper, 1999; Tepper et al., 2004b; Planert et al., 
2010), but only weakly respond to phasic activation of CINs (English et al., 2011), we made targeted 
current- clamp recordings from PV- Cre × Ai9- tdTomato transgenic mice (Johansson and Silberberg, 
2020) and tested the effect of nAChR blockade on their excitability (Figure 7d). Indeed, blocking 
nAChRs by bath application of DHβE significantly hyperpolarized the resting membrane potential of 
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Figure 7. Nicotinic acetylcholine receptor (nAChR) blockade hyperpolarizes parvalbumin- positive fast- spiking 
interneurons (PV- FSI) resting membrane potential and reduces the frequency of spontaneous inhibitory 
postsynaptic currents (sIPSCs) in striatal spiny projection neurons (SPNs). (A) Example recordings of sIPSCs from 
SPNs voltage- clamped at +10 mV, before and during mecamylamine (10 µM) application. (B) Mecamylamine 
significantly enhanced sIPSC frequency in SPNs (F8,108=2.607, p=0.012; n=13; two- way ANOVA). A post hoc 
Bonferroni test revealed that this decrease was limited to low- amplitude sIPSCs (20 pA bin: p<0.001; 25 pA bin: 
p<0.01). (C) Mecamylamine caused a rightward shift in the cumulative probability distribution of sIPSC interevent 
intervals in SPNs (F(20,252)=2.10, p=4.7·10–3; n=13; two- way ANOVA). (D) Example traces of a PV- FSI before and 
after wash- in of 1 µM dihydro-β-erythroidine hydrobromide (DHβE). (E) Resting membrane potentials of PV- FSIs 
before and after wash- in of DHβE (n=12; p=9.8·10–4; signed- rank test [SRT]).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Nicotinic acetylcholine receptor (nAChR) blockade depolarizes somatostatin (SOM)+ 
interneuron membrane potential.

https://doi.org/10.7554/eLife.75829
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PV- FSIs (Figure 7d–e) – this effect of nAChR blockade was not universally observed in other popu-
lations of GINs that are involved in feedforward inhibition, such as spontaneously firing SOM+ inter-
neurons, in which mecamylamine had no effect on firing rate and actually depolarized the average 
membrane potential (Figure 7—figure supplement 1). Thus, tonic activation of nAChRs depolarizes 
the resting membrane potential of PV- FSIs, continuously holding them closer to the AP threshold, and 
thereby priming them to transmit cortically driven feedforward inhibition more efficiently to SPNs. 
Interestingly, the dependence upon trailing ‘primed’ GIN input may explain why mecamylamine was 
capable of diminishing the amplitude of relatively slow rising EPSPs (Figure 1e) but not faster peaking 
excitatory postsynaptic currents (EPSCs) (Figure 2b).

If SPN spike latency is perpetually slowed due to tonic nAChR- mediated ‘priming’ of presynaptic 
GINs, then taking the relevant GINs offline should mimic and occlude the effect of mecamylamine. 
Unlike some other GINs that target SPNs, such as persistent/plateau- low- threshold spiking (LTS) 
interneurons (Tepper et al., 2010; Plotkin and Goldberg, 2019), synaptic responses of PV- FSIs to 
cortical inputs are mediated by Ca2+- permeable AMPA receptors that lack the GluA2 subunit (Gittis 
et  al., 2010). In fact, pharmacological blockade of Ca2+- permeable GluA2- lacking AMPA receptor 
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subunits prevents cortical activation of PV- FSIs but not persistent/plateau- LTS interneurons (Gittis 
et al., 2010; Gittis et al., 2011). Indeed, pharmacologically preventing cortical activation of PV- FSIs 
with the Ca2+- permeable AMPA receptor antagonist 1- naphthyl acetyl spermine (Naspm; 100 µM) not 
only reduced spike latency and ADP amplitude, but occluded the effect of mecamylamine (Figure 8). 
Taken together, these data demonstrate that tonic activation of nAChRs on a subclass of GINs is 
responsible for delaying cortically evoked SPN spiking, and implicate PV- FSIs as the primary mediator.

In summary, the tonic activity of CINs recruits a subclass of GINs, namely PV- FSIs, to provide a 
‘nicotinic brake’ on SPN responsiveness to cortical activity (Figure 9). Such a mechanism could allow 
SPNs to be more receptive of cortical inputs when CINs pause their firing in response to salient inputs 
or stimuli associated with reward.

Discussion
The present study describes a novel role for tonic nAChR activation in shaping striatal output. Decades 
of research have firmly established CINs as important modulators – mostly via mAChRs (Goldberg 
et al., 2012; Zucca et al., 2018; Assous, 2021) – of cortico- and thalamo- striatal synaptic integra-
tion and determinants of striatal output (Akins et al., 1990; English et al., 2011; Abudukeyoumu 
et al., 2019). Despite the fact that CINs are autonomous pacemakers, nearly all studies examining 
their influence on the precise temporal output of the striatum, particularly via nAChRs, have been 
centered around the consequences of their phasic engagement (Witten et al., 2010; English et al., 
2011; Faust et al., 2016; Dorst et al., 2020). Here, we report that ongoing, non- phasic activation of 
nAChRs accounts for a basal elevation in GABAergic tone, which dampens the response of SPNs to 
convergent cortical inputs and ultimately delays striatal output.

Basal cholinergic regulation of striatal output – a postsynaptic ‘nicotinic 
brake’?
CINs can robustly evoke GABAergic inhibition in the striatum by engaging somatodendritic nAChRs 
on specific classes of local GINs, in particular those expressing NPY (English et al., 2011; Luo et al., 
2013). This cell- type- specific nAChR- dependent mechanism has been demonstrated using elec-
trical or optogenetic stimulation to drive phasic, stimulation- locked inhibition. Somewhat puzzling, 
however, are reports that certain GINs, including PV- FSIs, only weakly respond to phasic activation 
of CINs or cholinergic afferents from the midbrain (Dautan et al., 2020) even though they express 
the requisite somatodendritic nAChRs (Koós and Tepper, 2002; English et al., 2011; Nelson et al., 
2014a; Nelson et al., 2014b). Our finding that tonic activation of nAChRs enhances the excitability of 
FSIs, as has been shown previously (Koós and Tepper, 2002; Luo et al., 2013), offers a physiological 
role for these receptors. In fact, tonic activation of nAChRs on FSIs (driven by the tonic activity of CINs) 
may partly explain why previous studies have only observed modest responses of FSIs to additional 
phasic stimulation of CINs (English et al., 2011; Nelson et al., 2014a).

Tonic nAChR excitation of GINs helps clarify another puzzling observation. It is obvious why GABAR 
blockers occlude the effect of mecamylamine on AP latency and ADP amplitude in SPNs – the relevant 
GABARs are synaptically downstream of the nAChRs on GINs. But why is it that mecamylamine seems 
to ‘saturate’ the effect of GABAR inhibition on SPN AP latency and ADP? In other words, why does 
blockade of GABARs have no additional effect on AP latency or ADP when applied after mecamyl-
amine, when phasic CIN activation only engages a select few types of GINs? If nAChRs were recruited 
solely by phasic activation of CINs, then the addition of GABAR blockers after mecamylamine should 
further shorten the AP latency and increase ADP amplitude by attenuating the influence of other 
GINs (such as PV- FSIs) that are only weakly responsive to phasic activation of nAChRs (English et al., 
2011; Nelson et al., 2014a; Nelson et al., 2014b). A ‘priming’ effect of tonic nAChR activation on 
GINs that are not directly driven to spike by CINs could explain the seemingly oversized influence of 
nicotinic signaling on GABAergic inhibition. It is also worth noting that such ‘priming’ of feed forward 
inhibition (where SPNs and GINs are activated near- simultaneously by converging corticostriatal affer-
ents) will ensure that this effect of GINs on SPNs is always inhibitory, despite the relatively depolarized 
reversal potential of Cl- in SPNs in vivo (Bracci and Panzeri, 2006), particularly when SPNs are at a 
near threshold membrane voltage (Figure 1F,G).

https://doi.org/10.7554/eLife.75829
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While an exhaustive categorization of the role every GIN class plays (or does not play) in mediating 
the observed effect may be ill- posed, we have identified PV- FSIs as the likely primary contributor. First, 
blockade of nAChRs hyperpolarized PV- FSIs at rest, suggesting that tonic activation of nAChRs holds 
these GINs closer to spike threshold. We observed the opposite effect in a similar class of GINs that 
mediates feedforward inhibition (SOM+ interneurons), making their involvement in the process less 
likely. While the effect on PV- FSI resting membrane potential that we observed was modest, we note 
that a similar magnitude mecamylamine- induced hyperpolarization is sufficient to slow the sponta-
neous firing rate of NPY- expressing LTS interneurons (Elghaba et al., 2016). Second, pharmacologi-
cally blocking cortical activation of PV- FSIs with a Ca2+- permeable AMPA receptor antagonist, which 
leaves synaptic activation of other GINs such as persistent/plateau- LTS interneurons intact, completely 
occluded the effect of mecamylamine on SPN spike latency. Together, these data corroborate PV- FSIs 
as the primary candidate to exert the ‘nicotinic brake’ we observed during basal circuit activity.

Under what conditions will the ‘nicotinic brake’ be lifted?
Through their continuous autonomous discharge, CINs tonically release ACh in the striatum (Zhou 
et al., 2002). While a prolonged exposure of striatal nAChRs to ACh is bound to desensitize them, it 
has been argued that the fast action of striatal acetylcholinesterase (AChE) prevents nAChR desensiti-
zation, allowing for the maintenance of tonic nAChR activation in the striatum (Zhou et al., 2002). So 
if tonic nAChR activation normally puts a brake on cortical feedforward inhibition, under what circum-
stances is this brake removed? The TANs of the primate striatum, which are comprised mainly of CINs 
(Wilson et al., 1990; Aosaki et al., 1995), acquire a synchronized pause response (Raz et al., 1996) 
in their tonic firing that lasts several hundred milliseconds in response to primary reward or, through 
conditioning, to salient stimuli associated with reward (Kimura et al., 1984; Apicella et al., 1997; 
Goldberg and Reynolds, 2011; Bradfield et al., 2013). This pause duration should be sufficient – 
particularly while AChE rapidly clears the extracellular space from ACh – to deactivate the nAChRs, 
thereby removing the nicotinic brake.

Our study complements a recent study that described how CINs impact SPN neural dynamics in 
vivo (Zucca et al., 2018). In that study it was shown that when CINs are optogenetically silenced in a 
synchronous fashion for a sufficiently long period, SPNs become hyperpolarized, less excitable, and 
short- term corticostriatal plasticity is dampened. However, these effects commence only 400 ms after 
CINs are silenced. Until that point SPN excitability is unaffected. Thus, that study remained agnostic 
about the effect of CIN pauses that are shorter than 400 ms long on SPNs. Because physiological 
TAN pauses in response to sensory cues are typically over after 300 ms (Kimura et al., 1984; Apicella 
et al., 1997), the mAChR- mediated curbing of SPN excitability and responsiveness revealed in that 
and other studies (Ebihara et al., 2013) may not be relevant to the role of the shorter, more physio-
logical CIN pauses. Assuming that the nAChR- dependent mechanism we revealed can come into play 
sooner, our findings suggest that there are two dichotomous phases to the effect of synchronous CIN 
pauses: an ‘early’ period that is dominated by the consequences of removing tonic nAChR activation, 
and a more delayed period driven by diminished activation of mAChRs, where the responsiveness of 
SPNs to incoming cortical input is weakened, as shown previously (Zucca et al., 2018).

Implications for tuning striatal circuit activity
Our data suggest that as CIN pauses develop ongoing GABAergic inhibition will be relieved. This 
could have the effect of sharpening the timing of cortically driven spiking by several milliseconds, 
ultimately shaping the moment- by- moment processing of striatal output. Because the TAN pause 
usually coincides with the arrival of a salient stimulus, it is precisely a moment when SPNs need to be 
more attuned to cortical input and respond more reliably. Given the relatively higher affinity of α4β2 
vs. α7 nAChRs (Albuquerque et al., 2009), it is not surprising that we found α7- mediated boosting 
of presynaptic glutamate release to be insensitive to tonic ACh levels, setting the stage for a CIN 
pause- initiated drop in ACh levels to promote a temporal sharpening of any proceeding SPN spikes 
that are induced. Moreover, seminal experiments in primates have shown that CIN pauses become 
more prominently and reliably evoked by sensory stimuli over the course of Pavlovian conditioning 
(Aosaki et al., 1994; Aosaki et al., 1995). Together, this implies that removal of the ‘nicotinic brake’ 
may be a crucial component of striatal learning. While a several milliseconds shift in spike timing may 
not seem like much in the context of 100 s of milliseconds long CIN pauses or SPN state transitions, 
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it may be ample time to move a spike into or out of the time window for NMDA receptor- dependent 
coincidence detection to occur (Hao and Oertner, 2012).

Both dSPNs and iSPNs robustly support spike timing- dependent plasticity (Pawlak and Kerr, 
2008; Shen et al., 2008). Under permissive conditions, constraining the relative timing of SPN APs 
to occur 5 ms after a corticostriatal synaptic burst efficiently potentiates the active synapses (Shen 
et al., 2008). In this view, decreasing the time to spike on the time scale we observe may be sufficient 
to bring the spike temporally close enough to NMDA receptor activation to engage the signaling 
cascades that are crucial for long- term potentiation. Such subtle nAChR- dependent tuning could be 
a way of ‘distancing’ those same cortical afferents from SPN activity under conditions of basal activity, 
allowing for the synapses encoding a particular sensorimotor cue to become potentiated only when 
deemed appropriate by a learned cholinergic signal. Expanding upon this possibility, it was recently 
shown that synapse- specific corticostriatal long- term potentiation requires the coordination of CIN 
pauses with DA release and SPN depolarization (Reynolds et al., 2022). It is tempting to speculate 
that a function of the CIN pause in the scenario is to create a window of plasticity by removing the 
‘nicotinic brake’ to reduce synaptic inhibition and promote and adjust the latency of evoked spikes.

The extent to which tonic activation of nAChRs will be capable of influencing GABA release and 
SPN responses to cortical inputs will likely depend on the capacity of AChE activity to both allow for 
the detection of a CIN pause and minimize nAChR desensitization (Zhou et al., 2002). This brings 
up an important corollary of the ‘nicotinic brake’ hypothesis: the putative mechanism by which CIN 
pauses remove the nicotinic brake may be most robust in the AChE- enriched compartment of the 
striatum, also known as the matrix (as opposed to striosomes) (Graybiel and Ragsdale, 1978; Brim-
blecombe and Cragg, 2017; Prager and Plotkin, 2019). Because the matrix constitutes ~85% of the 
striatum, our data likely reflect the situation in that compartment (Prager and Plotkin, 2019). While 
coordinated CIN activation can interrupt the timing of ongoing APs in both matrix and striosome 
SPNs (Crittenden et al., 2017), the degree of tonic nAChR activation and existence of a ‘nicotinic 
brake’ in striosomes is unclear.

Taken together, our data suggest an additional role for cholinergic signaling in shaping striatal 
activity. While a great deal is known about how ACh can impact SPN function through metabotropic 
muscarinic receptors, nearly all studies of the ‘faster’ nAChR arm of ACh signaling have focused on its 
phasic activation. The data in this study demonstrate that nAChR signaling is not constrained to times 
of phasic CIN engagement, and tonic activation of nAChRs places a ‘brake’ on SPN activity that may 
help guide the fine tuning of striatal output.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Mus musculus) C57BL/6J Jackson Laboratory RRID: IMSR_JAX:000664

Genetic reagent (Mus 
musculus)

B6.FVB- Tg(Drd2- EGFP/Rpl10a)
CP101Htz/J Jackson Laboratory RRID: IMSR_JAX:030255

Genetic reagent (Mus 
musculus) B6.Cg- Tg(Drd1a- tdTomato)6Calak/J Jackson Laboratory RRID: IMSR_JAX:016204

Genetic reagent (Mus 
musculus) B6.Cg- Tg(Thy1- COP4/EYFP)18Gfng/J Jackson Laboratory RRID:IMSR_JAX:007612

Genetic reagent (Mus 
musculus) Pvalb- cre Jackson Laboratory RRID: IMSR_JAX:017320

Genetic reagent (Mus 
musculus) Sst- cre Jackson Laboratory RRID: IMSR_JAX:018973

Genetic reagent (Mus 
musculus) Ai9 (‘tdTomato’) Jackson Laboratory RRID: IMSR_JAX:007909

Other AAV5- Ef1a- DIO- EYFP Addgene 27056- AAV5
Adeno- associated 
virus (AAV)

https://doi.org/10.7554/eLife.75829
https://identifiers.org/RRID/RRID:IMSR_JAX:000664
https://identifiers.org/RRID/RRID:IMSR_JAX:030255
https://identifiers.org/RRID/RRID:IMSR_JAX:016204
https://identifiers.org/RRID/RRID:IMSR_JAX:007612
https://identifiers.org/RRID/RRID:IMSR_JAX:017320
https://identifiers.org/RRID/RRID:IMSR_JAX:018973
https://identifiers.org/RRID/RRID:IMSR_JAX:007909
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Chemical compound, drug Mecamylamine hydrochloride
Sigma- Aldrich
Tocris

Lot # 019M4108V
CAS: 826- 39- 1
#2843, CAS: 110691- 49- 1

Chemical compound, drug Dihydro-β-erythroidine hydrobromide Tocris #2349, CAS: 29734- 68- 7

Chemical compound, drug SR 95531 hydrobromide (Gabazine) Hello Bio
CAS:
104104- 50- 9

Chemical compound, drug DNQX TOCRIS
CAS:
2379- 57- 9

Chemical compound, drug D- AP5 Hello Bio CAS:79055- 68- 8

Chemical compound, drug Methyllycaconitine citrate TOCRIS
Lot # 23A/255947
CAS:351344- 10- 0

Chemical compound, drug Naspm trihydrochloride Alomone Labs CAS: 1049731- 36- 3

Chemical compound, drug CGP 55845 hydrochloride Hello Bio CAS: 149184- 22- 5

Chemical compound, drug XYLAZINE AS HYDROCHLORIDE
EUROVET ANIMAL HEALTH 
B.V CAS: 082- 91- 92341- 00

Chemical compound, drug CLORKETAM VETOQUINOL CAS: 1867- 66- 9

Chemical compound, drug
VECTASHIELD Vibrance Antifade 
Mounting Medium with DAPI VECTOR LABORATORIES SKU: H- 1800

Antibody
Recombinant Anti- GAD65+GAD67 
antibody [EPR19366] Abcam ab183999

Rabbit monoclonal
(1:1000)

Antibody
Rabbit polyclonal anti 
Somatostatin- 14 Peninsula Laboratories T- 4102

Rabbit polyclonal
(1:100)

 Continued

Animals
All experimental procedures on mice adhered to and received prior written approval from the Institu-
tional Animal Care and Use Committees of the Hebrew University of Jerusalem (MD- 14- 14195- 3 and 
MD- 18- 15657- 3) and of Stony Brook University (737496) and of the local ethics committee of Stock-
holm, Stockholms Norra djurförsöksetiska nämnd (N2022_2020). Experiments were conducted on 
various transgenic mice. For optogenetic activation of corticostriatal fibers, we used 1- to 4- month- old 
male and female homozygous transgenic Thy1- ChR2 mice (B6.Cg- Tg(Thy1- COP4/EYFP)18Gfng/J) 
that express ChR2 under the Thy1 promoter were used. Thy1- ChR2 mice express ChR2 in cortical 
afferents under the thymus cell antigen 1 (Thy1) promoter. Thy1 is generally expressed in the axons 
of layer V pyramidal neurons, limbic system, midbrain, and brainstem (Arenkiel et  al., 2007). For 
experiments measuring paired pulse ratios (PPRs), neuronal excitability and spontaneous GABAergic 
events, we used 1.5- to 4- month- old male and female C57BL/6 mice crossed with one of two BAC 
transgenic lines (where indicated): drd1a- tdTomato (labeling dSPNs) or drd2- eGFP (labeling iSPNs) 
(Shuen et al., 2008; Ade et al., 2011). For PV- FSI and SOM+ interneuron recordings, both male and 
female mice (postnatal days 47–82) were used in this study. Mice were group- housed under a 12 hr 
light/dark schedule and given ad libitum access to food and water. The Pvalb- Cre (stock #017320, 
the Jackson laboratory) mouse line was crossed with a homozygous tdTomato reporter mouse line 
(‘Ai9’, stock #007909, the Jackson laboratory) to allow identification of FSIs based on the expres-
sion of a fluorescent marker protein. SOM+ interneurons were identified by injecting cre- dependent 
AAV (27056- AAV5, Addgene) into the striatum of Sst- cre mice, inducing the expression of YFP in 
SOM- positive neurons specifically (stock #018973, the Jackson Laboratory). The PV- and SOM- Cre 
lines were heterozygous and maintained on a wild- type C57BL/6J background (stock # 000664, the 
Jackson Laboratory).

Virus injections
SOM- cre mice were anesthetized with isoflurane and placed in a stereotaxic frame (Harvard Appa-
ratus, Holliston, MA). A Quintessential Stereotaxic Injector (Stoelting, Wood Dale, IL) was used to 
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inject 0.5 µl of AAV5- EF1a- DIO- EYFP (#27056, Addgene) into the striatum (+0.5 AP, 2 ML, 2.5 DV) at a 
speed of 0.1 µl/min. The pipette was held in place for at least 5 min after the injection. Following the 
surgery, the mice were given analgesics (buprenorphine, 0.08 mg/kg, i.p.).

Slice preparation
For optogenetic activation experiments, PPR, excitability and spontaneous GABAergic event exper-
iments: Mice were deeply anesthetized with ketamine- xylazine and perfused transcardially with ice- 
cold modified artificial cerebrospinal fluid (ACSF) bubbled with 95% O2–5% CO2, and containing (in 
mM): 2.5 KCl, 26 NaHCO3, 1.25 Na2HPO4, 0.5 CaCl2, 10 MgSO4, 0.4 ascorbic acid, 10 glucose, and 
210 sucrose (optogenetic activation studies) or 3 KCl, 26 NaHCO3, 1 NaH2PO4, 1 CaCl2, 1.5 MgCl2, 124 
NaCl, and 14 glucose (PPR, excitability and spontaneous GABAergic event measures). The brain was 
removed and sagittal or coronal slices sectioned at a thickness of 275 µm were obtained in ice- cold 
modified ACSF. Slices were then submerged in ACSF, bubbled with 95% O2–5% CO2, and containing 
(in mM): 2.5 KCl, 126 NaCl, 26 NaHCO3, 1.25 Na2HPO4, 2 CaCl2, 2 MgSO4, and 10 glucose and stored 
at room temperature for at least 1 hr prior to recording (optogenetic activation studies), or 3 KCl, 
26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 1 MgCl2, 124 NaCl, and 14 glucose, incubated at 32°C for 45 min, 
then held at room temperature until recording (PPR, excitability and spontaneous GABAergic event 
measures).

For PV- FSI and SOM+ experiments: Mice were deeply anesthetized with isoflurane and decapi-
tated. The brain was removed and immersed in ice- cold cutting solution containing 205 mM sucrose, 
10 mM glucose, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2, and 7.5 mM MgCl2. 
Parasagittal brain slices (thickness 250 mm) were prepared with a Leica VT1000S vibratome and incu-
bated for 30–60 min at 34°C in a submerged chamber filled with ACSF saturated with 95% oxygen and 
5% carbon dioxide. ACSF was composed of 125 mM NaCl, 25 mM glucose, 25 mM NaHCO3, 2.5 mM 
KCl, 2 mM CaCl2, 1.25 mM NaH2PO4, 1 mM MgCl2. Subsequently, slices were kept for at least 30 min 
at room temperature before recording.

Slice visualization, electrophysiology, and optogenetic stimulation
For optogenetic activation experiments: The slices were transferred to the recording chamber 
mounted on an Olympus BX51 upright, fixed- stage microscope and perfused with oxygenated 
ACSF at room temperature. A 60×, 0.9 NA water immersion objective was used to examine the slice 
using Dodt contrast video microscopy. Patch pipette resistance was typically 3–4  MΩ when filled 
with recording solutions. In voltage- clamp experiments of IPSCs in SPNs, the intracellular solution 
contained (in mM): 127.5 CsCH3SO3, 7.5 CsCl, 10 HEPES, 10 TEA- Cl, 4 phosphocreatine disodium, 
0.2 EGTA, 0.21 Na2GTP, and 2 Mg1.5ATP (pH = 7.3 with CsOH, 280–290 mOsm/kg). For whole- cell 
current- clamp recordings from SPNs and cell- attached recordings from CINs, the pipette contained (in 
mM): 135.5 KCH3SO4, 5 KCl, 2.5 NaCl, 5 Na- phosphocreatine, 10 HEPES, 0.2 EGTA, 0.21 Na2GTP, and 
2 Mg1.5ATP (pH = 7.3 with KOH, 280–290 mOsm/kg). Electrophysiological recordings were obtained 
with a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA). Junction potential, which was 
7–8 mV, was not corrected. Signals were digitized at 10 kHz and logged onto a personal computer 
with the Winfluor software (John Dempster, University of Strathclyde, UK). Blue light LED (470 nm, 
Mightex, Toronto, Ontario, Canada) was used for full- field illumination via the objective. Single pulses 
were 1 ms long. In order to compare AP latency and ADP amplitude among SPNs, the LED intensity 
was set to generate a just suprathreshold response in each SPN recorded.

For PPR, excitability and spontaneous GABAergic event experiments: The slices were transferred 
to the recording chamber mounted on a modified Ultima laser scanning microscope system (Bruker 
Nano) (excitability and spontaneous GABAergic event experiments) or an Olympus BX51W1 micro-
scope (PPR experiments) and perfused with oxygenated ACSF at room temperature. A 60×, 1.0 NA 
Olympus LUMPFL water immersion objective was used to visualize slices, and fluorescently labeled 
neurons identified for recordings with the aid of a Dodt contrast image displayed in registration with 
the fluorescence image for experiments requiring identification of dSPNs vs. iSPNs. Patch pipette 
resistance was typically 3–6  MΩ when filled with recording solutions. For voltage- clamp record-
ings, the intracellular solution contained (in mM): 120 CsMeSO3, 5 NaCl, 10 TEA- Cl (tetraethylam-
monium- Cl), 10 HEPES, 5 Qx- 314, 4 ATP- Mg2+, 0.3 GTP- Na+, 0.25 EGTA, and 0.05 Alexa Fluor 568 
hydrazide Na+salt (Alexa Fluor was omitted in PPR experiments). For current- clamp recordings, the 
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internal solution contained (in mM): 135 KMeSO4, 5 KCl, 10 HEPES, 2 ATP- Mg2+, 0.5 GTP- Na+, 5 
phosphocreatine- tris, 5 phosphocreatine- Na+, 0.1 Fluo- 4 pentapotassium salt, and 0.05 Alexa Fluor 
568 hydrazide Na+ salt. Patched SPNs were allowed to equilibrate for 10 min after rupture. Recordings 
were made using a Multiclamp 700B amplifier and either PrairieView 5.0 software (Bruker) or custom 
MATLAB protocols. sIPSCs were recorded in voltage- clamp mode at +10 mV for 180 s before and 
after bath application of drug. Access resistance and holding current were monitored throughout 
experiments and cells were excluded if these values changed by more than 20%. Local electrical stim-
ulation was evoked using a concentric bipolar stimulation electrode (FHC, Inc, Bowdoin, ME) placed 
near the cell using a stimulating amplitude of ~1–3 mV and 50 ms between stimuli pulses; 10 sweeps 
(10 s intersweep interval) were averaged per cell; cells were held at –70 mV. PPR experiments were 
performed at 26–29°C. Rheobase and AP firing frequencies were determined in current- clamp mode 
via a step series of 500 ms current injections starting at –200 pA and increasing by 25 pA with each 
step. Resting membrane potential and cell morphology were monitored throughout experiments and 
cells were excluded if resting at a more depolarized potential than –77.0 mV.

For PV- FSI and SOM+ experiments: Whole- cell patch clamp recordings were obtained in oxygen-
ated ACSF at 35°C. Neurons were visualized using infrared differential interference contrast micros-
copy (Zeiss FS Axioskop, Oberkochen, Germany). tdTomato- or EYFP- expressing neurons were 
identified by switching to epifluorescence using a mercury lamp (X- cite, 120Q, Lumen Dynamics). 
Borosilicate pipettes of 5–8 MOhm resistance were pulled with a Flaming/Brown micropipette puller 
P- 1000 (Sutter instruments). All recordings were done in current clamp with an intracellular solution 
containing 130 mM K- gluconate, 5 mM KCl, 10 mM HEPES, 4 mM Mg- ATP, 0.3 mM GTP, 10 mM Na2- 
phospho- creatine (pH 7.25, osmolarity 285 mOsm). Recordings were amplified using a MultiClamp 
700B amplifier (Molecular Devices, San Jose, CA), filtered at 2  kHz, digitized at 10–20  kHz using 
ITC- 18 (HEKA Elektronik GmbH, Germany), and acquired using custom- made routines running on 
Igor Pro (Wavemetrics, Portland, OR). Liquid junction potential was not corrected. Throughout all 
recordings, pipette capacitance and access resistance were compensated for and data were discarded 
when access resistance increased beyond 30 MOhm. The intrinsic properties of the neurons were 
determined by a series of hyperpolarizing and depolarizing current steps and ramps, enabling the 
extraction of sub- and suprathreshold properties. All neurons were recorded in control conditions and 
after >5 min of bath application of 1 µM DHβE (Tocris) or 10 µM Mec (Tocris).

Drugs and reagents
Experiments in Thy1- ChR2 mice were performed in the presence or absence of synaptic receptor 
blockers including 10 µM SR- 95531 (gabazine) to block GABAA receptors, 2 µM CGP- 55845 to block 
GABAB receptors, 10  µM mecamylamine, a non- selective nAChR- antagonist, 1 or 10  µM DHβE, a 
competitive α4β2 nAChR antagonist and Naspm (100 µM), a Ca2+- permeable AMPA receptor antag-
onist. Experiments were conducted with various combinations of the blockers. The acute effects of 
solution exchanges were measured at least 5 min after wash on. All drugs and reagents were acquired 
from Tocris (Ellisville, MO), Sigma (St Louis, MO) or HelloBio (Bristol, Avonmouth, UK).

Histology
Nine- week- old female mice were deeply anesthetized with ketamine- xylazine followed by cold perfu-
sion to the heart of PBS and 4% PFA. The removed brain was kept overnight at 4°C in 4%–4% PFA. 
The next day, the brain was washed in PBS (three times, 20 min each) before thin 40 µm coronal slices 
were made using a vibratome (Leica VT1000S). Slices were briefly washed with CAS- BLOCK (Life 
Technologies) before being incubated in CAS- BLOCK (300 µl) overnight with GAD65+67 antibodies 
(ab183999 Abcam, 1:1000) or Somatostatin (BMA Biomedicals Peninsula Laboratories T- 4102, 1:100). 
The slices were then washed in PBS (three times, 20 min each) and incubated with CAS- BLOCK and 
secondary antibodies (Abcam ab150063, 1:500) for 3 hr. Antifade Mounting Medium (VECTASHIELD) 
was applied to prevent slice bleaching.

Data analysis and statistics
Data analysis was performed using custom- made code in MATLAB (MathWorks, Natick, MA) or 
Python; sIPSCs were analyzed using the Mini Analysis program (Synaptosoft). Two- tailed Wilcoxon SRT 
was used to test for changes of medians in matched- paired comparisons. The null hypotheses were 
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rejected if the p values were below 0.05. Boxplots represent range (whiskers), median (thick bar), and 
lower and upper quartiles. To analyze responses to stimulation, peristimulus time histograms (PSTHs) 
were generated. PSTHs were estimated using 20 ms wide bins. IV relationships, sIPSC frequencies, 
and interevent intervals were analyzed by two- way ANOVA.
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