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Abstract 
Matairesinol (MAT), a plant lignan renowned for its anticancer properties in hormone-sensitive cancers like breast and prostate 
cancers, presents a promising yet underexplored avenue in the treatment of metastatic prostate cancer (mPC). To elucidate its 
specific therapeutic targets and mechanisms, our study adopted an integrative approach, amalgamating network pharmacology 
(NP), bioinformatics, GeneMANIA-based functional association (GMFA), and experimental validation. By mining online databases, 
we identified 27 common targets of mPC and MAT, constructing a MAT-mPC protein–protein interaction network via STRING and 
pinpointing 11 hub targets such as EGFR, AKT1, ERBB2, MET, IGF1, CASP3, HSP90AA1, HIF1A, MMP2, HGF, and MMP9 with CytoHuba. 
Utilizing DAVID, Gene Ontology (GO) analysis highlighted metastasis-related processes such as epithelial–mesenchymal transition, 
positive regulation of cell migration, and key Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including cancer, prostate 
cancer, PI3K-Akt, and MAPK signaling, while the web resources such as UALCAN and GEPIA2 affirmed the clinical significance of 
the top 11 hub targets in mPC patient survival analysis and gene expression patterns. Our innovative GMFA enrichment method 
further enriched network pharmacology findings. Molecular docking analyses demonstrated substantial interactions between MAT 
and 11 hub targets. Simulation studies confirmed the stable interactions of MAT with selected targets. Experimental validation in PC3 
cells, employing quantitative real-time reverse-transcription PCR and various cell-based assays, corroborated MAT’s antimetastatic 
effects on mPC. Thus, this exhaustive NP analysis, complemented by GMFA, molecular docking, molecular dynamics simulations, and 
experimental validations, underscores MAT’s multifaceted role in targeting mPC through diverse therapeutic avenues. Nevertheless, 
comprehensive in vitro validation is imperative to solidify these findings.
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Graphical Abstract 
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Introduction 
Prostate adenocarcinoma, the second most prevalent cancer 
in males globally, presents a significant health burden with 
increasing incidence projected to reach 2.43 million cases by 
2040 [1, 2]. Metastatic prostate cancer (mPC) is associated 
with bone metastasis and elevated mortality rates. The 5-year 
survival rate for mPC is merely 32%, highlighting the urgent need 
for effective treatments [3, 4]. Androgen deprivation therapy 
(ADT) is standard for castration-dependent mPC but often 
leads to recurrence and progression to metastatic castration-
resistant prostate cancer (mCRPC) [5]. Despite advances, mCRPC 
remains incurable due to limited therapeutic options and an 
incomplete understanding of its molecular complexities [6, 
7]. To address the inadequacies in available treatments, there 
is a growing interest in utilizing natural phytochemicals as 
complementary and alternative medicines alongside existing 
therapeutic modalities for mPC. Given their substantial efficacy 
and low toxicity profile, current research endeavors focus on 
exploring phytochemicals to enhance the overall quality of life 
for individuals with mPC [8, 9]. Conducting in-depth mechanistic 
research to explore these phytochemicals’ anticancer and 
antimetastatic potential is imperative. Such research efforts can 
significantly contribute to advancing the field of targeted therapy, 
providing avenues for innovative drug discovery, and playing 
a crucial role in the specific development of antimetastatic 
therapeutics. 

Natural compounds and their analogs are pivotal in drug 
discovery, especially in oncology [10]. Natural compounds, 
notably dietary lignans found in sources like flaxseeds, hold 
the potential for cancer treatment and metastasis prevention 
[11, 12]. Various dietary lignans such as lariciresinol, pinoresinol, 

and medioresinol demonstrate significant regulatory effects on 
different cancer metastases [13]. Research indicates that dietary 
lignans, including matairesinol (MAT), can complement cancer 
treatment alongside traditional chemotherapy approaches. 
Moreover, it is essential to investigate the mechanisms by which 
these dietary lignans confer these benefits. A comprehensive 
understanding of these mechanisms could pave the way for 
not only the development of adjuvants in cancer manage-
ment, potentially enhancing the quality of life for individuals 
undergoing chemotherapy [14], but also the discovery of new 
antimetastatic therapeutics. MAT, a phytoestrogenic polyphenol 
found in flaxseeds, sesame seeds, and less quantity in berries 
like strawberries and blackberries, and some cereals (wheat, rye, 
oats), shows promise as an anticancer agent [15]. While it exhibits 
anti-inflammatory, anticancer, and anti-angiogenic properties in 
various cancers, including prostate cancer, its exact molecular 
mechanism remains unclear [16]. Further research is needed 
to elucidate MAT’s mode of action for potential therapeutic 
applications in prostate cancer. 

Network pharmacology (NP) offers a holistic approach for 
understanding complex diseases by elucidating drug–target inter-
actions and underlying biological mechanisms [17, 18]. Molecular 
docking and simulation studies provide valuable insights into the 
binding patterns and stability of protein–drug complexes [19, 20]. 
In this study, we employed NP, molecular docking, and molecular 
dynamics (MD) simulation to predict MAT’s mechanism of 
action against mPC. Additionally, GeneMANIA-based functional 
association (GMFA) analysis was utilized to enrich NP findings by 
exploring functional associations of hub targets. In vitro validation 
confirmed MAT’s anticancer and antimetastatic potential in PC3 
cells, highlighting its therapeutic promise.
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Methods 
Identification of potential targets of MAT against 
metastatic prostate cancer 
GeneCards and DisGeNet databases were utilized to identify 
human genes associated with mPC, resulting in 236 unique 
targets. Drug target identification was performed through Swiss 
Target Prediction, Superpred, and Pharmapper databases, yielding 
524 potential MAT-related targets after deduplication. The 
conversion of protein names to gene symbols was facilitated 
by the UniProt database. Venn diagram analysis identified 27 
unique targets shared between MAT and mPC, forming the basis 
for further analysis [21–25]. 

Construction of the PPI network and 
identification of the top 11 hub targets 
The protein–protein interaction (PPI) network for predicted tar-
gets of MAT against mPC (PTM-mPC) was constructed using the 
STRING database [26] with a confidence score ≥0.7 and restricted 
to “Homo sapiens.” The network data in TSV format were then 
imported into Cytoscape 3.9.1. The top 11 MAT targets against 
mPC were identified as hub targets using the CytoHubba plug-in, 
employing the degree algorithm to assess the biological signifi-
cance [27]. This approach ensured a robust and high-confidence 
network analysis to identify key therapeutic targets of MAT. 

GO and KEGG enrichment analysis, and 
elaboration of an integrated network involving 
compound, targets, and signaling pathways 
GO and KEGG pathway enrichment analyses were conducted 
using the DAVID database [28]. The analysis focused on “H. sapi-
ens” gene annotations, with significance set at P ≤.05 and False 
Discovery Rate (FDR) cut-off ≤0.05. The top 15 GO terms and 20 
KEGG pathways were selected for visualization using the SR plot 
and Sankey plot, respectively. A “compound–target–pathway (C-T-
P) network” involving MAT, KEGG pathways, and associated target 
genes was constructed using Cytoscape version 3.9.1. 

Expression profiles of the top 11 hub targets in 
both normal and tumor tissues 
The gene expression profiles of the top 11 hub targets identi-
fied through CytoHubba were assessed using UALCAN, an online 
database. UALCAN facilitated the evaluation of gene expression 
levels in prostate adenocarcinoma (PRAD), considering param-
eters such as normal versus tumor samples, patients’ Gleason 
scores, and nodal metastasis status [29]. 

Survival analysis investigating the correlation 
between gene expression profiles of the top 11 
hub genes and patient survival outcomes in 
prostate adenocarcinoma 
Survival probability associations with the expression of the top 
11 hub targets were explored using the GEPIA2 web server, lever-
aging data from the Genotype-Tissue Expression and The Cancer 
Genome Atlas datasets [30]. Stratified by each hub gene’s expres-
sion status, survival analysis focused on PRAD patients and eval-
uated overall survival (OS) and disease-free survival (DFS). Plots 
with a median cut-off value of 50% and hazard ratios with a 95% 
confidence interval were generated. Statistical significance was 
set at P <.05, and significant correlations between the expression 
of the top 11 hub genes and the survival probability of PRAD 
patients were observed. 

In-depth analysis of MAT interaction with mPC 
hub targets by molecular docking and molecular 
dynamics simulation studies 
Molecular docking analyzed MAT’s interaction with its top 11 
hub targets from PPI network analysis. MAT’s 3D structure was 
retrieved from PubChem, while the targets’ protein structures 
were obtained from the RCSB PDB database (Supplementary File 
S1-Table S1). HIF1, IGF1, and HGF proteins were excluded due 
to lack of appropriate PDB structures to maintain precision. 
AutoDock Vina performed docking, with AutoDock Tools for bind-
ing site determination [31]. Ligands underwent energy minimiza-
tion with the Avogadro Program [32]. Docking exhaustiveness was 
set to 100. Biovia Discovery Studio software visualized optimized 
conformations, providing insights into molecular interactions. 
Docked complexes underwent 100-ns all-atom MD simulation in 
Gromacs 2020.4 [33, 34]. Partial charges for MAT and cocrystal 
ligands were generated with the AmberTools23 antechamber 
module [35]. AMBER99SB-ILDN force field was used for protein 
topology [36]. Systems were solvated with a TIP3P water model in 
a dodecahedron unit cell, neutralized with sodium and chloride 
counter ions. Energy minimization was done until reaching a force 
constant threshold. Systems were equilibrated at constant par-
ticle number N, constant volume V and a constant temperature 
conditions of 300 K (NVT) and constant pressure using Parrinello– 
Rahman barostat at 1-atm pressure with a leap-frog integrator. 
Production phase MD simulations used a 2-fs step size. Trajecto-
ries stored at each 10 ps were analyzed for stability with root mean 
square deviation (RMSD), root mean square fluctuation (RMSF), 
radius of gyration (Rg), and hydrogen bond interactions [37–39]. 

GeneMANIA-based functional association 
network analysis of top 11 hub targets to create 
an expanded potential therapeutic targets 
database of MAT against mPC 
To comprehensively identify genes functionally related to the 
initial top 11 hub targets of MAT, we employed a novel method 
within the GeneMANIA framework [40]. This GMFA network anal-
ysis approach involved discovering 10 additional genes for each 
hub gene, prioritizing those with the strongest associations within 
the gene–gene network [41, 42]. The analysis focused on three 
key parameters, co-expression, genetic interaction, and physical 
interaction, significantly enhancing the precision of therapeutic 
target identification. Co-expression analysis aids in selecting tar-
gets involved in shared disease-related processes, while genetic 
interaction analysis identifies potential targets with intricate net-
work dependencies. Physical interaction analysis helps pinpoint 
crucial components of disease-associated networks for targeted 
intervention. By considering these parameters collectively, we 
achieved a more nuanced understanding of gene function, facili-
tating the identification of robust therapeutic targets with multi-
faceted roles in disease processes. Subsequently, we consolidated 
all newly identified genes with the initially obtained top 11 hub 
targets, creating a GMFA-based Expanded Database (GMFA-ED) 
for MAT against mPC. This integration resulted in a total of 
112 unique genes in the expanded database, providing a more 
comprehensive foundation for identifying potential therapeutic 
targets of MAT against mPC. 

GO and KEGG enrichment analysis of GMFA-ED 
in relation to MAT against mPC 
The GMFA-ED dataset underwent extensive GO and KEGG path-
way enrichment analyses, yielding the top 20 KEGG pathways and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
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the top 15 terms for each GO category (BP, CC, and MF). A stringent 
threshold of significance, set at P ≤.05, guided the analysis. These 
enriched pathways and terms were visually depicted using the 
SR plot tool. A C-T-P network was constructed to elucidate the 
intricate relationships within the MAT–targets–pathway network, 
focusing on KEGG enrichment results from the GMFA-ED dataset 
and visualizing the interconnected elements with the ShinyGo 
tool [43]. 

Molecular docking and molecular dynamics 
simulation studies of MAT with identified 
PI3K/AKT signaling pathway targets 
The methodology mirrors procedures described in molecular 
docking and MD simulation studies of hub targets with MAT, with 
emphasis on PI3K/AKT pathway targets identified in the KEGG 
enrichment analysis of the GMFA-ED dataset. Protein structures 
corresponding to these targets were retrieved from the RCSB 
PDB database (Supplementary File S1-Table S2). Comprehensive 
analyses involving molecular docking and MD simulations were 
conducted to explore dynamic interactions between MAT and 
selected protein targets associated with the PI3K/AKT pathway, a 
potential therapeutic signaling pathway of MAT against mPC. 

Experimental validation of MAT’s 
antimetastatic potential against mPC by 
in vitro cell culture studies 
Drug, reagents, and materials 
Cell culture reagents, including Ham’s F12 medium and fetal 
bovine serum (FBS), were procured from Gibco (USA). MAT (HPLC 
grade, purity >95%), TRITC-phalloidin, MTT dye, DAPI, DMSO, and 
an antibiotic solution containing penicillin and streptomycin were 
sourced from Sigma-Aldrich (St. Louis, MO). RNAiso plus total RNA 
extraction reagent and the PrimeScript 1st strand cDNA synthesis 
kit was acquired from Takara Bio USA. All plastic ware necessary 
for cell culture was obtained from BD Biosciences (CA, USA). 

Cell culture and treatment 
The PC3 cell line, devoid of androgen receptor (AR) and prostate-
specific antigen expression, symbolizes aggressive androgen-
independent behavior and metastatic tendencies. Acquired from 
the National Centre for Cell Science in Pune, India, cells were 
cultured in Ham’s F12 medium supplemented with 10% FBS, 
2 mM l-glutamine, and 100 U/ml penicillin–streptomycin under 
standard conditions at 37◦C in a 5%  CO2 incubator, following [44]. 
MAT, stocked as a 50-mM solution in DMSO at 4◦C, was serially 
diluted with the culture medium for experimentation, with DMSO 
serving as a negative control at concentrations over 0.5% (v/v). 

Assessing the cytotoxic effect of MAT on PC3 
prostate cancer cells by MTT assay 
PC3 cells were seeded at a density of 1.5 × 103 cells per well 
in 96-well plates and cultured overnight. MAT at concentrations 
ranging from 1.56 to 200 μM, prepared as 2× exponential dilutions, 
was administered for 24, 48, and 72 h. Control groups included 
untreated cells and cells treated with DMSO, ensuring DMSO 
concentrations remained below 0.5% (v/v). After the respective 
treatment periods, 100 μl of 1 mg/ml MTT solution was added 
per well, followed by a 4-h incubation at 37◦C. Purple-colored 
formazan crystals confirmed cell viability, dissolved in 100 μl 
DMSO, and quantified for absorbance at 570–630 nm [45]. The 
results were derived from at least three independent sets (n = 3)  
of triplicate experiments. 

Assessing the inhibitory effect of MAT on 
clonogenic potential in PC3 prostate cancer cells 
by anchorage-dependent clonogenic assay 
PC3 cells were seeded at a density of 500 cells per well in 6-well 
plates and cultured overnight. Following incubation, cells were 
treated with MAT at concentrations of 0, 50, 100, and 200 μM, 
alongside controls, and incubated for 8 days to allow colony for-
mation. Colonies were then fixed, stained with crystal violet, and 
quantified by measuring absorbance at 595 nm after extraction 
with 10% acetic acid [45]. The results were derived from three 
independent sets (n = 3) of triplicate experiments. This experimen-
tal setup enabled a comprehensive assessment of MAT’s impact 
on the clonogenic potential of PC3 prostate cancer cells. 

Investigating the antimetastatic effect of MAT on 
PC3 prostate cancer cells by cell migration assay 
A wound-healing assay was conducted to evaluate cellular migra-
tion post-treatment. PC3 cells were seeded at 3 × 105 cells per well 
in 6-well plates and incubated overnight. Wounds were created, 
and a medium containing MAT (0, 50, 100, and 200 μM) was added. 
Wound closure was monitored at 0 and 24 h post-treatment 
using an inverted microscope, and closure rates were analyzed 
with ImageJ [45, 46]. The results were derived from three inde-
pendent sets (n = 3) of triplicate experiments. This method facili-
tated a thorough assessment of MAT’s impact on cell migration 
over time. 

Evaluating the antimetastatic efficacy of MAT on 
PC3 prostate cancer cells by fluorescent 
microscopy–based filopodia and lamellipodia 
formation 
The impact of varying MAT concentrations on actin-based filopo-
dia and lamellipodia formation, essential for cell motility, was 
evaluated. PC3 cells (1 × 105 cells) were seeded on glass coverslips 
and treated with MAT (0, 50, 100, and 200 μM) for 24 h. Following 
treatment, cells underwent fixation, permeabilization, blocking, 
and staining with TRITC-phalloidin. Prepared slides were ana-
lyzed using an Olympus IX73 Inverted Fluorescence Microscope 
to quantify changes in filopodia and lamellipodia induced by MAT 
treatment [47]. The results were obtained from three independent 
sets of experiments, each conducted in triplicate (n = 3). This 
method provided insight into MAT’s antimetastatic effects on 
actin cytoskeleton dynamics in PC3 cells. 

The qRT–PCR investigations to validate the 
network pharmacology-predicted therapeutic 
targets of MAT against mPC in PC3 prostate 
cancer cells 
PC3 cells (3 × 105 cells/well in 6-well plates) were treated with 
MAT at varying concentrations (0, 50, 100, and 200 μM). Total RNA 
extraction was carried out using RNAiso plus total RNA extraction 
reagent (Takara Bio USA), followed by cDNA synthesis with the 
PrimeScript 1st strand cDNA synthesis kit (Takara Bio USA). Quan-
titative real-time reverse-transcription PCR (qRT–PCR) was per-
formed on a 7500 fast Real-time PCR System (Applied Biosystems; 
Thermo Fisher Scientific, Inc.) using TB Green Premix Ex Taq II (Tli 
RNase H Plus; Takara Bio USA) [48], following the manufacturer’s 
protocol. Data analysis was conducted using the 2−��CT method 
with actin normalization, as described by [49]. Primer sequences 
for the targeted genes are provided in Supplementary File S1-
Table S3. The results were obtained from three independent sets 
of experiments, each conducted in triplicate (n = 3).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
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Statistical analysis 
All experiments were conducted in triplicate and independently 
repeated three times. The results are expressed as mean ± SD. 
Statistical analyses were performed using GraphPad Prism 5. 
Differences between groups were evaluated for statistical signif-
icance using one-way analysis of variance followed by multiple 
comparison, while independent samples were analyzed using the 
t-test. A P-value of <.05 was considered statistically significant. 

Results 
Potential targets of MAT against mPC 
A systematic approach was employed to predict MAT targets 
against mPC. Initially, MAT targets were retrieved from Swiss 
Target Prediction, Pharmapper, and Superpred databases, result-
ing in 524 potential targets. Simultaneously, mPC targets were 
identified from GeneCards and DisGeNet databases, yielding 236 
targets (Supplementary File S2). Intersection analysis revealed 
27 potential therapeutic targets of MAT against mPC (PTM-mPC) 
(Fig. 1A). 

Construction of PPI network and analysis of top 
11 hub targets of MAT against mPC 
The PPI network comprised 27 PTM-mPC hub targets identified 
from the intersection of mPC and MAT genes (Fig. 1B). It fea-
tured 27 nodes, 163 edges, an average PPI enrichment P-value 
of <1.0e-16, an average local clustering coefficient of 0.75, and 
an average node degree of 12.1. Cytoscape analysis further iden-
tified the top 11 genes—EGFR, AKT1, ERBB2, MET, IGF1, CASP3, 
HSP90AA1, HIF1A, MMP2, HGF, and MMP9—via the CytoHubba 
plug-in (Fig. 1C), ranked by their degree algorithm scores with 
color-coding indicating node degree. 

Enrichment analysis of KEGG pathways and 
construction of C-T-P network for predicted 
targets of MAT against mPC 
Utilizing DAVID, we analyzed KEGG pathways for the 27 shared tar-
gets to understand MAT-induced alterations in mPC progression 
(Supplementary File S3). We identified 36 pathways (FDR ≤ 0.05, 
P-value ≤ .05), with the top 20 pathways listed in Fig. 2A. A  “com-
pound–target–pathway (C-T-P)” network (Fig. 2B) was constructed 
to visualize MAT, its targets, and associated pathways. Notewor-
thy pathways include “Pathways in cancer” (degree: 15), “Pro-
teoglycans in cancer” (degree: 10), “PI3K-Akt signaling pathway” 
(degree: 10), “MAPK signaling pathway” (degree: 8), “Prostate can-
cer” (degree: 8), and “EGFR tyrosine kinase inhibitor resistance” 
(degree: 8). Prostate cancer is strongly linked to eight genes, 
including GSK3B, HSP90AA1, ERBB2, AKT1, IGF1, MMP9, EGFR, 
and FGFR2 within the C-T-P network, highlighting the potential 
association between MAT and cancer-related signaling cascades. 

Enrichment analysis of GO for predicted targets 
of MAT against mPC 
GO enrichment analysis using DAVID (Supplementary File S3) 
uncovered 150 BP, 20 CC, and 35 MF terms meeting the P-value 
≤.05 threshold. Application of an FDR filter (FDR ≤ 0.05) yielded 34 
BP, 3 CC, and 16 MF terms. The top 15 BP and MF terms, along with 3 
CC terms, are shown in Fig. 2C. BP enrichment included pathways 
like transcription regulation, signal transduction, apoptosis, cell 
proliferation, and epithelial–mesenchymal transition. CC terms 
indicated gene presence in cellular regions like the membrane 
and extracellular space. MF analysis revealed key functions such 

as protein binding, ATP binding, and kinase activity. This analysis 
enhances understanding of MAT’s therapeutic impact against 
mPC. 

Comparative analysis of gene expression 
patterns with a focus on the top 11 hub targets of 
MAT against mPC in normal and tumor tissues 
The gene expression analysis of the top 11 hub targets in 
PRAD patients was conducted using publicly available datasets 
like UALCAN. MMP-9, AKT1, and CASP3 showed significantly 
increased expression across primary tumors, high Gleason scores 
(6–10), and metastatic nodal expression compared to normal 
tissue. Additionally, AKT1, ERBB2, HSP90AA1, and MMP9 displayed 
increasing expression trends with elevated Gleason scores, albeit 
AKT1 and ERBB2 showed a decrease in Gleason score 10 (Fig. 3). 
These findings illuminate distinct expression patterns of hub 
targets across various PRAD progression stages. 

Survival analysis of top 11 hub genes in PRAD: 
implications for patient prognosis and 
therapeutic strategies 
Survival plot analysis assesses gene expression patterns and 
patient survival outcomes, crucial for prognosis and treatment 
strategies. Using GEPIA2, we analyzed OS and relapse-free survival 
(RFS) probabilities of the top 11 hub targets (Fig. 4). Plots with 
a median cut-off value of 50% and hazard ratios with a 95% 
confidence interval were generated. Notably, HSP90AA1, MMP2, 
AKT1, CASP3, and ERBB2 exhibited reduced survival rates with 
increasing time in RFS analysis. Conversely, elevated expression of 
HIF1A, HSP90AA1, AKT1, MMP9, and ERBB2 significantly reduced 
overall survival as prostate cancer progressed. These findings 
suggest hub gene expression levels significantly impact survival 
outcomes in prostate adenocarcinoma patients. 

Molecular docking and molecular dynamics 
simulation studies of the top 11 hub targets of 
MAT against mPC 
Conducting molecular docking, we explored MAT’s interactions 
with the top 11 mPC targets to understand their binding affini-
ties and therapeutic implications. Lower binding energy values 
were observed for MAT with ERBB2 (−8.6), AKT1 (−8.5), MMP-
9 (−8.4), MET (−7.8), and EGFR (−7.6), indicating strong affini-
ties. Notably, MAT showed high affinity toward tyrosine kinase 
membrane receptors ERBB2, EGFR, and MET, suggesting potential 
inhibition of tyrosine kinase activity. Additionally, MAT interacted 
with HSP90AA1 and MMP-2 with binding energies of −7.1 and −5.5 
kcal/mol, respectively (Fig. 5). Docking analyses against IGF1R and 
MET, receptors for IGF1 and HGF growth factors, were conducted 
due to the absence of suitable PDB IDs for cocrystal binding at the 
inhibition site. Additionally, we performed docking of MAT against 
XIAP, an inhibitor of CASP3, to investigate MAT’s possible modu-
lation of CASP3 activation, with binding energy (−6.1) considering 
the lack of suitable PDB IDs supporting the CASP3 activation 
site [50]. Detailed results, including binding energies and specific 
amino acids involved, are provided in Supplementary File S1-Table 
S4. 

The top five hub targets, ERBB2, AKT1, MMP9, MET, and EGFR, 
were selected for MD simulation based on their binding affinity 
and biological relevance in mPC (Fig. 6). RMSD analysis showed 
better stability in the ERBB2-MAT complex (average RMSD: 0.3 nm) 
compared to the ERBB2-CL complex (average RMSD: 0.5 nm). RMSF 
analysis indicated lower fluctuations in MAT-bound ERBB2. Rg 
remained stable ∼2 nm for the ERBB2-MAT complex. AKT1-MAT

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
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Figure 1. Process of identifying potential targets of MAT against mPC, constructing the PPI network, and determining the top 11 hub targets. (A) 
Identification of PTM-mPC. (B) Construction and analysis of the interactive PPI network using the STRING database, involving the 27 PTM-mPC. (C) 
Identification of the top 11 hub targets of MAT against mPC using the CytoHubba plug-in in Cytoscape, applying the degree topological analysis method. 

exhibited stable RMSD until 50 ns but deviated thereafter. RMSF 
showed larger fluctuations in the N-terminal domain of AKT1-
MAT. Rg was stable ∼2.2 nm for AKT1-MAT. MMP9 complexes 
showed similar RMSD and RMSF, with stable Rg ∼1.525 nm. MET-
MAT had slightly lower RMSD compared to MET-CL, with similar 
RMSF and stable Rg. EGFR complexes had higher RMSD and RMSF, 
with stable Rg ∼2.2 nm. CL formed three consistent hydrogen 
bonds with EGFR, while MAT formed occasional hydrogen bonds. 

GeneMANIA-based functional association 
network analysis of top 11 hub targets 
of MAT against mPC 
Utilizing our previously established GeneMANIA analysis method 
[41], we expanded the top 11 hub targets’ gene list by identifying 
10 additional genes per hub target (Fig. 7), resulting in the 
GMFA expanded database (GMFA-ED) (Supplementary File S4). 

This dataset comprises 112 genes after removing duplicates, 
facilitating comprehensive gene–gene interaction analysis. The 
GMFA approach integrates co-expression, genetic interaction, 
and physical interaction parameters to capture diverse genes 
relevant to disease processes. The GMFA-ED was instrumental 
in subsequent GO and KEGG enrichment analyses, providing 
a robust foundation for exploring functional implications 
associated with the identified genes. 

GO and KEGG enrichment analyses, C-T-P 
network construction, and comparative analysis 
of GMFA-ED enrichment in relation to MAT 
against mPC 
The GMFA-ED dataset revealed an expanded gene network of 
112 genes, forming a functional gene network (FGN) (Fig. 8A). 
Gene ontology and pathway analyses conducted using the DAVID

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
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Figure 2. GO, KEGG enrichment analysis, and compound–targets–pathways network of MAT targets against mPC. (A) Sankey diagram for KEGG 
enrichment analysis of top 20 signaling pathways of MAT against mPC. (B) Compound–targets–pathways network illustrating the interactions between 
MAT and its targets in mPC. (C) GO enrichment analysis showing top BP, CC, and MF functional attributes of MAT’s targets against mPC. 

database ( Supplementary File S5) unveiled significant enrich-
ments in BP, including pathways crucial for mPC progression, such 
as protein kinase B signaling, epidermal growth factor receptor 
signaling, ERK1 and ERK2 cascade regulation, and cell migration. 
Moreover, enriched CC associated with plasma membrane 

proteins, such as basolateral plasma membrane and basal plasma 
membrane, underscored their relevance in cancer metastasis. The 
MF enriched after GMFA-ED analysis indicated close associations 
with growth factor receptor-associated signaling, including 
protein kinase activity, transmembrane receptor protein tyrosine

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
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Figure 3. Gene expression patterns of top 11 hub targets across normal and tumor tissues of PRAD based on sample types, patient’s Gleason score, and 
nodal metastasis status obtained from the UALCAN platform. 
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Figure 3. Continued. 

kinase activity, protein phosphatase binding, protein tyrosine 
kinase activity, insulin receptor substrate binding, insulin-like 
growth factor I binding, and insulin-like growth factor binding 
( Fig. 8B). 

KEGG pathway analysis post-GMFA revealed enrichment 
in mPC-associated signaling, highlighting pathways such as 
HIF1A, ErbB, FOXO, and microarray in cancer. PI3K/Akt signaling 
exhibited extensive enrichment, emphasizing crucial players
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Figure 4. Survival analysis predicting the relationship between gene expression patterns of top 11 hub targets and patient survival outcomes in PRAD. 
(A) OS analysis. (B) DFS analysis. 

compared to pre-GMFA-ED analysis. The MAT–Targets–Pathways 
network, constructed using the top 20 signaling pathways from 
GMFA-ED, unveiled significant interactions ( Fig. 8C). This network, 
with 82 nodes (MAT, 61 targets, and 20 pathways) and 392 edges, 

demonstrated MAT’s pronounced engagement through various 
targets within pivotal signaling pathways (Fig. 8D), including 
Pathways in cancer (degree = 36), PI3K/Akt pathway (degree = 28), 
Proteoglycans in cancer (degree = 21), MAPK signaling pathway
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Figure 5. Three-dimensional and two-dimensional docking patterns and interactions of MAT with the hub targets. (A) ERBB2, (B) AKT1, (C) MMP9, (D) 
MET, (E) EGFR (F) HSP90AA1, (G) XIAP, and (H) MMP2. 
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Figure 5. Continued. 

(degree = 20), HIF-1 signaling pathway (degree = 19), and Focal 
adhesion (degree = 18). These findings underscore the collective 
functioning of these pathways in mediating MAT’s antimetastatic 
therapeutic effects against mPC. A visual comparison of GO 
and KEGG enrichment analyses before and after GMFA imple-
mentation (PTM-mPC versus GMFA-ED) is illustrated in Fig. 9. 
The GO and KEGG enrichment analyses of GMFA-ED unveiled a 
comprehensive landscape of enriched BP, CC, and MF associated 
with MAT’s potential targets against mPC. These enrichments 
were more pertinent compared to the initial enrichment of hub 
targets (PTM-mPC), providing insights into the intricate molecular 
mechanisms governing MAT’s potential antimetastatic effects in 
mPC. 

In the context of prostate cancer, the KEGG pathway analy-
sis following the enrichment of GMFA-ED identified a substan-
tial enrichment of genes within the PI3K-Akt signaling path-
way. Notably, this enrichment encompassed six genes: GF, GFR, 
PI3K, Grb2, PTEN, and Akt. It is important to highlight that this 

enrichment was not observed in the initial analysis of PTM-
mPC, except for GF, GFR, and Akt, which were previously iden-
tified as targets of MAT. This emphasizes the enhanced and 
more specific insights gained through the GMFA-ED analysis in 
unraveling the involvement of the PI3K-Akt signaling pathway 
in the potential antimetastatic effects of MAT in prostate cancer 
(Fig. 10). 

Molecular docking and molecular dynamics 
simulation studies of predicted PI3K/AKT 
signaling pathway targets of MAT 
Key components of the PI3K/Akt signaling pathway, pivotal in 
mPC, were selected for comprehensive molecular docking and 
simulation study. Activation of PI3K signaling, triggered by growth 
factors like IGF1, HGF, and EGF, leads to downstream activation 
of the AKT-driven cascade [51]. MAT exhibited a notable affinity 
for PI3K/Akt pathway components (Fig. 11), demonstrating lower
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Figure 6. Results of molecular dynamics (MD) simulation analysis illustrating root mean square deviation (RMSD), root mean square fluctuation (RMSF), 
radius of gyration (Rg), and number of H bonds for five distinct MAT–proteins and cocrystal ligand–protein complexes: (A) ERBB2, (B) AKT1, (C) MMP9, 
(D) MET, and (E) EGFR. 

binding energies with IGF1R ( −8.1 kcal/mol), PI3KCA (−7.5 kcal/-
mol), PTEN (−7.1 kcal/mol), and AKT1 (Supplementary File S1-
Table S5). It is noteworthy that other targets within the PI3K/AKT 
signaling pathway were previously investigated for molecular 
docking and MD simulation as part of the analysis of the top 10 
hub targets identified from PTM-mPC. 

The top three complexes from the docking study underwent 
MD simulations. The RMSD analysis of PI3KCA backbone atoms 
showed a slightly higher average RMSD for the PI3KCA-MAT 
complex compared to the PI3KCA-CL complex, ∼0.45 nm (Fig. 12). 
RMSF analysis revealed significant fluctuations in side chain 
atoms of residues within the loop region (250–500) in both 
complexes. MAT formed 5 consistent hydrogen bonds throughout, 
while CL formed ∼3 hydrogen bonds, occasionally reaching a max-
imum of 5. For IGF1R complexes, RMSD deviated significantly in 
the IGF1R-MAT complex, whereas it remained stable but slightly 
higher in the IGF1R-CL complex. RMSF was similar for both 

complexes except for terminal residues and residues ∼950–1000. 
Rg initially deviated for both complexes, stabilizing ∼2.5 nm. MAT 
formed 4 consistent hydrogen bonds, while CL formed a maxi-
mum of 5 in the first 10 ns and ∼2 occasionally thereafter. In PTEN 
complexes, RMSD stabilized after ∼50 ns, averaging ∼0.3 nm, with 
fluctuations in side chain atoms similar to apo and PTEN-MAT 
complex. Rg stabilized ∼2.25 nm after initial deviations, and MAT 
formed ∼2 occasional hydrogen bonds throughout. 

Experimental validation of network 
pharmacology and bioinformatics-driven 
exploration of the antimetastatic potential 
of MAT in mPC 
MAT exhibited anticancer activity on PC3 cells 
The antiproliferative effect of MAT on PC3 cells was assessed 
through MTT assays at 24, 48, and 72 h. The outcomes, illustrated

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae466#supplementary-data
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Figure 7. GeneMANIA functional association (GMFA) network analysis illustrating functionally related genes associated with the top 11 hub targets of 
MAT and the creation of the expanded potential target database against mPC (GMFA-ED). 

in logarithmic concentration curves in terms of mean percent 
cytotoxicity and denoted as IC50 values ( Fig. 13A), revealed a dose-
dependent reduction in cell viability following MAT treatment 
over the specified time intervals (24, 48, and 72 h), substantiating 
the anticancer potential of MAT against metastatic PC3 prostate 
cancer cells. 

MAT inhibited the clonogenic ability of PC3 cells 
Using the anchorage-dependent clonogenic assay, we evaluated 
MAT’s effect on PC3 cells’ clonogenic potential, indicative of their 
uncontrolled proliferation. MAT’s impact is visually depicted 
(Fig. 13B), showing reduced colony and cell numbers with 
increasing MAT concentration (Fig. 13C). Quantitative analysis 
revealed a dose-dependent decrease in clonogenicity, with 
significant reductions at 50 μM (1.196-fold), 100 μM (1.44-fold), 
and 200 μM (2.097-fold) MAT doses (Fig. 13D). 

MAT inhibited the migration of PC3 prostate 
cancer cells 
The wound-healing assay assessed PC3 cell migration, revealing 
a dose-dependent inhibition with MAT treatment (Fig. 14A). 
Untreated cells exhibited the highest migration rate, with a 
percent open wound area decreasing to 9% after 24 h. In 
contrast, MAT treatments at 50, 100, and 200 μM inhibited 
migration, resulting in percent open wound areas of 10.99%, 

24.48%, and 71.33%, respectively, as quantified by ImageJ software 
analysis. 

MAT reduced the actin-based lamellipodia and 
filopodia formation in PC3 prostate cancer cells 
Actin-rich structures, namely, filopodia and lamellipodia, located 
on cell surfaces, play a pivotal role in metastatic progression 
by facilitating ECM remodeling. The dynamics of the actin 
cytoskeleton orchestrate cell motility and invasion, contributing 
substantially to the metastatic cascade in cancer. Utilizing fluo-
rescence staining with phalloidin dye, our study demonstrated 
a pronounced reduction in both filopodia and lamellipodia 
formation in a dose-dependent manner following 24-h MAT 
treatment (Fig. 14B). 

MAT downregulated the hub targets at the 
mRNA level analyzed by qPCR 
MAT treatment significantly altered mRNA expression levels of 
key genes in PC3 cells (Fig. 15). Notably, MAT reduced mRNA 
levels of AKT1, ERBB2, MMP2, MMP9, HSP90AA1, HIF1A, and IGF1R, 
while increasing PTEN expression, a regulator of PI3K/AKT sig-
naling. EGFR and MET mRNA levels remained largely unaffected. 
These findings support MAT’s targeting of tyrosine kinase recep-
tors, particularly ERBB2 and IGF1R, and its modulation of the 
PI3K/AKT pathway, indicating its potential therapeutic efficacy 
against MMP-associated metastatic prostate cancer.
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Figure 8. GO, KEGG enrichment analysis, and compound–targets–pathways network of MAT targets identified in GMFA-ED data set. (A) FGN of all 112 
genes, identified as new potential targets of MAT against mPC. (B) The bar-dot plot of the top 15 GO-BP, GO-CC, and GO-MF terms with enriched targets 
of MAT. (C) Sankey diagram for KEGG enrichment analysis of top 20 signaling pathways of MAT against mPC. (D) Compound–targets–pathways network 
illustrating the interactions between MAT and its GMFA-based predicted targets in mPC. 
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Figure 9. Comparison of GO and KEGG enrichment of PTM-mPC versus GMFA-ED targets of MAT against mPC. (A) KEGG enrichment, (B) BP terms of GO 
enrichment, (C) CC terms of GO enrichment, (D) MF terms of GO enrichment. 

Discussion and conclusion 
In the landscape of mCRPC treatment, conventional options 
like enzalutamide or docetaxel-based chemotherapy offer initial 
benefits but often falter in improving patient survival rates over 
time [52]. Consequently, exploring complementary therapies is 
crucial. Dietary supplements, in combination with chemotherapy, 
have shown promise in enhancing therapeutic effects while 
minimizing toxicity [16]. MAT, a dietary lignan, holds potential 
due to its known anticancer properties. However, understanding 
its mechanisms in mPC is essential for clinical use. To address this 
research gap, we employed a multidisciplinary approach, integrat-
ing NP, bioinformatics, GMFA network analysis, and experimental 
validation. NP, GMFA, and bioinformatics analyses unveiled 
potential therapeutic targets and pathways associated with MAT’s 
antimetastatic effects. Experimental validation strengthened 
these findings, enhancing the reliability of our results. 

In NP studies, the PPI network analysis revealed EGFR, AKT1, 
ERBB2, MET, IGF1, CASP3, HSP90AA1, HIF1A, MMP2, HGF, and 
MMP9 as top 11 hub targets of MAT against mPC. EGFR and 

ERBB2 are crucial in castration-independent PC progression, with 
aberrant activity promoting mCRPC growth and CTC survival 
in the bone microenvironment [53, 54]. Active mutations in 
AKT1 and PIK3CA genes elevate PI3K-Akt signaling in mCRPC 
[55]. Growth factors like HGF, IGF1, and VEGF-A in the tumor 
microenvironment drive bone metastasis in advanced PC, with 
the HGF/MET axis activating metastasis-promoting downstream 
signalings such as Ras/Raf/MAPK, PI3K/Akt, and Wnt/β-catenin 
[56, 57]. MMP-2 and MMP-9 serve as novel markers in metastatic 
PC, strongly associated with tumor invasiveness [58, 59]. CASP3 
loss is linked to advanced PC, making it a prognostic marker [60]. 
Elevated HSP90AA1 levels correlate with PC metastatic potential, 
with Hsp90-rich extracellular vesicles (EVs) promoting epithelial-
to-mesenchymal transition (EMT) [61]. Increased HIF1A induces 
castration resistance and ADT unresponsiveness in PC, making 
HIF1A inhibition a crucial therapeutic strategy [62]. Our analysis 
identifies these molecular targets of mPC as therapeutic targets 
of MAT, elucidating their roles in MAT’s antimetastatic potential 
in mPC.
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Figure 10. Comparison of prostate cancer KEGG pathway enrichment between PTM-mPC and GMFA-ED. (A) KEGG pathway enrichment analysis of PTM-
mPC targets for prostate cancer. (B) KEGG pathway enrichment analysis of GMFA-ED targets for prostate cancer with significant enrichment in the 
PI3K/Akt signaling pathway following the GMFA analysis, indicating the identification of additional relevant therapeutic targets of MAT against mPC. 
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Figure 11. Three-dimensional and two-dimensional docking patterns and interactions of MAT with the targets of the PI3K/Akt signaling pathway. (A) 
PTEN, (B) IGF1R, and (C) PI3KCA. 

On the other hand, the KEGG enrichment analysis revealed 
critical pathways associated with mPC, including prostate can-
cer, PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor 
resistance, MAPK signaling pathway, IL-17 signaling pathway, and 
TNF signaling pathway. Given the hyperactivation and dysregula-
tion of the PI3K/AKT pathway during the transition to hormone-
sensitive mCRPC, components of the PI3K-Akt signaling cascade 
emerge as key therapeutic targets [ 51]. Notably, PTEN, which 
competes with PI3K, plays a central role in regulating AKT [63]. 
The Ras-MAPK signaling pathway exhibits promising therapeutic 
potential by influencing cell invasion and migration processes in 
mCRPC [16]. Resistance to EGFR tyrosine kinase inhibitors such as 
erlotinib presents a common challenge in CRPC treatment, often 
triggered by overexpression of hepatocyte growth factor (HGF) 
and activation of the HGF-induced MET/PI3K/AKT pathway [64]. 

GO enrichment analysis unveiled metastasis-specific biological 
processes, including EMT and positive regulation of cell migration. 
EMT, a pivotal step in metastatic progression, is closely linked to 
resistance to ADT and docetaxel treatment [65]. The cell surface 
is the major cellular component found in CC enrichment, which is 
the prime site for metastasis-linked events such as EMT transition 
and cytoskeleton changes. Cell surface receptors interact with the 
extracellular matrix (ECM) components and ECM-bound factors 
to mediate cell adhesion and cell signaling and thus efficiently 
activate EMT-associated metastasis [66]. Molecular functions pri-
marily associated with these processes include transmembrane 
receptor protein tyrosine kinase activity, protein phosphatase 
activity, and peptidase activity, indicating MAT’s interaction with 
membrane receptors and downstream signaling pathways of tyro-
sine kinase receptors.



Matairesinol’s antimetastatic potential in prostate cancer | 19

Figure 12. Results of molecular dynamics (MD) simulation analysis illustrating radius of gyration (Rg), root mean square deviation (RMSD), root mean 
square fluctuation (RMSF), and number of H bonds for three distinct MAT–proteins and cocrystal ligand–protein complexes: (A) PI3KCA, (B) IGF1R, (C) 
PTEN. 

Figure 13. Impact of MAT on the proliferation and clonogenic abilities of PC3 prostate cancer cells. (A) MAT’s effects on PC3 prostate cancer cell 
viability were assessed through mean percent cytotoxicity in MTT assay. (B) Anchorage-dependent clonogenic assay revealing decreased colony numbers 
following MAT treatment. Panels depict (a) control, (b) MAT 50 μM, (c) MAT 100 μM, and (d) MAT 200 μM. (C) Inverted phase microscope images capturing 
morphological changes, including reduced colony size and fewer cells per colony. (D) Quantification of colony numbers through crystal violet staining 
and absorbance measurement at 595 nm. Values are presented as mean ± SD from three independent experiments (n = 3)  with  ∗P ≤ .05, ∗∗P ≤ .01, and
∗∗∗P ≤ .001, denoting statistical significance. 
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Figure 14. Antimetastatic effect of MAT on PC3 prostate cancer cells: (A) MAT’s dose-dependent influence on cell migration was evaluated by quantifying 
the percent open wound area in the migration assay, visualized using an inverted microscope with a 4× objective at 24-h intervals. (B) TRITC-phalloidin 
fluorescence staining illustrates the dose-dependent reduction of lamellipodia and filopodia formation post-MAT treatment. Data represent mean ± SD 
of three independent experiments (n = 3),  with  ∗P ≤ .05, ∗∗P ≤ .01, and ∗∗∗P ≤ .001, indicating statistical significance. 

Our approach enriched NP findings through GMFA network 
analysis of the top 11 hub targets, incorporating co-expression, 
physical interaction, and genetic interaction. Co-expression 
analysis unveiled correlated expression patterns, indicating 
functional associations. Physical interactions suggested involve-
ment in shared protein complexes, aiding target recognition. 
Genetic interactions provided insights into genes linked to similar 
pathways, offering therapeutic opportunities. This integrated 
approach comprehensively explored MAT’s therapeutic targets 
in cancer. GMFA-ED exhibited enriched metastatic cancer-related 
BP and MF, as well as CC. Enriched KEGG pathways like PI3K/AKT 
signaling, HIF1A signaling, ErbB signaling, and microRNA in 
cancer highlight their roles in mPC progression [ 67]. Various 
microRNAs, acting as metastasis biomarkers, either promote 
or inhibit PC metastasis [68]. Targeting ErbB receptors and the 
PI3K/AKT axis in androgen-independent prostate cancer cells 
shows promise as a therapy for drug-resistant CRPC [69]. Our 
molecular docking and simulation studies confirmed MAT’s 
potential to target PI3K/AKT signaling in mPC, suggesting its 
efficacy in combating mPC progression. 

To comprehensively validate our findings regarding the molec-
ular targets and mechanisms of MAT against mPC, we conducted 
a series of  in vitro experiments to explore the antimetastatic 
potential of MAT against PC3 cells. Initially, we performed the MTT 
assay to assess the anticancer activity of MAT and determine its 
IC50 concentration in PC3 cells. Subsequently, we investigated 
the anti-migratory and anti-clonogenic effects of MAT using 
migration and clonogenic assays, respectively. Additionally, 
we examined the inhibitory impact of MAT on filopodia and 
lamellipodia formation in the cytoskeleton through fluorescence 
microscopy. Furthermore, qPCR analysis was employed to 
evaluate MAT’s ability to regulate mRNA levels of the top target 
genes identified during network pharmacology analysis. Our 
in vitro experimental validation corroborated the anticancer 
activity and antimetastatic potential of MAT by suppressing 
clonogenicity, migratory abilities, and cytoskeletal modifica-
tions implicated in metastatic progression. Thus, our study 
conclusively demonstrates the antimetastatic efficacy of MAT 
against mPC, not only by predicting key therapeutic molecular 
targets and mechanisms through network pharmacology analysis
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Figure 15. Effects of MAT on mRNA expression levels of hub targets identified as potential therapeutic targets of MAT against mPC. Data represent 
mean ± SD of three independent experiments (n = 3) conducted in triplicates, with ∗P ≤ .05, ∗∗P ≤ .01, and ∗∗∗P ≤ .001, indicating statistical significance. 

but also by confirming these targets through bioinformatics 
molecular docking and MD simulation studies. While our in vitro 
validation highlights MAT’s antimetastatic potential in PC3 cells, 
further investigations at the molecular and cellular levels are 

essential to gain deeper insights into the underlying mechanisms 
of MAT in mPC. This holistic approach aims to establish 
MAT as a promising antimetastatic therapeutic candidate for 
mPC. 
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Key Points 
• MAT appears to influence key hub genes (AKT1, MMP2, 

MMP9, HIF1A, MET) in mPC, suggesting its potential mul-
timodal approach against metastasis. 

• KEGG analysis highlights PI3K-Akt and MAPK pathways 
as potential therapeutic targets for MAT in mPC treat-
ment. 

• GO enrichment identifies MAT’s role in inhibiting 
metastasis-related processes like epithelial-to-
mesenchymal transition and cell migration regulation. 

• GMFA-based further enrichment of network pharmacol-
ogy findings reveals specific and extended therapeutic 
targets of MAT against mPC, enhancing its efficacy. 

• In vitro experimental validation confirms MAT’s anti-
cancer and antimetastatic potential by suppressing 
clonogenicity, migratory abilities, and cytoskeletal mod-
ifications crucial in mPC progression. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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