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Atherosclerosis by Modulating Mitochondria through
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Atherosclerosis remains the most common cause of deaths worldwide. Endothelial cell apoptosis is an important process in the
progress of atherosclerosis, as it can cause the endothelium to lose their capability in regulating the lipid homeostasis,
inflammation, and immunity. Endothelial cell injury can disrupt the integrity and barrier function of an endothelium and
facilitate lipid deposition, leading to atherogenesis. Chinese medicine techniques for preventing and treating atherosclerosis are
gaining attention, especially natural products. In this study, we demonstrated that gypenoside could decrease the levels of
serum lipid, alleviate the formation of atherosclerotic plaque, and lessen aortic intima thickening. Gypenoside potentially
activates the PI3K/Akt/Bad signal pathway to modulate the apoptosis-related protein expression in the aorta. Moreover,
gypenoside downregulated mitochondrial fission and fusion proteins, mitochondrial energy-related proteins in the mouse
aorta. In conclusion, this study demonstrated a new function of gypenoside in endothelial apoptosis and suggested a therapeutic
potential of gypenoside in atherosclerosis associated with apoptosis by modulating mitochondrial function through the
PI3K/Akt/Bad pathway.

1. Introduction

Atherosclerosis is one of the important causes of death
worldwide despite drug therapy and surgical operation treat-
ment [1]. The disease causes arteries to change and is charac-
terized as fatty plaque formation [2]. These plaques may
crack, possibly leading to vessel occlusion and clinical syn-
drome such as cardiopathy and strokes [3]. As atherosclero-
sis has a high morbidity and mortality, it is urgent to discover
its disease mechanism and find new therapeutic targets.

Gynostemma pentaphyllum is the root or whole plant of
Gynura Gynostemma [4]. Some studies have identified that
Gynostemma pentaphyllum has functions in lowering blood
fat, preventing arteriosclerosis, resisting oxidation, lowering
blood sugar, and regulating immunity [5–9]. Gypenosides

is an extraction product of Gynostemma pentaphyllum,
which has multiple pharmacological activities [10–12]. Ge
et al. found gypenosides could secure cardiac muscles and
improve the function in diabetic cardiomyopathy rats [13].
Moreover, gypenosides were demonstrated to alleviate myo-
cardial ischemia-reperfusion injury through reduction of
oxidative stress and protection of mitochondrial function
[14]. Yang et al. reported that Gypenoside XVII could prevent
atherosclerosis through decreasing endothelia apoptosis and
oxidative stress [15]. However, the mechanism by which
gypenosides and their components inhibit endothelial cell
apoptosis and prevent atherosclerosis is not fully understood.

The apolipoprotein E knock out (ApoE−/−) mouse is one
of excellent models of the mimicking human atherosclerosis,
which shows the spontaneously occurring lesions distributed
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in the vasculature [16]. Endothelial cell injury apoptosis plays
an important role in the development of atherosclerosis,
possibly causing the endothelium not to regulate lipid
homeostasis, inflammation, and immunity [17, 18]. Endo-
thelial cell injury can interrupt the endothelial integrity and
defense function and promote lipid deposition, leading to
atherogenesis [19, 20]. The detailed mechanisms were the
development of apoptosis, which was regulated by the mito-
chondria and its related proteins. And both conditions could
lead to cell death. Cytochrome C was released to the cytosol,
as the mitochondrial membrane permeability was changed
by extracellular or intracellular signals, resulting to create
an apoptotic signal. [21]. Cytochrome C could recruit Apaf-
1 and procaspase 9 to trigger the apoptosome, an upstream
factor of the caspase 9/3 signaling cascade, the canonical
pathway for apoptotic cell death [22].

Our study demonstrates that phosphoinositide-3 kinase
(PI3K) transduces survival effects, which depends on the
Akt kinase phosphorylation and activation and then the
proapoptotic Blc-2 family protein Bad phosphorylation and
inhibition. PI3K plays an important function in growth fac-
tor signal transduction. Under various cytokines and physio-
chemical factor activation, PI3K could produce myoinositol
as a second messenger [23]. Akt also performs crucial roles
in many biological processes including cell metabolism, cell
cycle, cell growth, and apoptosis [24–26]. Akt can be acti-
vated by various growth and survival factors. PI3K activa-
tion mediates the phosphorylation and partial or complete
activation of Akt. The activation of Akt could inhibit phos-
phorylation of apoptotic signaling proteins or regulate the
transcription factors to modulate apoptosis. Akt was reported
to be involved in phosphorylation and inactivation of Bad and
inhibition of cell death [27]. Several Bcl-2 family proteins
such as Bcl-2 and Bcl-xL promote cell survival; meanwhile,
other proteins such as Bad and Bax could increase the cell
death [28]. It has also been shown that Bcl-2 family members,
located on the mitochondrial membrane, could change mito-
chondrial membrane permeability and lead to apoptosis [29,
30]. PI3K is an important catalytic enzyme that regulates the
production of lipid derivatives with second messenger char-
acteristics, directly affecting atherosclerosis development
[31, 32]. Our study focused on the exploration of function
and underlying mechanisms of gypenoside in the apoptosis
of endothelial cell in atherosclerosis.

2. Materials and Methods

2.1. Animals and Group. Thirty ApoE−/− mice (male, 8
weeks, 18–20 g weight) with C57BL/6J background and
ten C57BL mice were acclimated before use in experiments.
Tap water and chow were provided ad libitum. All animal
experiments followed the guidelines of the Animal Com-
mittee of Liaoning University of Traditional Chinese Med-
icine, China.

2.2. Materials and Reagents. Gypenoside was obtained from
Xi’an Realin Biotechnology Co., Ltd., China. TC, TG, LDL-
C, and HDL-C Test Kits were obtained from Sichuan Maker
Biotechnology Co. Ltd., China. The real-time PCR Kits were

obtained from TaKaRa Biotechnology Co. Ltd., Dalian,
China. The BCA Protein Assay Kit, RIPA Lysis Buffer, and
SDS-PAGE Gel Preparation Kits were obtained from Beijing
SOLARBIO Technology Co., Ltd. Dulbecco’s modified Eagle’s
medium (high glucose) and phosphate-buffered saline (PBS)
were obtained from HyClone (Logan, UT, USA). Fetal bovine
serum (FBS), penicillin-streptomycin solution, and 0.25%
Trypsin-EDTA were obtained from HyClone, UT, USA.

2.3. Experiment Grouping Design In Vivo. Three groups of
mice were used in testing including C57BL/6L mice (normal
group, n = 10), ApoE−/− mice (ApoE−/− group, n = 10)
under high-fat diet treatment of six weeks, and ApoE−/−
mice treated with gypenoside 2.973mg/kg/d gypenoside
(gypenoside group, n = 10) or simvastatin (simvastatin
group, n = 10) for an additional 7 weeks. All ApoE−/− mice
were fed a high-fat diet containing 21% (wt/wt) fat from lard
supplemented with 0.15% (wt/wt) cholesterol for 13weeks.
Ten C57BL mice were fed with standard chow diet contain-
ing 4% fat, which were grouped in the normal group. All mice
were inspected once per day. Drugs were dissolved in water.
The water consumption was monitored twice weekly, and
drug concentration was adjusted as required.

2.4. Experiment Grouping Design In Vitro. EA.hy926 cells
were purchased from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China). EA.hy926 cells were cultured
in Dulbecco’s modified Eagle’s medium (DMEM, HyClone,
Logan, UT, USA) supplemented with 10% fetal bovine serum
(FBS, HyClone, Logan, UT, USA) and 100U/ml penicillin
and 100mg/ml streptomycin (Sigma-Aldrich Co., St. Louis,
MO, USA). Cells were cultivated in an incubator at 37°C,
5% CO2, and the medium was changed every 2-3 days. Cells
were randomly divided into 9 experimental groups as fol-
lows: control group; LDL group [cells treated with 100μg/ml
oxidized low-density lipoprotein (ox-LDL, Yiyuan Biotech-
nology) for 24h]; Gypenoside (Gps) group, Gypenoside
XILX (GpXILX) group, and Ginsenoside Rb3 (Rb3) group,
in which 100μg/ml Gps, GpXILX, or Rb3, respectively, and
100μg/ml ox-LDL were added to the cells for 24h. In the
Modle+LY group, Gps+LY group, GpXILX+LY group, and
Rb3+LY group, 10μM LY294002 was added and then
100μg/ml Gps, GpXILX, Rb3, and 100μg/ml ox-LDL were
added to the medium after 2 h.

2.5. Detection of Serum Lipid Profile. The kits (Sichuan
Maker Biotechnology, China) were used to assess serum
levels of total cholesterol (TC), Triglyceride (TG), low-
density lipoprotein cholesterol (LDL-C), and high-density
lipoprotein cholesterol (HDL-C) according to previously
described methods [33] by an automatic biochemical ana-
lyzer (Toshiba, Japan).

2.6. Histopathological Analysis. The entire aorta of mice was
rapidly cut out and immersed in 10% neutral buffered for-
malin (pH7.4) for fixation. Then arterial tissues were
embedded in paraffin, cut transversely in 5mm thick, and
stained with H&E.
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2.7. PCR Array Analysis. The mitochondrial energy metabo-
lism signaling pathway was analyzed in the mouse aortic root
by the RT2 Profiler™ PCR Array System (Qiagen). 40μl
cDNA was mixed with 2x SABiosciences RT2 qPCR Master
Mix (Qiagen), followed by adding sterile water to a total vol-
ume of 2700μl. 25μl mixture was added to each well of the
PCR array plate. PCR amplification and fluorescence detec-
tion was performed using the TaqMan Gene Expression
Master Mix on ABI-7500 (Applied Biosystems) in a total vol-
ume of 20μl. Thermal cycling involved 95°C for 10min, then
95°C for 15 s, 55°C for 40 s, with 40 cycles, and 72°C for 30 s.
The gene expression was determined using the ΔΔCT
method with GAPDH as an internal control.

2.8. Real-Time Quantitative PCR. Aortic roots were removed
from mice from all groups and stored at −80°C to examine
RNA levels of Atp12a, Cox5a, Ndufb6, and Sdhc. Total
RNA was extracted from aortas by the TRIzol kit. Primers
for Atp12a, Cox5a, Ndufb6, and Sdhc are shown in Table 1.
The protocol of RT-PCR was according to the previously
described method [34]. The model of the qPCR machine
was an ABI 7500 (America). Data was analyzed by the 2−ΔΔCT

method.

2.9. Western Blot. Total proteins were extracted from cells or
tissues using RIPA Lysis Buffer. Protein concentration was
measured by BCA Protein Assay Kit. To examine the expres-
sion of proteins, the same amount of total proteins was
loaded on an 8-12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) gel. Proteins were trans-
ferred into PVDF membranes. After being blocked in skim
milk solution, the membrane was incubated overnight sepa-
rately with antibodies anti-β-actin (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-PI3K, anti-p-Akt, anti-p-Bad,
anti-Cyt-c, anti-cleaved caspase 9, anti-cleaved caspase 3,
anti-PARP, anti-DRP1, and anti-Mfn2 (Cell Signal, CST,
USA). After that, the membrane was incubated with the sec-
ondary HRP-conjugated goat anti-rabbit antibodies (Santa
Cruz Biotechnology). Proteins were visualized using an
enhanced chemiluminescence kit from Thermo Fisher Scien-
tific (Massachusetts, USA). ImageJ software (Alpha View SA)
was used to perform densitometric analysis.

2.10. Immunofluorescence Staining. After the arterial tissues
were embedded in paraffin and cut into 5mm thick sections,
the sections were incubated in PBS containing 10% normal
goat serum, 3% (w/v) bovine serum albumin, and 0.05%
Tween-20 for 2 h at room temperature and incubated over-
night at 4°C with the following primary antibodies: mouse
anti-Mfn2 (1 : 50; Abcam) and rabbit anti-DRP1 (1 : 100; Cell
Signaling Technology). Finally, the sections were incubated
with FITC-TSA- and CY3-TSA-conjugated secondary anti-
bodies (Servicebio, Wuhan, China) for 2 h at 4°C. The results
were observed using a Leica fluorescence microscope.

2.11. Caspase 3 Activity Detection. Renal caspase 3 activity
was detected by fluorescent caspase-specific substrates Ac-
DEVD-7-pNA (Beyotime, China). Briefly, 10mg proteins
were loaded by the reaction buffer and cultivated at 37°C
for 2 h. The enzyme-catalyzed release of AFC was quantified
in a fluorimeter at 405nm.

2.12. Statistical Analysis. Data were showed as the mean and
standard deviation (SD). The differences among the groups
were analyzed by ANOVA using GraphPad Prism 8 (San
Diego, CA, USA). P < 0:05 was considered to be statistically
significant.

3. Results

3.1. Effects of Gypenoside on Serum Lipid Levels. Lipid pro-
files in serum from several groups of mice are shown in
Figures 1(a)–1(d). The mice of the ApoE−/− group showed
higher serum levels.

The serum levels of TG, TC and LDL-C were significantly
higher in the ApoE−/− group than those in the normal
group; the level of HDL-C was lower in the ApoE−/− group
than that in the normal group (P < 0:01). Treatment with
gypenoside and simvastatin significantly decreased the levels
of TC, TGs, and LDL-C compared to the ApoE−/− group
(P < 0:01, Figures 1(a)–1(c)). Protective HDL-C was
increased (P < 0:01) under gypenoside and simvastatin treat-
ment (Figure 1(d)). We noted that gypenoside consistently
decreased TG, TC, and LDL-C more than simvastatin treat-
ment (P < 0:01, Figures 1(a)–1(c)).

3.2. Change of Atherosclerotic Plaques under Gypenoside
Treatment.H&E staining presented normal walls of the aorta
with intact uninterrupted endothelial lining, a smooth and
uninterrupted aortic intima, and a clear demarcation of the
aortic tunica media and aortic adventitia in the normal group
(Figure 2(a)). ApoE−/−mice were characterized by decreased
aortic intima smooth muscle cells; the presence of many pla-
ques, infiltrating lymphocytes, neutrophils, and foam cells;
and a large number of cytoplasmic vacuoles (Figure 2(b)).
In the gypenoside and simvastatin groups, the atherosclerotic
plaques and thickening of the aortic intima were alleviated
(Figures 2(c) and 2(d)).

3.3. Gypenoside Potentially Activates PI3K/Akt/Bad Pathway
to Regulate the Apoptosis-Related Proteins in the Aorta. PI3K,
p-Akt, and p-Bad were significantly downregulated in the
mice of the ApoE−/− group compared to those in the normal

Table 1: Primers used for quantitative real-time PCR.

Gene Sequence
Product
size

Sdhc
5′-TTGTATCAGAAAATGGTCTCTTCCT-3′

5′-ACAGCCAGACCTGGGGTATT-3′ 120 bp

Ndufb6
5′-GGAGCTAAGGAGACGATGGC-3′

5′-TGGTTTAGTCATGTTCTTCCACA-3′ 113 bp

Cox5a
5′-TGTCTGTTCCATTCGCTGCT-3′

5′-TGACAGTCACCAACTCACACA-3′ 107 bp

Atp12a
5′-GCACCATCATGATCAACGGC-3′
5’-GACAGAAACCCAACACACGC-3′ 118 bp
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group (P < 0:01). Treatment with simvastatin and gypeno-
side significantly upregulated (P < 0:01) PI3K p-Akt and
p-Bad protein levels. Furthermore, Cyt-c, cleaved caspase 9,
cleaved caspase 3, and PARP were significantly upregulated
in the ApoE−/− group compared to the normal group (P <
0:01). Treatment with simvastatin and gypenoside significantly
downregulated the expression of Cyt-c, cleaved caspase 9,
cleaved caspase 3, and PARP (P < 0:01 or P < 0:05, Figure 3).

3.4. Gypenoside Decreases Bioactivity of Caspase 3. Caspases
is related with the final stages of apoptosis. The activation
of effector caspase 3 is an important indicator of apoptosis.
Caspase 3 was showed to be significantly activated in the
ApoE−/− group compared with that in normal group
(P < 0:01). Treatment with gypenoside and simvastatin sig-
nificantly inhibited the caspase 3 activity compared to the
ApoE−/− group (P < 0:01, Figure 4(a)).

3.5. Gypenoside Decreases the Mitochondrial Fission and
Fusion Proteins of the Aorta. DRP1 and Mfn2 protein
expressions were increased in ApoE−/− mice compared to
those in the normal group (P < 0:01). Treatment with simva-
statin and gypenoside significantly downregulated (P < 0:01)
the levers of DRP1 and Mfn2 protein detected by western
blot (Figures 4(b) and 4(c)) and immunofluorescence assay
(Figure 4(d).

3.6. Mitochondrial Energy-Related Gene Expression in the
Mouse Aorta. We examined the expression of 84 genes in
the mitochondrial energy metabolism signaling pathway in
the aortic root of normal and ApoE−/−mice by Mouse Mito-
chondrial Energy Metabolism PCR Array. 25 genes were sig-
nificantly upregulated (fold change > 2), and 7 genes were
downregulated (fold change < 0:5). We chose mitochondrial
energy-related genes by screening across four specimen rep-
lication experiments (Table 2).

3.7. Gypenoside Regulates the Expression of Atp12a, Cox5a,
Ndufb6, and Sdhc mRNA in the Aorta. We performed qPCR
analyses to investigate whether gypenoside affected the
transcriptional regulation of the mitochondrial energy-
related genes implicated above. As shown in Figure 5,
Atp12a, Cox5a, Ndufb6, and Sdhc mRNA were significantly
increased in ApoE−/− mice compared with those in normal
mice (P < 0:01). The expressions of Atp12a, Cox5a, and Sdhc
mRNA were significantly downregulated under simvastatin
and gypenoside treatment (P < 0:01 or P < 0:05, Figure 5).

3.8. Gypenosides, Gypenoside XILX, and Ginsenoside Rb3
Prevent ox-LDL-Induced Apoptosis through PI3K/Akt/Bad
Pathway In Vitro. We investigated the relationship of the
PI3K/Akt/Bad pathway and Gypenosides (Gps), Gypenoside
XILX (GpXILX), and Ginsenoside Rb3 (Rb3) in preventing
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Figure 1: Gypenoside decreases serum lipid levels. The serum lipid profile (TC, TG, LDL-C, and HDL-C levels) was analyzed in the normal,
ApoE−/−, gypenoside, and simvastatin groups. (a) TG level, (b) TC level, (c) LDL-C level, and (d) HDL-C level. All results are expressed as the
mean ± SD of four different experiments (n = 10). ∗∗P < 0:01 between each group.
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ox-LDL-induced apoptosis in EA.hy926 cells. ox-LDL treat-
ment could significantly inactivate the phosphorylation of
Akt at Ser473 and Bad at Ser136. The apoptotic proteins
including Cyt-c, cleaved caspase 9, caspase 3, and PARP were
also increased in ox-LDL-treated cells. However, these effects
were reversed by Gps, GpXILX, and Rb3. The effect of Gps,
GpXILX, and Rb3 was abrogated as cells were treated with
the PI3K inhibitor, LY294002 (LY). There results indicate
that Gps, GpXILX, and Rb3 prevent ox-LDL-induced apo-
ptosis in vitro through the PI3K/Akt/Bad signal pathway
(Figure 6).

3.9. Gps, GpXILX, and Rb3 Modulate the Mitochondrial
Fission and Fusion Proteins through the PI3K/Akt/Bad
Pathway. Gps, GpXILX, and Rb3 modulated mitochondrial
fission and fusion protein expression in EA.hy926 cells
induced by ox-LDL and prevent ox-LDL-induced apoptosis
through the PI3K/Akt/Bad pathway. Treatment with ox-
LDL significantly reduced DRP1 protein expression and
increased Mfn2 compared with controls. And these functions
could be blocked under treatment of Gps, GpXILX, and Rb3.
The effects of Gps, GpXILX, and Rb3 were abrogated follow-
ing treatment with LY. These results indicate that Gps,
GpXILX, and Rb3 prevent ox-LDL-induced expression of
DRP1 and Mfn2 protein through the PI3K/Akt/Bad pathway
in EA.hy926 cells (Figure 7).

3.10. Gps, GpXILX, and Rb3 Promote the Bioactivity of
Mitochondrial Respiratory Chain Complex Enzymes in ox-
LDL-Induced EA.hy926 Cells. The activities of mitochondrial

respiratory chain complex enzymes I, II, III, IV, and V were
determined by the corresponding kits. In the LDL group,
the activity of detected enzymes was reduced. However,
Gps, GpXILX, and Rb3 significantly enhanced the activity
of the five mitochondrial respiratory chain complex enzymes
compared with those in the LDL group (Figures 8(a)–8(e)).

3.11. Gps, GpXILX, and Rb3 Increase ATP Content in ox-
LDL-Induced EA.hy926 Cells. The ATP content was showed
to decrease significantly in ox-LDL-induced EA.hy926 cells
of the LDL group compared with those the control group
(P < 0:01). The treatment of Gps, GpXILX, and Rb3 signifi-
cantly increased the level of ATP (P < 0:01, Figure 8(f)).

4. Discussion

Gypenosides are from the main components of Gynostemma
pentaphyllum, which have been proved to be effective in the
therapy of cardiovascular diseases, especially atherosclerosis
[35]. Previous results showed that gypenoside treatment could
decrease the levels of TC, TGs, and LDL-C and gypenoside
promoted the level of protective HDL-C significantly to be
above its normal level. Gypenoside-treated ApoE−/−mice also
had alleviated atherosclerotic plaque formation and aortic
intima thickening. However, the mechanism by which gype-
noside prevents atherosclerosis remained unknown. Here, we
studied the function of gypenoside on atherosclerosis and
the relationship with the PI3K/Akt/Bad apoptotic pathway.

Mitochondria are a major cellular organelle involved in
cell growth, differentiation, message transmission, apoptosis,

100 𝜇m
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100 𝜇m

(b)
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(c)

100 𝜇m

(d)

Figure 2: Pathomorphological changes of the aorta. Morphological observations of aortas by H&E staining. (a) Normal group, (b) ApoE−/−
group, (c) simvastatin group, and (d) gypenoside group.
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and energy supply [36]. 95% of the energy required for cell
survival is provided by the mitochondrial respiratory chain
[37]. Cyt-c is a primary component of mitochondrial respira-
tory chain [38]. Cyt-c, released from mitochondria, could
cause breaks in the electron transport chain, production of
oxygen free radicals, and decreased ATP production, eventu-
ally leading to apoptosis [39, 40].

Apoptosis is known as the process of programmed cell
death with important roles in regulating cellular homeostasis
across the body. Apoptosis levels in vascular endothelial cells
closely relate to the formation and development of athero-
sclerosis [18]. The endogenous mitochondrial pathway is
one of the major apoptotic pathways [41, 42]. Cyt-c, released
from mitochondrial to the cytoplasm, could activate caspase
3 and caspase 9, which is a key step for inducing apoptosis.
When induced by Ala-Pro-Phe-chloromethylketone (APF)
and other factors in the presence of ATP/dATP, Cyt-c can
bind Apaf-1 and caspase 9 to form an apoptotic complex
[43]. Caspase 9 is then activated, allowing it to activate
caspase 3 to further continue the caspase activation cascades

[44]. Activated caspase 3 could cleave the DNA repair enzyme
PARP into small fragments, blocking its normal function and
leading to DNA cleavage, eventually causing apoptosis [45].
Our results showed that gypenoside treatment significantly
decreases caspase 3 activity (P < 0:01) in the ApoE−/− group.
Mitochondrial apoptosis-related proteins had significantly
increased expression in ApoE−/− mouse arterial endothelial
cells, and the mitochondrial energy-related genes Atp12a
and Cox5a were found expressed in these cells. Ndufb6 and
SDHC mRNA were also significantly increased in ApoE−/−
cells, but this was blocked by intervention with gypenosides.
Our results show that gypenosides can inhibit the develop-
ment of atherosclerosis in ApoE-deficient mice via regulating
changes in mitochondrial apoptosis and energy.

The PI3K/Akt/Bad signaling pathway performs an
important function in inhibiting mitochondria-mediated
apoptosis [46]. Based on the close relationship between the
PI3K/Akt/Bad pathway and apoptosis, we studied the effect
of PI3K in our system. PI3K is a phosphatidylinositol kinase
with activities as a serine/threonine-specific protein kinase
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Figure 3: Gypenoside modulates the expression of apoptosis pathway proteins. Gypenoside effectively regulated the expression of apoptotic
proteins in the PI3K/Akt/Bad pathway. Gypenoside enhanced the expression of PI3K and p-Akt and markedly downregulated the expression
of p-Bad, Cyt-c, cleaved caspase 9, cleaved caspase 3, and PARP. Bar chart results are expressed as themean ± SD of four different experiments
(n = 3). (a) Western blot; (b) bar charts; ∗P < 0:05 and ∗∗P < 0:01 between each group.
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and a phosphatidylinositol kinase [47, 48]. After activation,
phosphatidylinositol family members on the cell membrane
can be phosphorylated and the downstream signal molecule
Akt can be recruited and activated. Then activated Akt
phosphorylates Ser136/Ser112 residues of the Bad protein
[49]. Phosphorylated Bad separates from the apoptosis-
promoting complex and forms a 14-3-3 protein complex,
leading to the inactivation of its apoptosis-promoting func-
tion, and inhibits apoptosis [50]. Our results show that gype-
noside effectively regulates the expression of apoptotic
PI3K/Akt/Bad pathway-related proteins, and gypenoside
could enhance PI3K and p-Akt expression and downregulate
expression of p-Bad, Cyt-c, cleaved caspase 3, cleaved caspase
9, and PARP. These results suggested that gypenosides may

regulate mitochondrial function and inhibit the development
of atherosclerosis in ApoE−/− mice through the PI3K/Akt/-
Bad pathway.

The processes of mitochondrial fusion and cleavage
are the main conditions affecting mitochondrial function.
Dynamin-related protein 1 (DRP-1) is an important protein
of the mitochondrial fission machinery and is involved in
inducing mitochondrial fragmentation/degradation and pro-
grammed cell death [51]. Overexpression of the essential
protein Drp-1 can promote mitochondrial division [52], pro-
moting reactive oxygen species (ROS) and release of Cyt-c
[53]. Mitochondrial fusions (Mitofusins) are a group of large
GTPase localized on the outer membrane of mitochondrial
[54]. The depletion of Mitofusin 2 (Mfn2) could greatly
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activity, as analyzed by the corresponding kit in the normal, ApoE−/−, gypenoside, and simvastatin groups. Results are expressed as the
mean ± SD of four different experiments (n = 6). (b, c) Western blot result of DRP1 and MFN2 expression in the aorta; bar chart results are
expressed as the mean ± SD of four different experiments (n = 3); ∗P < 0:05 and ∗∗P < 0:01 between each group. (d) Immunofluorescence
results of DRP1 and MFN2 expression in the aorta.

7BioMed Research International



Table 2: Differentially regulated mitochondrial energy-related gene expression in the mouse aorta.

Gene Description GeneBank accession number Fold change

Atp5g1 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c1 (subunit 9) NM_007506 9.1172

Atp12a ATPase, H+/K+ transporting, nongastric, alpha polypeptide NM_138652 5.5417

Cox5a Cytochrome c oxidase, subunit Va NM_007747 10.5034

Cox6c Cytochrome c oxidase, subunit VIc NM_053071 6.7845

Cox7b Cytochrome c oxidase subunit VIIb NM_025379 6.6125

Ndufa4 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 NM_010886 5.4346

Ndufa5 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5 NM_026614 4.0653

Ndufb6 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 6 NM_001033305 6.3204

Ndufb7 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 7 NM_025843 6.119

Ndufc2 NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2 NM_024220 6.0068

Ndufs2 NADH dehydrogenase (ubiquinone) Fe-S protein 2 NM_153064 4.0314

Ndufv1 NADH dehydrogenase (ubiquinone) flavoprotein 1 NM_133666 4.4053

Sdhc Succinate dehydrogenase complex, subunit C, integral membrane protein NM_025321 7.8206

Uqcrc2 Ubiquinol cytochrome c reductase core protein 2 NM_025899 7.9425

Uqcrfs1 Ubiquinol cytochrome c reductase, Rieske iron-sulfur polypeptide 1 NM_025710 4.1404
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Figure 5: Gypenoside regulates mRNA expression of mitochondrial energy-related genes in the aorta. Mitochondrial energy-related genes
Atp12a, Cox5a, Ndufb6, and Sdhc were analyzed by qPCR. (a) Atp12a mRNA is increased in ApoE−/− mice and reduced by gypenoside
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(n = 3). ∗∗P < 0:01 between each group.
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decrease levels of mitochondrial fusion [54]. Additionally,
Mfn2 can increase the permeability of the extracellular mem-
brane and induce Cyt-c release by inhibiting the PI3K/Akt
pathway, promoting apoptosis [55]. In this study, we found
that gypenoside significantly downregulated (P < 0:01)
DRP1 and MFN2 protein levels. Thus, mitochondrial fusion
cleavage proteins may promote the development of athero-
sclerosis in ApoE−/− mice via inhibiting the PI3K/Akt/Bad
signaling pathway and regulating apoptosis in vascular
endothelial cells. These results also demonstrated that the
mitochondrial fusion cleavage proteins were significantly
inhibited, suggesting that the total glucosides of Gynos-
temma pentaphyllum regulate mitochondrial function and
inhibit the formation of atherosclerosis in ApoE−/− mice
via the PI3K/Akt/Bad pathway.

Gypenosides may also restrain the formation of athero-
sclerosis through compensating for mitochondrial apoptosis
and energy changes through compensatory stress mechanisms
[15]. Our study showed increased expression of mitochondrial
apoptosis-related proteins in the arterial endothelial cells of
Apo E−/− mice, and the mitochondrial energy-related genes
Atp12a, Cox5a, Ndufb6, and SDHC mRNA were also signif-
icantly elevated. After intervention with gypenosides, these
results were significantly reduced.

In conclusion, this study identified a new effect of gypeno-
sides on endothelial apoptosis and demonstrated gypenoside

may be a therapeutic drug of atherosclerosis by modulating
mitochondrial function through the PI3K/Akt/Bad pathway.
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