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In order to comprehensively explore multitarget mechanism and key active compounds ofArtemisia argyi essential oil (AAEO) in
the treatment of pressure injuries (PIs), we analyzed the biological functions and pathways involved in the intersection targets of
AAEO and PIs based on network pharmacology, and the affinity of AAEO active compounds and core targets was verified by
molecular docking finally. In our study, we first screened 54 effective components according to the relative content and biological
activity. In total, 103 targets related to active compounds of AAEO and 2760 targets associated with PIs were obtained, re-
spectively, and 50 key targets were overlapped by Venny 2.1.0. ,e construction of key targets-compounds network was achieved
by the STRING database and Cytoscape 3.7.2 software. GO analysis fromMatespace shows that GO results are mainly enriched in
biological processes, including adrenergic receptor activity, neurotransmitter clearance, and neurotransmitter metabolic process.
KEGG analysis by the David and Kobas website shows that the key targets can achieve the treatment on PIs through a pathway in
cancer, PI3K-Akt signaling pathway, human immunodeficiency virus 1 infection, MAPK signaling pathway, Wnt signaling
pathway, etc. In addition, molecular docking results from the CB-Dock server indicated that active compounds of AAEO had
good activity docking with the first 10 key targets. In conclusion, the potential targets and regulatory molecular mechanisms of
AAEO in the treatment of PIs were analyzed by network pharmacology and molecular docking. AAEO can cure PIs through the
synergistic effect of multicomponent, multitarget, and multipathway, providing a theoretical basis and new direction for
further study.

1. Introduction

Pressure injuries (PIs), also named pressure ulcers, refer to
localized injuries occurring in the skin and/or potential
subcutaneous soft tissue, usually occurring in bone bulges or
in contact with medical facilities [1]. PIs have the charac-
teristics of refractory, high incidence, and high treatment
cost [2, 3]. Once infected, it is easy to cause sepsis and death
[4]. At present, the treatment of PIs mainly includes drug
therapy [5], dressing therapy [6], stem cell factor therapy [7],
and negative pressure wound therapy [8]. ,ere are no
effective measures yet; expert consensus believes that pre-
vention and early treatment are crucial [9].

,e Artemisia argyi (AA), which is widely distributed
in China and other Asian countries, has been used as
traditional medicine or food supplement for hundreds of
years [10]. AA is the dried leaf of Artemisia argyi (Levl.) et
Van., the herb with a spicy, bitter flavor and warm
properties, enters into the channels of liver and kidney, and
functions on resolving blood stasis, dispersing cold and
relieving pain [11, 12]. AA is rich in volatile essential oils
(AAEO), such as eucalyptol, camphor, and borneol, with
extensive pharmacological effects of antioxidative stress
[13], resisting pathogens [14], suppressing inflammatory
responses [15], and activating immunomodulatory re-
sponses [16].
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AA often treats diseases in the form of moxibustion;
moxibustion is a critical intervention in traditional Chinese
medicine (TCM). Artemisia argyi is usually the main raw
material [17]. Although the mechanism of moxibustion is
uncertain, the thermal effect and moxa smoke may play a
synergistic role in the treatment of diseases [18, 19]. ,e
fumigation and heating effects produced by moxibustion
have played a certain role in promoting the wound healing of
PIs, and the pharmacological effects of moxa smoke need to
be paid special attention. Nevertheless, we found that moxa
smoke and AAEO have 80% of the same compounds by
searching the relevant literature. Also, in view of the in-
creasing emphasis on the toxicity of moxa smoke to car-
diovascular and respiratory systems, AAEO is safer.

In view of the complex chemical compounds of AAEO,
the chemical components and the corresponding mecha-
nism of action that play the efficacy after entering the human
body include a lot of unknown information. ,erefore, it is
necessary to comprehensively explore the mechanism of
AAEO in the treatment of PIs.

Network pharmacology is a new discipline emerging in
recent years that combines the overall network analysis and
pharmacological effects [20]. With the development of
bioinformatics and chemical informatics, network phar-
macology has become a new method to study the mecha-
nism of traditional drugs and discover potential bioactive
components effectively and systematically [21]. Network
pharmacology explores the relationship between drugs and
diseases from a holistic perspective and, through a large
number of databases screening drug treatment of diseases
related targets and pathways, is widely used in TCM-related
fields, providing new ideas for the study of complex Chinese
medicine system [20, 22, 23]. Molecular docking, as a new
technology for drug molecular screening, utilizes one-to-one
pairs of ligands and receptors according to the “lock-key
principle,” the computer-aided high-throughput screening
of drug molecules was realized by studying the geometric
matching and energy matching between protein macro-
molecular receptors and small drug molecules, and the
mechanism of drug molecules was further predicted to
improve the scientificity, accuracy, sensitivity, and pre-
dictability of drug molecule screening [24].

For all we know, our study is first time applied network
pharmacology methods to explore the biological effect of
active compounds in AAEO and the multitarget mechanism
of active compounds in the treatment of PIs. In our study,
TNF, PTGS2, IL6, IL1β, NR3C1, CASP3, TP53, PGR, REN,
and NOS2 could be the potential receptor targets, involving
many inflammatory proteins. ,e top three molecular
docking points are PTGS2 (prostaglandin-endoperoxide
synthase 2), TP53 (tumor protein p53), and PGR (proges-
terone receptor). PTGS2, also known as COX-2, as an
important inflammatory mediator, exists in the early stage of
inflammation to the whole process of inflammation for-
mation [25]. It is upregulated when stimulated by various
stimuli and participates in various pathological processes,
closely related to inflammation, tumor occurrence, and
development [26, 27]. TP53 and PGR are tumor suppressor
proteins, being a biomarker and prognostic predictor of

cancers usually [28–31]. Recent studies have shown that
TP53 plays an important role in regulating signaling
pathways to maintain the health and function of skeletal
muscle cells. It can improve cell survival rate by participating
in the activation to increase the repair time of cells and
prevent abnormal cell proliferation through the initiation of
DNA fragmentation-induced apoptosis to promote the in-
crease of cell stress level [32].

2. Methods

2.1. Active Compounds of AAEO Database Building and
Screening. Over 200 components of AAEO can be detected
by current technology, but more than 90 of them are
common active, so we use 94 components as active com-
pounds [33, 34]. Fifty-four compounds were screened by
criteria. Finally, the inclusion criteria were as follows: the
compounds with relative content >0.1% from works of
literature of GS-MC quantitative analysis (hydrodistillation)
of AAEO in recent years [14, 35, 36], compounds included in
TCMSP [37] (https://tcmspw.com) and PubChem database
[38] (https://pubchem.ncbi.nlm.nih.gov/), and compounds
with relevant targets.

2.2. Targets Fishing. ,e targets information identifying 54
potential compounds were attained on TCMSP and were
reconfirmed by DrugBank [39] (https://www.drugbank.ca)
and Pharmmapper [40] (https://www.lilab-ecust.cn/
pharmmapper/). Next, the targets were entered into Uni-
Prot (https://www.uniprot.org/); the species selected was
“Homo sapiens”; transformed gene symbols were obtained
finally.

GeneCard (https://www.genecards.org/), OMIM
(https://omim.org/) and DrugBank (https://go.drugbank.
com/) database were used to screen relative targets of PIs.
“Pressure Ulcers,” “Bedsore,” “Pressure Sore,” and “pressure
injury” were keywords to search targets related to PIs. ,e
obtained targets were integrated and eliminated duplication.
Finally, the intersection targets were obtained on Venny
2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/). At last, 50
overlapping targets were obtained.

2.3. PPI Analysis and Compounds-Targets Network
Construction. PPI analysis of the overlapping targets was
carried out in the STRING 11.0 (https://www.string-db.org/).
Protein with disconnected other protein and a combined score
<0.4 was removed [41]. ,e information of the PPI network
was visualized by Cytoscape 3.7.2 software [42]; then, core
network calculations were performed by the Cytoscape plug-in
module, MCODE, the degree of freedom threshold was set as
100, the node scoring threshold was 0.2, the K value was 2, and
the maximum depth was 100 [43].

2.4. Gene Ontology (GO) Analysis. ,e overlapping targets
were imported into Matescape [44] (https://metascape.org/
gp/index.html) to carry out GO analysis. ,e specific steps
were as follows: input the gene ID, the parameter selected
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was “Homo sapiens,” click “custom analysis,” and click GO
Molecular Functions, GO Biological Processes, and GO
Cellular Components in turn for analysis [44]. Finally,
Bioinformatics (https://www.bioinformatics.com.cn/) was
used to acquire the visualization of the results.

2.5. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathways Analysis. 50 overlapping targets were converted
from gene symbol to ENTRZ_GENE ID in David Database
(https://david.ncifcrf.gov/tools.jsp), and the ENTRZ_GENE
ID was input into Kobas (https://kobas.cbi.pku.edu.cn/) for
KEGG pathways analysis [45, 46]. KEGG pathways with P

values <0.01 were selected [47].

2.6.Molecular Docking. In silico methods are alternatives to
experimental approaches to screen for potential bioactivity
of compounds of essential oil compounds; for example,
docking evaluated in silico the ability of EOs to interact with
molecular targets with advantages of being less time-con-
suming and cheap. We selected the top 10 core targets and
got the ligand with relative content of the first 7 for mo-
lecular docking; the PDB formats of proteins were obtained
from the protein database (https://www.rcsb.org) and ligand
files in mol2 formats from PubChem (https://pubchem.ncbi.
nlm.nih.gov/) [48]; both of them were used in the same way
they were obtained from the databases. Molecular docking
was carried out in CB-Dock (https://cao.labshare.cn/cb-
dock/). CB-Dock server is a user-friendly blind docking
network server developed by Dr. Liu’s research team. It uses
a novel curvature-based cavity detection approach, and
Autodock Vina, the popular docking program, is used for
docking [49]. ,e success rate of this tool was more than
70%, which outperformed the state-of-the-art blind docking
tools. ,e downloaded formats files were input into CB-
Dock; the style and color of ligand and receptor were set the
same as those of Dr. Tao [50]. ,e RMSD between each pair
of the two structures must be less than 2 angstroms [51].

3. Results

3.1. Compounds of AAEO and Targets Related to Active
Compounds. A total of 54 active compounds that met the
criteria were finally collected. ,e basic information of 54
obtained compounds is shown in Table 1.

3.2. Targets’ Intersection and PPI Network Construction.
103 AAEO compound-related targets were retrieved from
TCMSP and converted into official gene symbols according
to the UniProt database. Moreover, 2760 PIs targets were
searched by GeneCard, OMIM, and DrugBank databases.
Finally, 50 targets were obtained by intersecting two parts of
targets (Figure 1); the PPIs of 50 overlapping targets are
shown in Figure 2.

3.3. Active Compounds and Overlapping Targets Network
Construction. Compounds-overlapping targets network
involved 104 nodes and 441 edges. ,e results reflect the

complex mechanism of multicomponent and multitarget
treatment of diseases. Moreover, a core network was cal-
culated by MCODE with 15 targets (Figure 3).

3.4. GO Analysis of Targets’ Intersection. GO analysis was
mainly focused on the biological process, with a total of 3269
enrichment results, involving adrenergic receptor activity,
nuclear receptor activity, and aspartic-type endopeptidase
activity. ,e top 10 GO functional annotations of BP, CC,
and MF are shown in Figure 4.

,e top 10 GO functional annotations of BP, CC, and
MF are represented by green for biological process, orange
for cellular component, light purple for molecular function,
respectively.

3.5. KEGG Pathways of Targets’ Intersection. KEGG en-
richment results were involved in 128 pathways, including
pathway in cancer, PI3K-Akt signaling pathway, human
immunodeficiency virus 1 infection, MAPK signaling
pathway, and Wnt signaling pathway. ,e top 20 pathways
were selected by cluster analysis and P-value (Figure 5).

Each bubble represents an enriched function, and the
size of the bubble is from small to large. ,e bubble is
colored according to its −log (P value); when the color is
redder, P value is smaller.

3.6. Compound-Target Docking. ,e 10 key targets, TNF,
PTGS2, IL6, IL1β, NR3C1, CASP3, TP53, PGR, REN, and
NOS2, were docked with top 7 compounds: β-caryophyllene
(A27),1,8-cineole (A1), terpinen-4-ol (A51), neointermedeol
(A4), α-thujone (A11), borneol (A6), and camphor (A3).
Generally, the Vina score is negative; the lower the score, the
better the binding activity between ligand and protein.,ere
will be top five Vina scores and docking cavity sizes from
obtained results, which were first selected as representation
[50]. ,e results indicated that the top 7 active compounds
of AAEO had a good affinity to key targets and the RMSD of
each docking target and compound was less than
2 angstroms (Tables 2 and 3). ,e top 3 compounds (A4-
neointermedeol, A27-β-caryophyllene, and A3-camphor)
and proteins (PTGS2, PGR, and TP53) with better binding
affinities are shown in Figures 6–8.

4. Discussion

Artemisia argyi, a dried leaf of Ai Ye with multiple biological
activities, is widely used to treat inflammatory diseases such
as eczema, dermatitis, arthritis, allergic asthma, and colitis
[52]. ,e pharmacological mechanisms of AAEO associated
with PIS are uncertain. Our study was first used network
pharmacology to discover the potential targets and regu-
latory molecular mechanism of AAEO on PIs treatment. As
a result, we identified 54 compounds as the main active
components, obtained 50 key targets, including pathway in
cancer, PI3K-Akt signaling pathway, human immunodefi-
ciency virus 1 infection, MAPK signaling pathway, and Wnt
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signaling pathway, demonstrated the multitarget and mul-
tipathway specialty of TCM in treating diseases.

Over 200 species of AAEO can be detected by gas
chromatography-mass spectrometry (GC-MS) [34], mainly
including terpenoids, ketones (aldehydes), alcohols

(phenols), acids (esters), alkanes (alkenes), and other
chemical constituents. In our study, β-caryophyllene,1,8-
cineole, terpinen-4-ol, neointermedeol, α-thujone, borneol,
and camphor had a relative content of the first 7 [14, 34–36].
1,8-Cineole, camphor, and borneol accounted for the largest

Table 1: ,e basic information of potential compounds of AAEO.

No. Molecule name CAS Molecular formula Relative content (%) References
A1 1,8-Cineole 470-82-6 C10H18O 20.91 Guan et al. [14]
A2 Caryophyllene 87-44-5 C15H24 7.50 Guan et al. [14]
A3 (-)-Camphor 76-22-2 C10H16O 5.57 Guan et al. [14]
A4 Neointermedeol 5945-72-2 C15H26O 9.65 Guan et al. [14]
A5 Caryophyllene oxide 1139-30-6 C15H24O 8.71 Guan et al. [14]
A6 (-)-Borneol 464-45-9 C10H18O 16.35 Guan et al. [14]
A7 D-Carvone 5948/4/9 C10H16O 0.25 Guan et al. [14]
A8 Bornyl acetate 76-49-3 C12H20O2 0.24 Guan et al. [14]
A9 4-Terpineol 562-74-3 C10H18O 5.47 Guan et al. [14]
A10 Sabinene 10408-16-9 C10H16 3.36 Guan et al. [14]
A11 α-,ujone 546-80-5 C10H16O 14.55 Guan et al. [14]
A12 α-Humulene 6753-98-6 C15H24 2.24 Guan et al. [14]
A13 Eugenol 97-53-0 C10H12O2 0.56 Gu et al. [36]
A14 cis-Carveol 1197-06-4 C10H16O 1.40 Guan et al. [14]
A15 Germacrene D 23986-74-5 C15H24 0.55 Guan et al. [14]
A16 Terpinolene 586-62-9 C10H16 0.15 Guan et al. [14]
A17 Cymene 527-84-4 C10H14 0.32 Guan et al. [14]
A18 α-Terpineol 10482-56-1 C10H18O 3.62 Guan et al. [14]
A19 cis-Carveol 1197-06-4 C10H16O 1.40 Guan et al. [14]
A20 Espatulenol 6750-60-3 C15H24O 1.51 Guan et al. [14]
A21 c-Elemene 515-13-9 C15H24 0.12 Gu et al. [36]
A22 α-Pinene 2437-95-8 C10H16 3.84 Dai et al. [35]
A23 Piperitone 89-81-6 C10H16O 0.42 Guan et al. [14]
A24 (-)-Camphene 5794/3/6 C10H16 1.83 Dai et al. [35]
A25 Isoborneol 124-76-5 C10H18O 0.63 Dai et al. [35]
A26 cis-β-Farnesene 18794-84-8 C15H24 0.11 Dai et al. [35]
A27 β-Caryophyllene 87-44-5 C15H24 13.64 Guan et al. [14]
A28 c-Terpinene 99-85-4 C10H16 0.24 Guan et al. [14]
A29 Spathulenol 4221-98-1 C15H24O 0.82 Dai et al. [35]
A30 Diisooctyl phthalate 27554-26-3 C24H38O4 0.14 Dai et al. [35]
A31 β-Pinene 127-91-3 C10H16 3.05 Dai et al. [35]
A32 Hexahydrofarnesyl acetone 502-69-2 C18H36O 0.77 Dai et al. [35]
A33 Tricyclene 508-32-7 C10H16 0.12 Gu et al. [36]
A34 Terpinene 99-86-5 C10H16 2.26 Gu et al. [36]
A35 Dihydroactinidiolide 15356-74-8 C11H16O2 0.21 Dai et al. [35]
A36 Cyclohexadiene 4221-98-1 C10H16 0.77 Dai et al. [35]
A37 n-Hexadecanoic acid 57-10-3 C16H32O2 0.22 Dai et al. [35]
A38 Terpinyl acetate 58206-95-4 C12H20O2 0.27 Dai et al. [35]
A39 Diisobutyl phthalate 84-69-5 C16H22O4 0.14 Dai et al. [35]
A40 Myrtenol 19894-97-4 C10H16O 0.77 Dai et al. [35]
A41 Carvacrol 499-75-2 C10H14O 0.55 Dai et al. [35]
A42 Curcumene 4176-17-4 C15H22 1.06 Dai et al. [35]
A43 trans-Carveol 2102-58-1 C10H16O 1.17 Dai et al. [35]
A44 (+)-Limonene 5989-27-5 C10H16 0.39 Dai et al. [35]
A45 L-Carvone 6485-40-1 C10H14O 0.11 Dai et al. [35]
A46 cis-β-Terpineol 7299-40-3 C10H18O 6.61 Dai et al. [35]
A47 cis-Piperitol 16721-38-3 C10H18O 3.66 Dai et al. [35]
A48 Nerolidol 7212-44-4 C15H26O 0.59 Dai et al. [35]
A49 cis-Jasmon 488-10-8 C11H16O 0.42 Dai et al. [35]
A50 α-Caryophyllene 6753-98-6 C15H24 0.37 Dai et al. [35]
A51 Terpinen-4-ol 2438-10-0 C10H16O 11.09 Dai et al. [35]
A52 (5R)-5-Isopropenyl-2-methyl-2-cyclohexen-1-ol 99-48-9 C10H16O 0.12 Dai et al. [35]
A53 Oct-1-en-3-ol 3391-86-4 C8H16O 2.57 Dai et al. [35]
A54 α-Phellandrene 99-86-5 C10H16 1.66 Dai et al. [35]
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proportion of AAEO [53]. In lipopolysaccharide0 (LPS-)
induced cell and mouse inflammation experiments, 1,8-
cineole alleviates LPS-induced vascular endothelial cell in-
jury, obviously inhibits the production of the inflammatory
mediator, increases the release of anti-inflammatory factor

IL10, and improves inflammatory symptoms [54]. Borneol
significantly decreased the auricular swelling rate and pain
threshold of rats by activating the p38-COX-2-PGE2 sig-
naling pathway, which has significant analgesic and anti-
inflammatory effects on PDT of acne [55]. Numerous

AAE0

53 50 2710

PIs

Figure 1: Venn diagram of targets’ intersection of AAEO and PIs.

Figure 2: PPI network diagram. Protein-protein interactions (P> 0.7) of 50 overlapping targets.

Figure 3: Compounds-overlapping targets network: the right square matrix green circle nodes represent 52 potential compounds (2
compounds (A33 and A53) have no associated targets) and the left circular nodes with gradual color represent 50 overlapping targets of
AAEO and PIs. Larger size and deeper color of a node mean a greater degree.
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investigations have shown various essential oils of several
species containing camphor as the major component,
exhibiting antimicrobial activity [56–59]. Also, the appli-
cation of camphor to the skin was proved to increase local
blood flow in the skin and muscle, induce both cold and
warm sensations, and improve blood circulation [60]. More
noteworthy is that the top three compounds of molecular
docking score were neointermedeol, β-caryophyllene, and
camphor. Neointermedeol has been shown to have anti-
oxidant, antibacterial, and other biological activities [61, 62].
Recent studies have shown that caryophyllene can provide
protection for animal cells and reduce proinflammatory
mediators such as TNF-α, IL-1β, IL-6, and NF-κB, thereby
improving the symptoms of inflammation and oxidative
stress [63, 64].

,e core network calculated by MCODE had 15 targets,
mostly related to inflammation, oxidative stress, and apo-
ptosis. TNF, IL6, IL-1β, and PTGS2 participate in regulating
inflammatory cascade reaction [65–68] and can be inhibited
by inflammation in different levels by AAEO. TP53, BAX,
and CASP3 regulate the apoptotic process and cell

protection negatively [69, 70]. KEGG Pathways enrichment
analysis is mainly involved in PI3K-Akt signaling pathway,
human immunodeficiency virus 1 infection, and human
T-cell leukemia virus 1 infection, MAPK signaling pathway,
and Wnt signaling pathway. ,e study found that the PI3K-
Akt pathway plays a great role in antiapoptosis and an-
giogenesis. ,e PI3K-Akt pathway phosphorylated Akt, and
phosphorylated Akt first activated downstream factors Bad
and Caspase-9 to play an antiapoptotic role and promote
angiogenesis [71], and then phosphorylated Akt further
regulated eNOS, which could promote the generation of NO
[72], provide oxygen and nutrients for tissue recovery and
mediate skin injury repair. Ischemic-reperfusion is recog-
nized as the mechanism of PIs; the process includes oxi-
dative stress, excessive release of oxygen free radicals,
apoptosis, and activation of inflammatory cytokines [73].
,e prediction results of our network pharmacology are
mostly consistent with the progress of ischemic-reperfusion.
MAPK signaling pathway is involved in the repair of PIs,
increases the expression of Ras, c-Raf, MEK1, p-MEK1
protein, p-ERK1 protein, and MEK1 mRNA, promotes the
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Figure 4: GO analysis.
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proliferation of vascular endothelial cells, and accelerates
microvascular regeneration and remodeling [74]. More
studies have shown that the repair of pressure ulcers is highly
correlated with the Wnt/β-catenin signaling pathway reg-
ulating the proliferation and differentiation of epithelial
cells, hair follicles, and sebaceous glands [75, 76].

,e above arguments verify the accuracy of this network
pharmacology prediction. Besides, the docking result
showed that all selected core protein and ligand have a better
affinity (≤5 kcal/mol), and there were 15 docking scores
≥7 kcal/mol, indicating strong binding affinity of the com-
pound to docking protein [77]. ,e RMSD of the target

hsa05170:Human immunodeficiency virus 1 infection

hsa04724:Glutamatergic synapse

hsa05167:Kaposi sarcoma- associated herpesvirus infection

hsa05166:Human T- cell leukemia virus 1 infection
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Figure 5: Top 20 enriched KEGG pathways.

Table 2: Vina score of compound-target docking (unit: kcal/mol).

ID A27 A1 A51 A4 A11 A6 A3
TNF −6 −5.3 −6.6 −7.8 −5.4 −5.6 −6.8
PTGS2 −6.6 −7.1 −6.8 −7.2 −6.4 −6.2 −7.3
IL6 −6.3 −5.5 −6.7 −6.3 −5.5 −5.2 −6.9
IL1B −6.8 −5.6 −5.5 −7 −5.3 −5.6 −5.9
NR3C1 −5.5 −5.7 −6.3 −6.1 −6.2 −5.1 −5.1
CASP3 −7 −5.9 −5.9 −6.7 −5.9 −5.4 −5.7
TP53 −7.4 −5.8 −6 −7.1 −6.1 −5.8 −7.5
PGR −7.8 −6.7 −6.4 −7.6 −6.6 −6.2 −6.5
REN −7.9 −6.2 −5.9 −7.8 −6.2 −6.2 −6.4
NOS2 −6.9 −5.4 −7 −7.5 −6.4 −5.3 −5.5
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Table 3: Docking parameters.

Target PDB ID Ligand Cavity size
Center Size

RMSD
X y z x y z

TNF 1D0G

A27 330 29 20 8 18 18 18 0.000
A1 791 9 38 47 16 16 16 0.098
A51 330 29 20 8 17 17 17 0.096
A4 330 29 20 8 18 18 18 0.000
A11 4587 23 55 16 35 16 28 0.585
A6 791 9 38 47 16 16 16 0.640
A3 1620 45 34 15 18 28 18 0.000

PTGS2 1EQG

A27 37209 48 34 189 35 35 35 0.548
A1 1809 73 23 195 24 26 28 0,104
A51 3589 22 28 203 26 29 24 0,103
A4 3589 22 28 203 26 29 24 0.000
A11 1809 73 23 195 24 26 28 0.591
A6 1809 73 23 195 24 26 28 0.645
A3 3589 22 28 203 26 29 24 0.000

IL6 4O9H

A27 533 −20 17 27 18 18 18 0.000
A1 533 −20 17 27 16 16 16 0.103
A51 533 −20 17 27 17 17 1 0.103
A4 533 −20 17 27 18 18 18 0.000
A11 533 −20 17 27 16 16 16 0.590
A6 533 −20 17 27 16 16 16 0.664
A3 533 −20 17 27 18 18 18 0.000

IL1β 3POK

A27 987 −15 −17 −8 18 18 18 0.000
A1 254 21 45 26 18 18 18 0.105
A51 987 −15 −17 −8 23 17 17 0.103
A4 987 −15 −17 −8 18 18 18 0.000
A11 199 −25 5 −7 16 16 16 0.592
A6 199 −25 5 −7 16 16 16 0.646
A3 987 −15 −17 −8 18 18 18 0.000

NR3C1 1LAT

A27 2172 31 38 81 28 32 35 0.000
A1 2172 31 38 81 28 32 35 0.000
A51 153 27 38 92 17 17 17 0.000
A4 2172 31 38 81 28 32 35 0.000
A11 2172 31 38 81 28 32 35 0.000
A6 2172 31 38 81 28 32 35 0.000
A3 2172 31 38 81 28 32 35 0.000

CASP3 5JFT

A27 1834 3 4 −25 18 31 18 0.000
A1 1834 3 4 −25 17 31 17 0.104
A51 1834 3 4 −25 17 31 17 0.103
A4 1834 3 4 −25 18 31 18 0.000
A11 1834 3 4 −25 17 31 17 1.153
A6 1834 3 4 −25 16 31 16 0.646
A3 1834 3 4 −25 16 31 16 0.592

TP53 6WQX

A27 5969 36 3 −12 26 35 31 0.000
A1 1644 23 18 12 30 16 16 0.272
A51 874 0 −10 49 17 17 17 0.427
A4 5969 36 3 −12 26 35 31 0.000
A11 1644 23 18 12 30 16 16 1.153
A6 1644 23 18 12 30 16 16 0.586
A3 874 0 −10 49 18 18 18 1.127

PGR 1A28

A27 617 43 34 30 18 18 18 0.000
A1 617 43 34 30 16 16 16 0.000
A51 631 23 5 73 17 17 17 0.000
A4 421 23 10 60 18 18 18 0.000
A11 617 43 34 30 17 17 17 0.000
A6 617 43 34 30 16 16 16 0.000
A3 617 43 34 30 16 16 16 0.000
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Table 3: Continued.

Target PDB ID Ligand Cavity size
Center Size

RMSD
X y z x y z

REN 3OWN

A27 11842 9 −14 −30 35 35 33 0.000
A1 1910 20 −1 −18 26 16 16 0.107
A51 1834 3 4 −25 17 31 17 0.106
A4 1910 20 −1 −18 26 18 18 0.000
A11 1682 −10 −28 −37 17 23 17 1.156
A6 1682 −10 −28 −37 16 23 22 0.648
A3 11842 9 −14 −30 35 35 33 0.594

NOS2 1M7Z

A27 3650 5 33 11 30 27 30 0.000
A1 3650 5 33 11 30 27 30 0.103
A51 3650 5 33 11 30 27 30 0.102
A4 3650 5 33 11 30 27 30 0.000
A11 3650 5 33 11 30 27 30 1.152
A6 3650 5 33 11 30 27 30 0.645
A3 3650 5 33 11 30 27 30 0.590

A4 & 1EQG

(a)

A4 & 1A28

(b)

Figure 6: Continued.
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A4 & 6WQX

(c)

Figure 6: (a–c) Docking results of compound A4-neointermedeol and PTGS2 (1EQG), PGR (1A28), and TP53 (6WQX), respectively.

A27 & 1EQG

(a)

A27 & 1A28

(b)

Figure 7: Continued.
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A27 & 6WQX

(c)

Figure 7: (a–c) Docking results of compound A27 β-caryophyllene and PTGS2 (1EQG), PGR (1A28), and TP53 (6WQX), respectively.

A3 & 1EQG

(a)

A3 & 1A28

(b)

Figure 8: Continued.
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protein is less than 2 Å, which indicates that the docking
method and parameter setting are reasonable and can be
used for the next docking with components [78].

In addition, study showed that AAEO dose-dependently
inhibits inflammatorymediators, such as NO, PGE2, TNF-α,
IL-6, IL-10, IFN-β, and MCP-1 [79]. In the experiment of
AAEO in anti-inflammatory and blood stasis animals, the
effect of the lowest dose of skin administration (0.25mL/kg)
was equivalent to that oral administration of the middle dose
(0.50mL/kg) [80]. PTGS2 with the highest docking scores is
a biomarker of iron death; it can inhibit the expression of
inflammatory factors and apoptosis [81–83]. ,e future
research direction can explore the way of administration,
dosage, and iron death mechanism pathway.

,e limitation of this study is that we have not conducted
clinical or animal experiments as certification; further
studies will validate the potential key targets and pathways
predicted and explore the mechanism of effective compo-
nents of the essential oil from Artemisia argyi in preventing
and treating PIs by combining molecular biology and
pathophysiology.

5. Conclusion

In conclusion, in this study, the potential targets and reg-
ulatory molecular mechanisms of AAEO in the treatment of
PIs were analyzed by network pharmacology and molecular
docking. In total, 54 active components and 50 potential
targets were screened, mainly involving PI3K-Akt signaling
pathway, pathway in cancer, PI3K-Akt signaling pathway,
human immunodeficiency virus 1 infection, MAPK sig-
naling pathway, and Wnt signaling pathway, revealing that
AAEO may play a role in the treatment of PIs by reducing
inflammation, inhibiting apoptosis and oxidative stress, and
showing the characteristics of multitarget andmultipathway.
Our study provides a basis for the mechanism and further
research direction of AAEO in treating PIs by combining
literature research, network analysis, andmolecular docking.
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