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ABSTRACT: The accurate estimation of in vitro ruminal biohydrogenation (BH)
kinetics of fatty acids (FA) allows for a more accurate understanding of their dynamics
and develop targeted strategies to enhance desirable FA bypass. This study comprises a
comprehensive evaluation of 33 nonlinear regression models to determine the most
suitable model for accurately estimating the in vitro BH kinetics of individual FA. The
data set utilized in the present research originates from a recent investigation on the
effects of micronization and vitamin E on the in vitro ruminal BH of rapeseed. For the
nonlinear regression analysis, data comprising FA concentrations (expressed as g FA/100
g FA) at the conclusion of 2, 4, 8, 12, 24, and 48 h incubation periods were employed.
The evaluation of nonlinear regression models focused on identifying the ideal model
based on criteria including the highest R2 value, the lowest RMSE value, and statistically
significant coefficients. The results pinpoint the Gompertz model as an effective choice
for estimating the in vitro ruminal BH kinetics of upward-trending fatty acids, including
intermediate unsaturated fatty acids and saturated end FA. Additionally, the first-order kinetic model of Ørskov and McDonald
emerges as the preferred model for investigating the BH kinetics of downward-trending fatty acids, including oleic acid, linoleic acid,
and alpha-linolenic acid. In summary, this rigorous evaluation led to the identification of the most appropriate model, one that not
only exhibited an exceptional fit to the data but also provided profound insights into the intricate relationships between predictors
and the dynamic behavior of FA. The established nonlinear regression models will serve as invaluable tools for future research
investigating FA biohydrogenation kinetics.

1. INTRODUCTION
The addition of oilseeds to ruminant diets provides a valuable
source of unsaturated fatty acids (UFAs) for animals. These
UFAs not only serve as a potential energy source1 but also
perform various functional roles2−4 and contribute to the
improvement of the FA profile in dairy products.5 Never-
theless, the UFAs ingested by animals undergo extensive
processes of hydrolysis, isomerization, and BH in the rumen
due to the action of rumen microorganisms.6 Ruminal BH and
isomerization lead to a reduction in the proportion of UFA and
the emergence of stearic acid (SA) and other UFAs, such as
conjugated linoleic acid isomers (CLA) and trans 18:1
isomers.7 Consequently, the profile of FA that reaches the
small intestine of ruminants differs from the composition of
those initially consumed.6

The consumption of saturated FAs has been limited by
nutritional guidelines, with a significant proportion originating
from animal products such as meat and milk.5 Evidence
suggests that beneficial cardiovascular, anticarcinogenic, and
anti-inflammatory effects on human health can be attributed to
UFA and their BH intermediates.8,9 Therefore, the processes of
microbial BH of UFA in the rumen might aid in the

development of strategies for producing animal products
with beneficial effects on human nutrition. The most common
approach for producing UFA-enriched animal products
involves the supplementation of ruminants’ diet with oilseeds,
which are a rich source of UFAs.5 In order to optimize the
availability of UFAs for absorption at the duodenum,
protection of dietary mono- and polyunsaturated fatty acids
(PUFAs) from ruminal BH is of paramount importance.
Notably, the application of heat treatment to oilseeds has been
substantiated as a potent strategy to shield dietary PUFAs from
the impacts of ruminal BH.10,11 The reduction of ruminal BH
of UFA in oilseeds through the process of micronization as a
heat treatment has led to an increase in the intermediate FA
content, particularly VA and CLA, in animal products,
especially milk fat.12−14 Dairy products serve as a primary
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source of CLA in human diets.15 In recent years, there has
been a growing interest in the levels of CLA in human diets
due to the potential health benefits associated with it.16 Studies
have reported the anticarcinogenic properties of CLA in rodent
mammary and colon cancer models as well as in vitro models
of human melanoma, colorectal cancer, and breast cancer.
Additionally, the potential beneficial effects on the body
composition and immune function have also been docu-
mented.17

While animal performance can be influenced by the
absorbed FA, predicting the quantitative flow of individual
isomers remains challenging. Therefore, accurate estimation of
the ruminal BH kinetics of various processed oilseeds is an
essential prerequisite for quantifying the relationships between
dietary FA and the FA profile observed in animal products. A
comprehensive evaluation of the efficacy inherent in diverse
methods utilized to shield UFA from the intricate landscape of
ruminal metabolism necessitates a meticulous exploration of
the kinetics governing BH of FA within the rumen. The
modeling of ruminal BH kinetics is considered a beneficial tool
for characterizing the impact of diet, processing methods,
microorganism ecology, and ruminal factors on the process of
fatty acid BH, as well as for postulating potential ruminal BH
pathways.7 The use of mathematical models enables accurate
predictions and saves time by testing the best model with a
high accuracy and low error. In most studies, nonlinear
regression models are employed to examine UFA kinetics
during ruminal BH.18−23 The parameters in nonlinear models
often possess a biologically meaningful interpretation, based on
the units and definitions associated with them.24−26 This
interoperability renders nonlinear models valuable for gaining
insights into biological processes. It should be noted that
nonlinear regression models also encounter limitations.
Nonlinear models are generally less flexible than linear models,
making model selection crucial. Additionally, as there is no
analytical solution for parameter estimation in nonlinear
models, numerical methods must be employed. This
introduces challenges such as checking the convergence of
the algorithm and selecting appropriate starting values for the
parameters.24 Overall, nonlinear regression models can serve as

appropriate tools for determining the kinetic behavior of
FA.27,28

The first-order kinetics have been previously utilized to
estimate the ruminal BH kinetics of UFA from different
sources.20,29,30 In a study conducted by Enjalbert et al.,21 the in
vitro ruminal BH kinetics of disappearing UFA (mg/100 g
DM) in canola seeds were estimated by employing an
exponential model developed by Ørskov and McDonald.31

There are limited studies in which the BH kinetics of
intermediate FA have been estimated. Ribeiro et al.7 used
the first-order kinetic model of Ørskov and McDonald31 to
estimate the fractional rates of VA appearance and
disappearance. Moate et al.,32 in their research, harnessed the
Michaelis−Menten model to elucidate the rate of LA
disappearance in vitro, alongside the emergence of vaccenic
acid (VA) and stearic acid (SA), when varying doses of LA
(320, 650, and 970 mg/L) were subjected to incubation in a
rumen fluid. Notably, the same model was applied to both the
groups of FA that disappeared and those that appeared. In a
parallel endeavor, Lashkari et al.9 adeptly utilized the
Michaelis−Menten model to quantitatively capture the in
vitro BH kinetics encompassing both the disappearance and
appearance of FA (mg/100 g DM) in flaxseeds. Building upon
this foundation, Vargas et al.33 ingeniously employed a
multicompartmental model to delineate the in vitro BH
kinetics of the disappearing UFA (mg/100 g DM).
Furthermore, the kinetics of VA appearance were meticulously
calculated through the adept fitting of the Gompertz model.34

As previously stated, a limited selection of nonlinear
regression models has been employed to estimate the kinetic
parameters for both the disappeared and appeared FA. One
problem associated with previous studies is that they have
usually failed to separate the estimation of BH kinetics of the
appeared from disappeared FA. These two subsets exhibit
distinct behaviors during the BH process, rendering the
application of a uniform nonlinear regression model inappro-
priate. The use of separate models enables a more precise
representation of BH kinetics, yielding valuable insights into
the intricate dynamics of UFA, saturated FA, and intermediate
FA involved in rumen BH. Significantly, the systematic
evaluation of nonlinear models in terms of their competence

Figure 1. Experimental and modeling processes for estimating the in vitro BH kinetics of FA.
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Table 1. Mathematical Models to Estimate the In Vitro BH Kinetics of FA in Raw- or Micronized-Flaked Rapeseeds

symbol form model name
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in accommodating BH data constitutes a noticeable gap in
current research. Our underlying hypothesis proposes the
potential existence of two distinct models, each aptly capturing
the rate and extent of FA disappearance and appearance.
Therefore, the main objective of this study was to
comprehensively evaluate 33 nonlinear regression models,
ultimately selecting the most suitable models to illustrate the
changes in FA concentration throughout the in vitro rumen
incubation of both raw- and micronized-flaked rapeseeds.
Through this comprehensive exploration, our work aims to
bridge this critical research gap, thus advancing our
comprehension of BH kinetics in processed oilseeds.

2. MATERIALS AND METHODS
2.1. Data Collection and Experimental Setup. The data

utilized in this study were derived from our recent research
that examined the effect of micronization and vitamin E on the
in vitro ruminal BH of rapeseeds.

The survey of experimental steps and modeling procedures
is illustrated in Figure 1. In brief, full-fat rapeseeds of the
Neptune variety (Brassica napus), harvested in June 2021, were
divided into two batches. One batch was soaked in 5.0% water
(w/w) an hour before micronization, with intermittent mixing
every 15 min. Micronization was carried out using a gas-fired
ceramic micronizer (Faravardaneh Ferdowsi Mashhad, Mash-
had, Iran) at a wavelength of 2.8 μm. The rapeseed monolayers
were conveyed on a vibrating conveyor positioned 12 cm
below an infrared radiation source, reaching a surface
temperature of 130 °C upon excitation. Immediately, the
micronized rapeseeds were flaked by passing them between
two rotating rollers with a gap distance of 0.50 mm.
Nonmicronized rapeseeds were similarly flaked without prior
micronization.

The experimental substrates underwent incubation within
culture vials containing rumen fluid obtained from three
ruminally cannulated heifers, as described by Petersen and
Jensen.35 These heifers, housed in the experimental barn at
Aarhus University in Denmark, were fed a diet composed of
4.0 kg of grass hay, 2.0 kg of barley straw, and 2.8 kg of
concentrate consisting of barley, soybean meal, rapeseed meal,

oats, sugar beet molasses, as well as a vitamin and mineral
premix at levels of 400, 100, 30, 400, 30, and 40 g/kg dry
matter, respectively. It is worth noting that the incubation was
performed once, with each treatment comprising six replicates
for each incubation time (resulting in two observations for
each individual heifer). Samples were incubated for durations
of 0, 2, 4, 8, 12, 24, and 48 h, after which they were frozen at
−20 °C, subjected to freeze-drying, and stored at −20 °C until
FA analysis.

To determine the FA composition, the extracted FA methyl
esters were analyzed by using a gas chromatograph (Hewlett-
Packard 6890 series, Agilent Technologies, Palo Alto, CA,
USA) equipped with an automatic column injector (Hewlett-
Packard 7673). A capillary column with an inner diameter of
60 m × 0.32 mm and a 0.25 μm film thickness (OmegawaxTM
320; Supelco 4-293-415, Sigma-Aldrich) was employed, along
with a flame ionization detector. Identification of FA was
achieved by comparing the retention times to those of external
standards (GLC 68C, Nu-Prep-Check, Elysian, MN, USA).
2.2. Nonlinear Regression Analysis. In the pursuit of

understanding the dynamic behavior of various FA, our study
ventures into the intricate kinetics of oleic acid (OA), linoleic
acid (LA), alpha-linolenic acid (LnA), SA, VA, and trans-10
C18:1. These FA are the focal points of our investigation, as
we aim to comprehensively comprehend their behavior under
diverse experimental conditions. Within this ensemble of FA,
we encounter both DTFA (OA, LA, and LnA) and UTFA (SA,
VA, and trans-10 C18:1), each showing unique patterns of
appearance and transformation, making them intriguing
subjects for our study. To conduct our nonlinear regression
analysis, we utilized data comprising FA concentrations
(expressed in g FA/100 g FA) in the culture tubes at the
culmination of a 48 h incubation period. Before embarking on
this analysis, it was imperative to ensure the data set’s
conformity with the assumptions of normality. Thus, the data
underwent a rigorous normality assessment through the
Shapiro−Wilk test. This crucial step ensured the validity and
reliability of our subsequent nonlinear regression modeling,
providing a solid foundation for the exploration of FA kinetics
under various experimental scenarios.

Table 1. continued

symbol form model name
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In the realm of FA kinetic research, a noticeable trend has
emerged: a preference for a limited set of regression models
primarily focused on data fitting rather than comprehensive
analysis. Many studies lack the depth needed to fully
understand the intricacies of the FA behavior. In response,
our study has undertaken the task of creating an extensive
repository of nonlinear regression models scattered across
various research works. These models exhibit the potential for
a close fit with the complex behaviors of FA. Our approach
distinguishes itself by providing a thorough evaluation of this
expansive model library, a resource that can benefit other
researchers in this field. To facilitate knowledge sharing, we
have included practical MATLAB code implementations of
these models, empowering researchers to effectively utilize
them and deepen our collective understanding of FA kinetics.

In our research, powerful tools in the form of parametric
nonlinear regression models are harnessed to unravel the
complex relationships between continuous response variables,
specifically the dynamics of FA, and a single continuous
predictor variable, incubation time (h). These models are
constructed following the fundamental equation:

y f X( , )= + (1)

In this context, the observed FA measurements are
represented by the vector “y”, with dimensions n × 1. To
predict the corresponding values of ‘y,’ a function ‘f’ is
employed, which takes into account both the predictor matrix
‘X’ and the vector of unknown parameters ‘β,’ as illustrated in
Table 1. The predictor matrix, denoted as incubation time (h)
‘X’ has dimensions n × p, with each row corresponding to an
observation and each column representing a predictor. On the
other hand, the vector β has dimensions p × 1 and
encompasses the parameters that require estimation. Addi-
tionally, the vector ε possesses dimensions n × 1 and
comprises independent and identically distributed random
disturbances.

Nonlinear least-squares estimation (NLS) is a statistical
technique used to estimate the parameters of a nonlinear
model by minimizing the sum of the squares of the differences
between the observed and predicted values. The goal is to find
the parameter values that best fit the model to the observed
data.

The fundamental equation for NLS can be expressed as
follows:

y f xmin ( , )
i

n

i i
1

2[ ]
= (2)

where minβ represents the minimization process with respect
to the parameter vector β, n is the number of observations, yi is
the observed response for the ith observation, xi is the vector of
predictor variables associated with the ith observation, and f(xi,
β) is the nonlinear model function that relates the predictors xi
and the parameter vector β to the predicted response yi.

The objective is to find the values of the parameter vector β
that minimizes the sum of squared residuals, which are the
differences between the observed yi and the predicted f(xi, β)
values. The NLS estimation process often involves an iterative
approach because the equations involved in the minimization
process are nonlinear. A simplified outline of the steps involved
is as follows:

1. Initialization: Start by assigning initial values to the
parameter vector β.

2. Iteration: Begin an iterative process aimed at improving
the parameter estimates. In each iteration, the algorithm
calculates the predicted values f(xi, β) for each
observation and computes the residuals yi−f(xi,β).

3. Update Parameters: Adjust the parameter values β in a
way that reduces the sum of squared residuals. This
adjustment typically involves a gradient-based optimiza-
tion algorithm, such as the Gauss−Newton method or
the Levenberg−Marquardt algorithm. These methods
adjust the parameter values in the direction that
minimizes the objective function.

4. Convergence Check: After each iteration, check for
convergence. Convergence is typically achieved when
the change in the parameter estimates or the change in
the objective function falls below a predefined threshold.

5. Repeat Iterations: Continue iterating until convergence
is reached or a maximum number of iterations is
reached.

6. Parameter Estimates: The final estimates of the
parameter vector β are obtained when the convergence
criterion is met.

To evaluate the significance of nonlinear regression
coefficients, several key steps are followed. First, the model
parameters, including coefficients (β), are estimated using a
method like NLS. Then, the standard errors of these
coefficients (SE(βi)), which measure their uncertainty, are
calculated. The t-statistic (ti) for each coefficient is computed
by dividing the estimated coefficient by its standard error (eq
3). The next step involves calculating the p-value associated
with each t-statistic, representing the probability of observing
such a statistic under the null hypothesis that the coefficient is
zero. By comparing p-values to a chosen significance level (α),
often 0.05, one can determine if a coefficient is statistically
significant. If p ≤ α, the null hypothesis is rejected, signifying
significance; otherwise, it fails to be rejected. Significant
coefficients indicate influential predictors, while nonsignificant
ones suggest less contribution to the model. In summary, the
evaluation of coefficient significance involves the estimation of
parameters, the computation of standard errors, the generation
of t-statistics and p-values, and the comparison to a significance
threshold, enabling meaningful inferences to be drawn about
the regression model.

t
SE( )i

i

i

=
(3)

The process of determining the optimal coefficients for the
regression models presented in Table 1 was carried out within
the MATLAB software environment, utilizing two indispen-
sable functions: ‘fitnlm’ and ‘fit’. These functions constitute the
essential components of MATLAB’s modeling and optimiza-
tion toolkit, playing a pivotal role in the parameter
optimization process. To employ these functions effectively,
the following steps were undertaken. Initially, the coefficients
for all 33 nonlinear regression models were computed using
the ‘fit’ function, with the subsequent calculation of their
corresponding RMSE and R2 values. It is worth noting that
determining the suitable lower and upper bounds for the
coefficient ranges of nonlinear regression models often
necessitates an iterative process, drawing upon prior experience
and insights from previous research endeavors. In the final
phase, following the preliminary model screening, the
significance of the nonlinear regression coefficients was
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assessed using the ‘fitnlm’ function, allowing for a rigorous
evaluation of the models’ coefficient significance. The
implementation of the nonlinear regression (NLR) model
using MATLAB is depicted in Figure 2. The methodology

employed in this study to establish the initial values of the
nonlinear regression coefficients was meticulously designed to
ensure the robustness of our research. Given the substantial
impact of these initial values on the convergence process of the
NLR method, a comprehensive approach was adopted. The
coefficients obtained from prior research studies in the field
were considered as a starting point and laid the groundwork for
the investigation. Furthermore, a trial-and-error approach was
employed to refine the initial values. Through systematic
experimentation and analysis, the coefficients were iteratively
adjusted, taking into account various factors including data
characteristics, model complexity, and desired convergence
properties. This iterative process enabled fine-tuning of the
initial values and optimization of their appropriateness for the
specific research objectives. By integrating these approaches,

the aim was to strike a harmonious balance between leveraging
the existing knowledge and tailoring the initial values to align
with the unique requirements of the study. Paramount
importance is placed on the transparency and reproducibility
of the methodology as efforts are made to contribute to the
scientific community and facilitate future research endeavors.

Following a thorough evaluation of the 33 regression
models, the model selection process aimed to identify the
optimal model for accurately capturing the dynamic behavior
of FA. This selection relied on two crucial criteria: the root-
mean-squared error (RMSE) and the coefficient of determi-
nation (R2), which assess the model’s ability to align with the
observed data. A lower RMSE indicates a more precise fit,
signifying a close agreement between the model’s predictions
and actual data. Conversely, a higher R2 value suggests a
stronger correlation between the model’s predictions and
observed values, highlighting its robust explanatory power.
Additionally, the significance of the regression model
coefficients plays a vital role. Acceptable RMSE and R2 values
are insufficient if some model parameters lack significance.
Therefore, the ideal model combines the highest R2 value, the
lowest RMSE value, and the statistically significant coefficients.
This comprehensive assessment led to the identification of the
most suitable model, one that not only provided an
outstanding fit to the data but also offered profound insights
into the intricate relationships between the predictors and the
dynamic behavior of FA.
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where n is the number of observations, ŷi, yi represent the
predicted and observed values of the response variable for
observation ‘i’, respectively, and y̅ is the mean of the observed
values of the response variable.

Figure 2. Pseudocode implementation of the NLR model using
MATLAB.

Table 2. Assessment of Nonlinear Regression Models using RMSE and R2 for C18:0, C18:1 Trans-11, and C18:1 Trans-10 in
Raw- and Micronized-flaked Rapeseedsa

model name criteria

C18:0 C18:1 trans-11 C18:1 trans-10

MR RR MR RR MR RR

M15 Richard (RCD) RMSE 0.97 1.16 0.04 0.06 0.01 0.01
R2 0.99 0.99 0.98 0.97 0.98 0.97

M11 two-pool logistic (TPLOG) RMSE 1.07 1.14 0.04 0.06 0.01 0.01
R2 0.99 0.99 0.98 0.97 0.98 0.97

M6 logistic model(LOG) RMSE 1.11 1.39 0.05 0.07 0.01 0.01
R2 0.99 0.99 0.98 0.96 0.98 0.97

M5 Gompertz model (GOM) RMSE 1.20 1.17 0.04 0.07 0.01 0.01
R2 0.99 0.99 0.99 0.97 0.98 0.97

M14 Gompertz model (GOM2) RMSE 1.20 1.17 0.04 0.07 0.01 0.01
R2 0.99 0.99 0.98 0.97 0.97 0.97

M12 modified Gompertz model (MGOM) RMSE 1.20 1.17 0.04 0.07 0.01 0.01
R2 0.99 0.99 0.98 0.97 0.97 0.97

M17 monomolecular logistic model (MLM) RMSE 1.55 1.49 0.04 0.06 0.01 0.01
R2 0.98 0.98 0.98 0.97 0.97 0.97

M18 Chapman−Richard model (CRM) RMSE 1.62 1.53 0.05 0.07 0.01 0.01
R2 0.97 0.97 0.98 0.97 0.97 0.97

aNote: Treatments encompass raw- and micronized-flaked rapeseeds denoted as RR and MR, respectively. Evaluation criteria: coefficient of
determination (R2) and the root-mean-square error (RMSE).
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3. RESULTS AND DISCUSSION
The FA concentrations over time can either increase or
decrease, contingent upon the distinct BH pathways.
Consequently, the outcomes have been organized under two
primary sections: models capable of elucidating the decline of
initial FA, termed “DTFA”, and models delineating the
emergence of intermediates and saturated terminal FA,
referred to as “UTFA”.

The evaluation process involved comparing the experimental
data with the model-predicted data, utilizing the prediction
accuracy criterion (RMSE) for assessing the model prediction
errors and data fit criterion (R2) for the goodness of fit. To
ensure content coherence, the presentation of results for all 33
nonlinear regression models was avoided. Instead, focus was
placed on the selection of initial models, chosen based on their
ability to capture the essence of UTFA or DTFA behavior.
3.1. Upward-Trending Fatty Acids. 3.1.1. Evaluating

and Selecting the Best-Fitted Nonlinear Regression Model
for Appeared UTFA. As previously mentioned, a total of 33
nonlinear regression models was scrutinized to discern the
optimal models for projecting the in vitro ruminal BH kinetics
of SA, VA, and trans-10 C18:1 appearances in both raw- and
micronized-flaked rapeseeds (as shown in Table 1). It is
important to highlight that these models were devised for both
raw- and micronized-flaked rapeseeds and for each individual
FA.

The identification of the double-sigmoid model producing
the poorest prediction results underscores the critical
importance of meticulously selecting appropriate models for
predicting UTFA’s BH kinetics The fitting outcomes of the
models demonstrated that out of the 33 models, only 8

exhibited superior ability in estimating the kinetic parameters
for SA, VA, and C18:1 trans-10 appearances. Table 2 presents
the R2 and RMSE values for the eight selected models
pertaining to SA, VA, and C18:1 trans-10 appearances. Models
with lower RMSE and higher R2 values can predict FA
appearances more closely to the observed values. The highest
R2 values ranging from 0.96 to 0.99, coupled with the lowest
RMSE values spanning from 1.16 to 1.62 across all FA, signify
robust concordance between alterations in UTFA concen-
tration and model predictions. Our analysis did not unveil a
significant performance difference among the eight selected
models for SA, VA, and C18:1 trans-10 appearances in raw-
and micronized-flaked rapeseeds. Despite some models
exhibiting suitable R2 and RMSE values, their coefficients
were not statistically significant. TPLOG, RCD, MLM, and
CRM models displayed subpar performance in elucidating
changes in the UTFA concentration compared to other
models. In contrast, GOM, MGOM, GOM2, and LOG were
pinpointed as the best models due to the significant
coefficients that they exhibited. It is important to note that
this issue has often been inadequately addressed in numerous
preceding studies.7,21,32,36

Table 3 displays the values of model coefficients (a, b, and
c), along with their corresponding standard deviation values
and the significance outcomes, for different UTFA in both raw-
and micronized-flaked rapeseeds using the four selected
models. The negative values of the c parameter observed for
the GOM and MGOM models hold no biological meaning,
raising doubts about the utility of such models for estimating
ruminal BH kinetics. Considering the significance of
coefficients, their relational simplicity, and ease of application

Table 3. Comprehensive Assessment of Coefficient Values from Four Selected Models for Predicting Changes in the Vehavior
of UTFAa

models UTFA treatment

coefficients

a b c

Gompertz model(GOM)M5 C18:0 MR 33.43** ± 0.72 0.08** ± 0.01 −2.67** ± 0.49
RR 35.68** ± 0.56 0.11** ± 0.01 −2.03** ± 0.37

C18:1 trans-11 MR 0.90** ± 0.02 0.12** ± 0.01 3.83** ± 0.45
RR 1.00** ± 0.02 0.17** ± 0.01 2.27** ± 0.36

C18:1 trans-10 MR 0.24** ± 0.01 0.14** ± 0.01 3.46** ± 0.52
RR 0.18** ± 0.01 0.18** ± 0.01 1.11** ± 0.42

modified Gompertz model(MGOM1)M12 C18:0 MR 33.43** ± 0.72 1.04** ± 0.04 −2.67** ± 0.49
RR 35.68** ± 0.56 1.49** ± 0.06 −2.03** ± 0.37

C18:1 trans-11 MR 0.90** ± 0.02 0.04** ± 0.01 3.83** ± 0.45
RR 1.00** ± 0.02 0.06** ± 0.01 2.27** ± 0.36

C18:1 trans-10 MR 0.24** ± 0.01 0.01** ± 0.01 3.46** ± 0.52
RR 0.18** ± 0.01 0.01** ± 0.01 1.11** ± 0.42

Gompertz model(GOM2)M14 C18:0 MR 33.43** ± 0.72 2.17** ± 0.07 0.08** ± 0.01
RR 35.68** ± 0.56 2.16** ± 0.07 0.11** ± 0.01

C18:1 trans-11 MR 0.90** ± 0.02 4.32** ± 0.34 0.12** ± 0.01
RR 1.00** ± 0.02 3.97** ± 0.31 0.17** ± 0.01

C18:1 trans-10 MR 0.24** ± 0.01 4.49** ± 0.49 0.14** ± 0.01
RR 0.18** ± 0.01 3.34** ± 0.30 0.18** ± 0.01

logistic model(LOG)M6 C18:0 MR 32.05** ± 0.52 0.15** ± 0.01 0.00** ± 0.00
RR 34.51** ± 0.47 0.21** ± 0.01 0.00** ± 0.00

C18:1 trans-11 MR 0.81** ± 0.01 0.27** ± 0.02 5.72** ± 0.31
RR 0.96** ± 0.01 0.31** ± 0.02 3.79** ± 0.36

C18:1 trans-10 MR 0.23** ± 0.01 0.27** ± 0.02 4.93** ± 0.51
RR 0.17** ± 0.01 0.31** ± 0.02 2.34** ± 0.39

aNote: Treatments encompass raw- and micronized-flaked rapeseeds denoted as RR and MR, respectively. Parameters denoted as “a” stand for
maximum cumulative appearance of fatty acids (g/100 g FA), “b” for rate constant (h−1), and “c” for the lag phase (h).
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in calculations, the GOM2 (M14) model emerged as the
recommended choice for investigating UTFA’s BH kinetics
from these four selected models. The predictive performance
of model coefficients mirrored patterns similar to the observed
values, signifying the accuracy of the M14 model. This
enhances its practicality across diverse experimental method-
ologies. However, it is worth highlighting that the final model
selection should also factor in the specific needs of the
application and the inherent characteristics of the analyzed
data.
3.1.2. Investigation of the Kinetic Behavior of Upward-

Trending Fatty Acids. The investigation of the behavior of
UTFA was conducted using the chosen model (M14). Model
M14 accurately estimated the kinetic behavior of SA, VA, and
C18:1 trans-10 over time (Figure 3), falling within the 95%
prediction interval of the in vitro ruminal BH data. These
estimations highlight the proficiency of the M14 model in
elucidating the relationship between observed and predicted
values, effectively describing the appearance kinetics of UTFA.
While a few measured concentrations of SA, VA, and C18:1
trans-10 slightly diverged from the predicted values, the overall

outcomes were deemed satisfactory. Additionally, the co-
efficient of determination corroborated the precision of the
selected model (M14).

The modeling results consistently demonstrated that
micronized-flaked rapeseed consistently showed lower SA
production over time compared with raw-flaked rapeseed
(Figure 3a). At 2, 4, 8, 12, 24, and 48 h of incubation, the
appearance of SA decreased in micronized-flaked rapeseed as
opposed to raw-flaked rapeseed. Additionally, raw-flaked
rapeseeds achieved a steady state of appearance sooner and
maintained a consistent level over time. Specifically, raw-flaked
rapeseed attained a stable appearance state after approximately
20 h, while micronized-flaked rapeseed required around 35 h
to reach a comparable level of production. A higher production
of SA observed for raw rapeseed suggests a more complete BH.
We speculated that micronization might affect the bacteria
responsible for the final BH step, resulting in a decrease in SA
appearance. In agreement with our results, Troegeler-
Meynadier et al.10 reported a decrease in SA appearance by
the heat processing of soybean seeds. Saturated fatty acids
(SFA) are perceived to be less healthy than UFA. Human
nutritional guidelines have advised decreasing the consumption
of SFA which originate from animal products.5 Our results
demonstrate that micronization can decrease the appearance of
SA in the rumen, especially in growing or high-producing
animals that have a shorter retention time of feed particles in
the rumen, and thus decrease its concentration in animal
products. As illustrated in Figure 3b, the formation of VA in
micronized-flaked rapeseed consistently remained approxi-
mately 10% lower over time when compared to raw-flaked
rapeseed. At 4, 8, 12, 24, and 48 h after incubation, the
appearance of VA decreased in micronized-flaked rapeseed in
comparison to raw-flaked rapeseed. Furthermore, raw-flaked
rapeseed attained a stable and constant value earlier than
micronized-flaked rapeseed, requiring approximately 24 and 34
h, respectively, to reach a steady state for this particular FA.
The appearance of C18:1 trans-10 exhibited a distinct behavior
compared to SA and VA (Figure 3c). At 12 h after incubation,
the C18:1 trans-10 appearance was lower in micronized-flaked
rapeseed than in raw-flaked rapeseed. However, at 24 and 48 h
after incubation, the C18:1 trans-10 appearance increased in
micronized-flaked rapeseed compared to raw-flaked rapeseed.
Both micronized- and raw-flaked rapeseeds reached a stable
state after approximately 24 h, with the micronized-flaked
rapeseed producing 20% more C18:1 trans-10 than raw-flaked
rapeseed. As stated by Prive ́ et al.,37 heated oilseeds can
contain some products that favor bacteria producing trans-10
isomers and inhibit the activity and/or growth of bacteria
producing trans-11 isomers. In line with our findings, Kaleem
et al.38 reported that heated oilseeds increased trans-10 isomers
and decreased trans-11 isomers. In addition, the lower
appearance of SA and VA in micronized-flaked rapeseed
might be due to an inhibition at the second and/or third
reactions of linoleic acid BH. Consistent with our results
Lashkari et al.11 observed a decrease in the appearance of SA
and VA by heating partly defatted flaxseed.
3.1.3. Investigation of Upward-Trending Fatty Acid

Production Rates. Nonlinear regression models and their
first derivatives can be utilized to derive functions that describe
the rate of change in diverse processes. These functions offer
valuable insights into the fundamental mechanisms governing
these processes and enable predictions of their temporal
behavior. The capacity to deduce such functions constitutes a

Figure 3. Nonlinear regression modeling of the dynamic behavior of
UTFA, including C18:0 (a), C18:1 trans-11 (b), and C18:1 trans-10
(c), during incubation. Treatments encompass raw- and micronized-
flaked rapeseeds denoted as RR and MR, respectively.
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crucial tool across numerous scientific domains, aiding
researchers in comprehending intricate phenomena and
devising efficacious interventions to tackle them.

The first-order derivative of the M14 model was employed
to compute the kinetics of UTFA. Figure 4 illustrates that the

rate of SA appearance noticeably decreased over time for both
raw- and micronized-flaked rapeseeds. Within the initial 12 h
of incubation, the appearance rate of SA was lower in
micronized-flaked rapeseed compared to raw-flaked rapeseed.
At the 24 h mark of incubation, the appearance rate of SA
increased in micronized-flaked rapeseed. Similar patterns were
observed for the rate of VA appearance (Figure 4), albeit the
incline in the appearance rate of SA and VA at the outset of
incubation was significantly steeper in raw-flaked rapeseeds
than in micronized-flaked rapeseeds. Within the initial 8 h of
incubation, the appearance rate of C18:1 trans-10 decreased
due to micronization (Figure 4). At the 12 and 24 h marks of
incubation, a decrease in the appearance rate of C18:1 trans-10
was observed in raw-flaked rapeseed. The rate of SA is
influenced by the BH rate of C18:1 trans-10, and VA in
micronized-flaked rapeseed. The heat treatment can cause the
isomerization of cis-9 isomers of OA into trans-10 and trans-11
isomers.37 In the rumen BH pathway, C18:1 trans-10 and

C18:1 trans-11 are readily hydrogenated by rumen microbes.10

As a result, C18:1 trans-10 and C18:1 trans-11 isomers
referentially convert into C18:0, following their rate of
hydrogenation. Therefore, in heated oilseeds, the rate of
C18:0 is influenced by the biohydrogenation rates of C18:1
trans-10 and C18:1 trans-11. The decrease in the appearance
rate of VA and the increase in the appearance rate of C18:1
trans-10 might be linked to the impact of micronization on the
microbiota ecosystem. The alternation of the microbiota
ecosystem and/or the inhibition of the reductase activity of
ruminal microbes11 might be responsible for the delay in the
appearance of SA, VA, and C18:1 trans-10 in micronized-
compared to raw-flaked rapeseed. These findings offer
insightful perspectives into the dynamic behavior of FA
production and emphasize the importance of vigilant
monitoring of their concentrations over time.
3.2. Downward-Trending Fatty Acids. 3.2.1. Evaluation

and Selection of the Best-Fitted Nonlinear Regression Model
for Disappeared DTFA. The investigation of the downward-
trending FA (DTFA) necessitates the utilization of dedicated
nonlinear regression models designed for their unique
dynamics. In accordance with Table 1, a comprehensive
assessment of 33 nonlinear regression models was conducted
for both raw- and micronized-flaked rapeseeds. This evaluation
aimed to model the behavior of three distinct FA: OA, LA, and
LnA, across various incubation times. The outcomes of the
selected models are presented in Table 4. The evaluation
results highlight discernible differences in the capabilities of
these chosen nonlinear regression models. Notably, the R2

values ranged from 0.88 to 0.98, while the RMSE values ranged
from 0.3 to 2.48. These variations emphasize the need for a
more comprehensive evaluation of the six selected models to
determine the most suitable final model. It is important to
acknowledge that the R2 and RMSE results suggest that these
six models exhibit a commendable ability to elucidate the
intricate nature of the DTFA behavior. They can serve as
primary candidates for further investigation and selection.
However, it is imperative to undertake additional investigations
to arrive at the ultimate model, a topic that will be explored in
subsequent discussions.

Continuing the evaluation of the regression model validity, it
becomes imperative to scrutinize the significance of regression
coefficients. While a model might yield acceptable R2 and
RMSE values, the presence of nonsignificant regression
coefficients can be deemed a flaw, undermining its overall
reliability. In light of this, this study employed the significance
results of all coefficients extracted from the selected regression
models presented in Table 4. Among the initial six models,
only three emerged as viable contenders: ELM, FOØM2, and
MAX1. This selection was guided by the exclusion of the other
three models, each of which harbored at least one non-
significant coefficient. Table 4 provides a comprehensive
illustration of the significance evaluation results for the
coefficients within the nonlinear regression model, accom-
panied by their respective standard deviation values. This
comprehensive evaluation spans two treatments and three
distinct FA. Evidently, all regression coefficients hold
significance at the 1% level of significance. From this subset
of the three remaining regression models, a final choice must
be made. While the performance discrepancies among these
three models are minimal, the FOØM2 model gains
prominence owing to its mathematical formulation, simplicity,
and user-friendliness. This model aligns with all previously

Figure 4. Rates of appearance for UTFA, encompassing C18:0, C18:1
trans-11, and C18:1 trans-10 during incubation. Treatments
encompass raw- and micronized-flaked rapeseeds denoted as RR
and MR, respectively.
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established criteria and stands out as easy to implement (Table
5). Consequently, the subsequent progression of the results
hinges on the application of the FOØM2 model. Furthermore,
it is important to emphasize that employing a singular model
for comparing diverse acid behaviors is advantageous. Such an
approach allows for direct comparisons of coefficient
magnitudes among different acids, offering insights into their
relative impacts. It is worth noting that utilizing models with
varying numbers of coefficients undermines this comparative
capability.
3.2.2. Investigation of the Kinetic Behavior of Downward-

Trending Fatty Acids. The behavior of downward-trending
DTFA was investigated by using the selected model (M31).
Model M31 effectively estimated the kinetic behavior of OA,
LA, and LnA over time (Figure 5), consistently falling within
the 95% prediction interval of the ruminal BH data observed in

vitro. These estimates reflect the capabilities of the M14 model
in elucidating the relationship between the observed and
predicted values, describing the disappearance kinetics of
DTFA. Although a few measured concentrations of OA, LA,
and LnA exhibited slight deviations from the predicted values,
the overall outcomes were deemed acceptable. Furthermore,
the coefficient of determination affirmed the accuracy of the
selected model (M31). The modeling outcomes revealed that
micronized-flaked rapeseed consistently exhibited higher OA
concentrations over time compared to raw-flaked rapeseed,
implying a reduction in the ruminal disappearance of OA due
to micronization (Figure 5a). At 4, 8, 12, 24, and 48 h of
incubation, the disappearance of OA decreased in micronized-
flaked rapeseed compared to raw-flaked rapeseed, with a more
pronounced difference as the incubation time increased. In
contrast, the disappearance of LA displayed a distinct behavior

Table 4. Evaluation of Nonlinear Regression Models Based on RMSE and R2 for OA, LA, and LnA in Raw- and Micronized-
Flaked Rapeseedsa

model name criteria

OA LA LnA

MR RR MR RR MR RR

M19 exponential linear model (ELM) RMSE 1.27 2.48 0.98 1.1 0.51 0.54
R2 0.93 0.88 0.95 0.94 0.96 0.95

M28 one-pool Gompertz function (OPG) RMSE 1.25 2.24 0.96 1.15 0.52 0.52
R2 0.93 0.88 0.96 0.92 0.96 0.95

M29 two-pool Gompertz function (TPG) RMSE 0.85 1.01 0.96 0.56 0.52 0.52
R2 0.97 0.98 0.96 0.98 0.96 0.95

M31 first-order kinetic model of Ørskov and McDonald (FOØM2) RMSE 1.07 1.25 0.9 0.66 0.52 0.38
R2 0.95 0.96 0.96 0.97 0.95 0.97

M32 Maxwell 1 (MAX1) RMSE 1.07 1.25 0.9 0.66 0.53 0.38
R2 0.95 0.96 0.96 0.97 0.95 0.97

M33 Maxwell 2 (MAX2) RMSE 0.82 1.13 0.56 0.57 0.3 0.29
R2 0.97 0.97 0.98 0.98 0.98 0.98

aNote: OA, oleic acid; LA, linoleic acid; and LnA, alpha-linolenic acid. Treatments: raw- and micronized-flaked rapeseeds denoted as RR and MR,
respectively. Evaluation criteria: coefficient of determination (R2) and ro ot-mean-square error (RMSE).

Table 5. Comprehensive Assessment of Coefficient Values from Three Selected Models for Predicting Changes in the Behavior
of DTFAa

models DTFA treatment

coefficients

a b c

exponential linear model (ELM)M19 OA MR 267** ± 0.01 3.21** ± 0.02 1.00** ± 0.01
RR 322** ± 0.01 3.94** ± 0.04 1.00** ± 0.01

LA MR 155** ± 0.01 6.24** ± 0.10 1.00** ± 0.01
RR 267** ± 0.01 11.04** ± 0.19 1.00** ± 0.01

LnA MR 488** ± 0.07 41.55** ± 0.83 1.00** ± 0.01
RR 431** ± 0.06 37.89** ± 0.69 1.00** ± 0.01

first-order kinetic model of Ørskov and McDonald (FOØM2)M31 OA MR 58.36** ± 0.33 −20.14** ± 2.42 −0.03** ± 0.01
RR 58.54** ± 0.49 −20.54** ± 1.06 −0.05** ± 0.01

LA MR 17.64** ± 0.30 −15.61** ± 0.98 −0.04** ± 0.01
RR 17.43** ± 0.22 −12.58** ± 0.42 −0.06** ± 0.01

LnA MR 8.23** ± 0.17 −8.18** ± 0.51 −0.04** ± 0.01
RR 8.12** ± 0.13 −6.78** ± 0.22 −0.07** ± 0.01

Maxwell 1 (MAX1)M32 OA MR −38.22** ± 2.57 −20.14** ± 2.42 −38.38** ± 8.49
RR −38.00** ± 1.13 −20.54** ± 1.06 −19.05** ± 2.55

LA MR −2.03** ± 1.07 −15.61** ± 0.98 −25.02** ± 3.65
RR −4.85** ± 0.43 −12.58** ± 0.42 −16.37** ± 1.44

LnA MR −0.07** ± 0.60 −8.15** ± 0.54 −23.67** ± 3.83
RR −1.36** ± 0.23 −6.76** ± 0.23 −14.92** ± 1.37

aNote: OA, oleic acid; LA, linoleic acid; LnA, alpha-linolenic acid. Treatments: raw- and micronized-flaked rapeseeds denoted as RR and MR,
respectively. Parameters denoted as “a” stand for the maximum cumulative disappearance of fatty acids (g/100 g FA), “b” for rate constant (h−1),
and “c” for the lag phase (h).
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compared to OA (Figure 5b). The concentration of LA in raw-
and micronized-flaked rapeseed exhibited an inverse relation-
ship before the first 12 h, after which this relationship reversed.
Although the disappearance of LA decreased during the initial
12 h of incubation for micronized-flaked rapeseed, raw flaked-
rapeseed showed a higher concentration of LA shortly after 12
h. Similar trends were observed for the disappearance of LnA
(Figure 5c). As illustrated, at 2, 4, 8, and 12 h of incubation,
the disappearance of LnA was lower in micronized-flaked
rapeseed compared to raw-flaked rapeseed. Conversely, the
concentration of LnA decreased in micronized-flaked rapeseed
after approximately 32 h. It seems that the reduced BH of LA,
LnA, and OA observed in micronized-flaked rapeseed results
from a reduced rate of rumen lipolysis due to protein
denaturation in micronized seeds. It has been proven that
heat treatments can denature the protein matrix surrounding
the fat droplets and, therefore, protect UFA from rumen
BH.13,39 Consistent with our findings, Gonthier at al.13

reported a reduction in BH of LA and LnA by the
micronization of flaxseeds. The lower disappearance of LA
and LnA in micronized-flaked rapeseed can confirm the
reduction observed for the appearance of SA and VA.

3.2.3. Investigation of Downward-Trending Fatty Acid
Disappearance Rates. The first-order derivative of the M31
model was employed to calculate the kinetic disappearance of
DTFA. Figure 6 illustrates that the disappearance rate of OA

increased over time, with a higher rate observed for raw-flaked
rapeseed in comparison to micronized flaked-rapeseed.
Furthermore, the slope of increasing the disappearance rate
of OA was steeper for raw flaked-rapeseed than for micronized-
flaked rapeseed over time. Similar patterns were identified for
the disappearance rate of LA (Figure 6). Although the BH rate
of LA disappearance was initially higher for micronized-flaked
rapeseed than for raw flaked-rapeseed, this rate decreased with
the increasing incubation time due to micronization. In
contrast, the rate of FA disappearance for LnA exhibited a
distinct behavior compared to OA and LA. At the 12 and 40 h
marks of incubation, a decrease in the disappearance rate of
LnA was observed in micronized-flaked rapeseed. It is well
established that a high content of available UFA can be toxic to
the function of rumen microorganisms, potentially more so
than their BH intermediates.40 Heat treatment can protect
lipid droplets from rumen lipolysis by denaturing protein

Figure 5. Nonlinear regression modeling of the dynamic behavior of
DTFA including oleic acid (a), linoleic acid (b), and linolenic acid (c)
during incubation. Treatments encompass raw- and micronized-flaked
rapeseeds, denoted as RR and MR, respectively.

Figure 6. Rates of disappearance for DTFA encompassing oleic acid,
linoleic acid, and alpha-linolenic acid during incubation. Treatments
encompass raw- and micronized-flaked rapeseeds denoted as RR and
MR, respectively.
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barriers.13 Therefore, to mitigate the toxic effect of OA, LA,
and LnA, rumen BH occurred to a greater extent in raw-flaked
rapeseed than in micronized ones. The lower rate and longer
delay in the appearance of SA, VA, and C18:1 trans-10
occurred in micronized-flaked rapeseed, which showed the
lower rate and longer delay in the disappearance of LA, LnA,
and OA. The results indicated that micronization could serve
as a practical approach to safeguard UFA against ruminal
biohydrogenation, leading to an increase in the UFA bypass.
Consequently, this approach could elevate the concentration of
favorable UFA in dairy products.39 By incorporating
micronized-flaked rapeseed into the diets of ruminants, we
could contribute to the enhancement of human health within
society.

It should be acknowledged that these models were
constructed based on in vitro data, and their performance
might exhibit variability in in vivo or in situ methods. Thus,
exercise of prudence is advised when extrapolating the
outcomes of this study to alternative experimental circum-
stances. The outcomes of the present investigation can serve as
a valuable foundation for forthcoming studies aimed at
enhancing the precision of FA BH kinetic prediction across a
broader spectrum of conditions.
3.3. Advances in the Estimation of Fatty Acid BH

Kinetics. Table 6 displays the application of nonlinear
regression models in estimating the ruminal BH kinetics of
FA in various studies. The variability of UFA biohydrogena-
tion, influenced by factors such as the FA source, oilseed type,
UFA nature, and processing methods, underscores the
significance of selecting suitable models that can quantitatively
characterize the BH process. Baldwin et al.41 proposed a
dynamic model using a simple first-order kinetics to describe
UFA BH dynamics in the rumen. However, the simplistic
assumptions and aggregated nature of this dynamic model
restrict the accuracy and scope of its predictions, considering
the intricate pattern of ruminal BH. Troegeler-Meynadier et

al.30 estimated the kinetic parameters of UFA biohydrogena-
tion by incorporating a fraction escaping BH into the
exponential model of Ørskov and McDonald.31 Similarly,
Ribeiro et al.7 introduced a dynamic model for in vitro BH of
UFA in alfalfa. Their model encompasses a combination of
lipolysis and BH, as it does not distinctly model the kinetics of
lipolysis and BH. Within this model, first-order kinetics were
employed to describe the net BH of individual UFA.
Nevertheless, the model presented by Ribeiro et al.7 lacks
nonlinear rate constants necessary for accurately describing the
potential accumulation of vaccenic acid (VA) in the presence
of substrates with high concentrations of linoleic acid (LA) or
alpha-linolenic acid (LnA). Lashkari et al.22 emphasized the
dose-independent nature of the kinetic constants in the
Michaelis−Menten model, making it useful in estimating the
kinetic parameters in samples with varying UFA concen-
trations. Furthermore, Lashkari et al.11 demonstrated the
effectiveness of the Michaelis−Menten model in predicting the
BH kinetics of initial FA disappearance, as well as the
emergence of intermediates and saturated FA.

However, the adoption of a regression model to predict the
behavior of FAs with differing BH patterns may not possess the
requisite competence to effectively accommodate the observed
BH data. In this study, a comprehensive array of nonlinear
regression models was examined to identify the models that
accurately delineated the behavior of individual FAs, an
essential consideration overlooked in prior research. The
utilization of distinct models for a more precise representation
of BH kinetics offers valuable insights into the complex
dynamics of individual FAs implicated in the rumen BH.

4. CONCLUSIONS
In this study, we conducted a thorough investigation into the
behavior of various FA, aiming to elucidate their in vitro
ruminal BH kinetics. Leveraging the power of nonlinear
regression models, we scrutinized thirty-three candidate

Table 6. Estimation of Ruminal Biohydrogenation Kinetics of Fatty Acids using Nonlinear Regression Models

objectives FA type selected model reference

to identify the factors affecting the rates of lipolysis and BH in ruminal contents LA and LnA Ørskov and McDonald 20
to determine and compare in vitro ruminal biohydrogenation and bypass of linolenic and linoleic acids in
timothy (Phleum pratense L.) harvested from different growth stages.

LA and LnA Ørskov and McDonald 29

to ascertain the effects of extrusion of canola seeds on lag time and rate of BH of UFA OA, LA, and
LnA

Ørskov and McDonald 21

to quantify the effect of pH on BH rates LA, LnA, and
VA

Ørskov and McDonald 7

to study the effect of heat treatment on biohydrogenation of linoleic acid (LA) and linolenic acid (LNA) and
formation of stearic acid (SA), cis-9, trans-11 conjugated LA (CLA), trans-10, cis-12 CLA, and trans-
vaccenic acid (VA)

LA, LnA, and
SA

Michaelis−Menten 11

to evaluate the effects of LA:LN ratio in lipid supplements on the rumen biohydrogenation kinetics of LA and
LN, as well as on the trans-vaccenic acid (VA) production, using an in vitro system.

LA and LnA a multicompartmental
model

33

VA Gompertz model
to develop an assay to assess in vivo rates, pathways, and extent of BH of oleic (OA), linoleic (LA), and α-
linolenic acid (ALA).

OA, LA, and
LnA

Ørskov and McDonald 42

to investigate the nature of the separate kinetic processes describing lipolysis and BH and to estimate the
magnitude of the rate constants describing these processes

LA, SA, and
VA

Michaelis−Menten
kinetics

32

(1) to verify the reproducibility of the in vivo BH assay proposed by Baldin et al. (2018), (2) to directly
compare the BH rates of individual UFA, and (3) to extend the analysis of BH using compartmental
modeling.

OA, LA, and
LnA

Ørskov and McDonald 42

to investigate in vitro rumen BH of LNA and LA, BH end product, and formation of CLA isomers from LNA
and LA esterified to TG, PL, or CE.

LA, LnA, and
SA

Michaelis−Menten 22

to comprehensively evaluate 33 nonlinear regression models, ultimately selecting the most suitable models to
illustrate the changes in FA concentration throughout the in vitro rumen incubation of both raw- and
micronized-flaked rapeseeds.

OA, LA, and
LnA

Ørskov and McDonald present
study

C18:1 trans-
10, VA,
and SA

Gompertz model
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models to identify the most fitting ones for our purpose. Our
findings demonstrate that the Gompertz model (GOM2)
emerges as a robust choice for accurately estimating the BH
kinetics of UTFA, encompassing intermediates such as UFA
and saturated end FA. Conversely, the first-order kinetic model
of Ørskov and McDonald (FOØM2) stands out as the
preferred model for investigating the BH kinetics of DTFA,
specifically OA, LA, and LnA.

Beyond these model selections, our study extends its
contribution by consolidating a comprehensive repository of
nonlinear regression models scattered across various research
sources. These models exhibit the potential for a close fit with
the complex behaviors of FA, providing valuable tools for
future research endeavors. The meticulous evaluation and
selection process presented herein equip researchers with a
dependable set of established nonlinear regression models for a
precise determination of FA BH kinetics. This standardized
approach promises enhanced precision and comparability
across studies, offering a consistent framework for calculating
FA BH kinetics in various experimental contexts.

In conclusion, our research not only advances our
understanding of FA behavior but also provides a valuable
resource for researchers in the field. We invite further
exploration and utilization of these models to enhance the
depth and accuracy of future investigations of ruminal BH
kinetics.
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