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Abstract: Depression is common in premanifest Huntington’s disease (preHD) and results in signifi-
cant morbidity. We sought to examine how variations in structural and functional brain networks
relate to depressive symptoms in premanifest HD and healthy controls. Brain networks were con-
structed using diffusion tractography (70 preHD and 81 controls) and resting state fMRI (92 preHD
and 94 controls) data. A sub-network associated with depression was identified in a data-driven
fashion and network-based statistics was used to investigate which specific connections correlated
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with depression scores. A replication analysis was then performed using data from a separate study.
Correlations between depressive symptoms with increased functional connectivity and decreased struc-
tural connectivity were seen for connections in the default mode network (DMN) and basal ganglia in
preHD. This study reveals specific connections in the DMN and basal ganglia that are associated with
depressive symptoms in preHD. Hum Brain Mapp 38:2819–2829, 2017. VC 2017 The Authors Human Brain

Mapping Published by Wiley Periodicals, Inc.

Key words: Huntington’s disease; brain network; depression; functional MRI; diffusion tractography

r r

INTRODUCTION

Huntington’s disease is a progressive neurodegenerative
disease caused by a dominantly inherited CAG repeat
expansion in the huntingtin gene on chromosome 4 [Ross
et al., 2014]. It is characterized by cognitive, motor and neu-
ropsychiatric impairment. Depression can precede the onset
of motor symptoms by many years [Tabrizi et al., 2009] and
has a significant impact on morbidity [Beglinger et al., 2010]
with a lifetime prevalence of 20% in the pre-symptomatic or
premanifest stage [Julien et al., 2007]. Neuroimaging studies
have identified specific brain variations associated with
depression in HD including gray matter volume loss and
white matter (WM) microstructural abnormalities in the
rostral anterior cingulate [Hobbs et al., 2011; Sprengelmeyer
et al., 2014], and abnormal task-based activations in prefron-
tal cortex [Gray et al., 2013; Unschuld et al., 2012]. While var-
iations in these regions occur generally in HD [Tabrizi et al.,
2009], these studies suggest they are particularly affected in
HD patients with depression. Characteristics of depression
and apathy in Huntington’s disease may overlap [Epping
et al., 2013]. Brain regions implicated in depression in people
without Huntington’s disease have also been associated
with apathy [Stanton et al., 2013]. However, others report
the presence of a distinct apathy syndrome in HD separate
from depression [Levy et al., 1998; Naarding et al., 2009],
which begins in the premanifest stage [Martinez-Horta et al.,
2016] and progresses over time [Thompson et al., 2012].
Using data from two large multi-center cohort studies in
HD, Track-HD [Tabrizi et al., 2009], and Track-On HD
[Kloppel et al., 2015], we directly compared how variations
in functional and structural brain networks relate to
depressive symptoms in premanifest Huntington’s disease
(preHD) and healthy controls. Apathy and anxiety were also
investigated given their potential overlap with depression.

METHODS

Cohort

Track-On HD (2012) [Kloppel et al., 2015] and Track-HD
(2011) [Tabrizi et al., 2009] cohorts were included in this
study. The structure-function analysis was performed in the
Track-On HD cohort and the structural replication analysis
was performed in the Track-HD cohort. The Track-On HD

fMRI cohort included 186 participants (92 preHD and 94 con-
trols) (see Supporting Information table S1). Baltimore self-
reported apathy data was missing from 3 preHD subjects
from the fMRI cohort. The diffusion MRI cohort included 151
(70 preHD and 81 controls) (see Supporting Information table
S2). The replication analysis included 96 participants with dif-
fusion MRI data only (50 preHD and 46 controls) (see Sup-
porting Information table S3). Of the participants in Track-On
HD, 31 preHD and 29 controls had previously participated in
Track-HD. Although not significant, depression scores dif-
fered between preHD and controls (see Supporting Informa-
tion tables S1-S3). See Supporting Information methods for
detailed inclusion/exclusion criteria.

Evaluation for psychiatric symptoms was performed on
the day of MRI scanning by a neurologist or psychiatrist
using the Hospital anxiety and depression score (HADS),
the Baltimore apathy and irritability scale, and the Beck’s
depression inventory-2 (BDI-II). See Supporting Information
tables S4 and S5 for clinical breakdowns of the BDI-II and
HADS depression (HADS-D) and anxiety scores (HADS-A).
The self-reported Baltimore apathy scale was chosen as the
apathy measure of interest due to incomplete data for the
companion reported Baltimore apathy scale. While we
acknowledge the possibility of bias or cognitive deficit in
self-reports, comparison of companion reported and self-
reported apathy scores in Huntington’s disease shows high
correlation suggesting validity of self-reported apathy in
Huntington’s disease [Mason and Barker, 2015].

MRI Acquisition Track-on HD

3T MRI data were acquired on two different scanners
(Philips Achieva at Leiden and Vancouver and Siemens
TIM Trio at London and Paris). Diffusion-weighted images
were acquired with 42 unique gradient directions
(b 5 1,000 sec/mm2). Eight images with no diffusion
weighting (b 5 0 sec/mm2) and one image with no diffu-
sion weighting (b 5 0 sec/mm2) were acquired from the
Siemens and Philips scanners, respectively. Voxel size for
Siemens scans was 2 3 2 3 2 mm3 and for Phillips 1.96 3

1.96 3 2 mm3. For resting state fMRI, 165 whole-brain vol-
umes were acquired at a repetition time of 3s using a T2*-
weighted echo planar imaging (EPI) sequence. Voxel size
for both Siemens and Philips scans was 3.3 x 3.3 x
3.3mm3. Please see Supporting Information Methods for
detailed acquisition parameters.
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MRI Acquisition Track-HD

3T MRI data were acquired were acquired on Siemens
(London and Paris) and Philips (Leiden) 3T MRI scanners.
Diffusion-weighted images with 42 unique gradient direc-
tions (b 5 1,000 sec/mm2) were collected with either seven
images (Siemens) with no diffusion weighting or one
image with no diffusion weighting (Phillips). Voxel size
for Siemens scans was 2 3 2 3 2 mm3 and for Phillips
1.96 3 1.96 3 2 mm3. Please see Supporting Information
Methods for detailed acquisition parameters.

MRI Data Analysis

Structural MRI data

Cortical and sub-cortical regions of interest (ROIs) were
generated by segmenting a T1-weighted image using the
Freesurfer Desikan atlas [Desikan et al., 2006]. The globus
pallidus, nucleus accumbens and amygdala were excluded,
as automatic segmentation of these regions is not sufficiently
reliable [Hibar et al., 2015]. The cerebellum was excluded
due partial coverage necessary to maintain acceptable imag-
ing times. This resulted in 70 cortical regions and 6 subcorti-
cal regions (caudate, putamen, and thalamus bilaterally).

Diffusion Tensor Imaging Data

Data pre-processing

For the diffusion data the b 5 0 image was used to generate
a brain mask using FSL’s brain extraction tool [Smith, 2002].
Eddy correct was used to align the diffusion-weighted vol-
umes to the first b 5 0 image and the gradient directions
updated to reflect the changes to the image orientations.
Finally, data were reconstructed using DTI and constrained
spherical deconvolution, as implemented in MRtrix [Tournier
et al., 2012]. Freesufer ROIs were warped into diffusion space
by mapping between the T1-weighted image and fractional
anisotropy (FA) map using NiftyReg [Modat et al., 2010] and
applying the resulting warp to each of the ROIs. A fore-
ground mask was generated by combining Freesurfer seg-
mentations with the WM mask. A summary of the processing
pipeline is provided in Supporting Information Figure S1.

Diffusion tractography

Whole brain probabilistic tractography was performed
using the iFOD2 algorithm in MRtrix [Tournier et al., 2012].
Specifically, five million streamlines were seeded through-
out the WM, in all foreground voxels where FA> 0.2.
Streamlines were terminated when they either reached the
cortical or subcortical grey-matter mask or exited the fore-
ground mask. The spherical deconvolution informed filter-
ing of tractograms algorithm [Smith et al., 2013] was used to
reduce biases. The resulting set of streamlines was used to
construct the structural brain network.

Functional MRI

Data pre-processing

Preprocessing was performed using SPM8 and the CONN
functional connectivity toolbox version 14 (https://www.
nitrc.org/projects/conn/) [Whitfield-Gabrieli and Nieto-
Castanon, 2012] running under MATLAB v8.3. Segmented
images were used to create an improved anatomical scan for
coregistration. The first four EPI images were discarded to
allow for steady state equilibrium. Functional images were
first realigned, incorporating field maps for inhomogeneity
correction whenever available and then coregistered to the
new anatomical image. Freesurfer ROIs were also coregis-
tered to the anatomical image using NiftyReg [Modat et al.,
2010]. In CONN regression of noise ROIs (without global
signal regression) was carried out using the anatomical
Compcorr method [Behzadi et al., 2007], along with six
movement parameters, followed by band-pass filtering
between 0.009 and 0.08 Hz, calculation of bivariate correla-
tions and application of a Fisher transform. See Supporting
Information Methods for more detailed information.

Construction of structural and functional

connectivity matrices

For structural connectivity matrices ROIs were defined
as connected if a fiber originated in ROI 1 and terminated
in ROI 2. For functional matrices ROIs were defined as
functionally connected if there was a correlation between
the time series of ROI 1 and ROI 2. Structural connections
were weighted by streamline count, while functional
connections were weighted by magnitude of correlation.
Connections were then combined into 76 3 76, undirected
and weighted matrices. Thresholding was applied to
remove weak spurious connections [Rubinov and Sporns,
2010]. For both structural and functional connectivity
matrices only those connections present in 75% of controls
subjects were retained, consistent with thresholding strate-
gies used in the literature [McColgan et al., 2015; van den
Heuvel and Sporns, 2011). Binary matrices were created
by converting the weights in matrices to 0 or 1 to denote
the absence or presence of a connection. A significant
correlation between connectivity and a clinical variable in
the context of binary matrices suggests that there is a rela-
tionship between the magnitude of the clinical correlation
and the likelihood that the connection is present.

Cortical modules and depression

A cortical module associated with depression was first
identified. This was done by calculating an average functional
connectivity matrix across participants, for cortical regions
only. This was then decomposed in a data-driven manner
using the Louvain method for community detection (Blondel
et al., 2008] as implemented in the Brain connectivity toolbox
[Rubinov and Sporns, 2010] (See Supporting Information
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methods for additional information). Pearson and Spearman
rank partial correlations were then performed between
depression scores HADS-D and BDI-II and the total number
of functional connections within each module. Age, gender,
site, and CAG repeat length were included as covariates. The
brain regions in the module showing correlations with
depression were then combined with the caudate and thala-
mus, as these regions are implicated in depression [Gong and
He, 2015] and are selectively vulnerable in preHD [McColgan
et al., 2015]. This network was then used an input in the
network-based statistic (NBS) correlation analysis to identify
which specific connections within the module are associated
with HADS-D and HADS-A, BDI-II and the self-reported
Baltimore apathy scale (see next section).

Network-based statistics

Using this method, a test statistic is calculated for each
connection independently. A primary threshold (P< 0.05,
uncorrected) is then applied to form a set of supratheshold
connections. Permutation testing is then used to calculate
a family-wise error (FWE) corrected P-value for each set
of suprahreshold connections or sub-network (please see
Supporting Information methods for more details)
[Zalesky et al., 2010]. Results reaching FWE corrected
P< 0.05 are reported as significant, with P-values relating
to the significance of all the connections within a sub-
network as a whole as opposed to individual connections.
Both binary and weighted networks were investigated as
both have been reported in the depression literature [Gong
and He, 2015]. Age, gender, site were included as covari-
ates for the between group analysis and control correlation
analysis. For the preHD correlation analysis, CAG repeat
length was included as an additional covariate. Group
analyses between depressed and non-depressed preHD
participants were not performed due to a limited number
of preHD participants reaching moderate or severe depres-
sion. This was also the case for control groups. Thus, we
focused on correlations across the spectrum of depressive
symptoms as opposed to clinically significant depression.

Based on observations from the literature that depression
shows positive correlation with functional connectivity [Li
et al., 2013; Perrin et al., 2012; Sheline et al., 2010] and negative
correlation [Korgaonkar et al., 2014] with structural connec-
tivity in the default mode network (DMN) and basal ganglia
[Gong and He, 2015], we report positive correlations in the
resting state fMRI analysis and negative correlations in the
diffusion MRI analysis. Reciprocal correlations (i.e., negative
correlation with functional connectivity and positive
correlation with structural connectivity) were also tested and
are reported in full Supporting Information.

Replication analysis

The structural connectivity analysis was replicated in
the separate Track-HD 2011 cohort.

Off medication analyses

To account for the effect of antidepressant medication
NBS analyses for depression were repeated with inclusion
of binary covariate, where 1 denoted those taking antide-
pressant medication within 30 days of the MRI scan and 0
denoting those not on antidepressant medication during this
time period. While we acknowledge pharmacological het-
erogeneity, the inclusion of a binary covariate allows us to
account for common sources of variance in the data associat-
ed with medication. While a binary covariate may not fully
capture, the subtleties of every type of pharmacological het-
erogeneity, such heterogeneity is likely to be uncorrelated
with apathy and so serve as noise in the analysis, reducing
our power to detect effects but not calling into question any
of the effects we have actually identified.

RESULTS

Within Modular Functional Connectivity

and Depression

The average functional cortical matrix was split into two
modules, defined in a data driven manner using the Louvain
method for community detection, (see Supporting Informa-
tion for details). Module 1 contained 48 regions, while mod-
ule 2 contained 22 regions (see Supporting Information table
S6). For Pearson partial correlations, the total number of con-
nections within module 2 showed significant correlation
with both HADS-D (df 5 89, Rho 5 0.29, P 5 0.0054) and
approached significance after Bonferroni correction for
BDI-II (df 5 89. Rho 5 0.25, P 5 0.02; see Fig. 1). Similarly for
Spearman rank correlations the total number of connections
within module 2 showed significant correlation with both
HADS depression (df 5 89, Rho 5 0.29, P 5 0.0059) and
approached significance after Bonferroni correction for
BDI-II (df 5 89. Rho 5 0.22, P 5 0.051). We observed that all
connections in module 2 have been reported previously as
belonging to the DMN [Buckner et al., 2008]. No correlations
were seen with module 1. Results reported relate to the
binarized matrix as no significant correlations were found
with the weighted functional matrix.

Depression Correlates with Increased

Functional Connectivity in preHD

Positive correlations were seen between depression score
and functional connectivity (binary matrices only) for both
HADS-D (df 5 89, pFWE 5 0.008) and BDI-II (df 5 89, pFWE 5

0.026), notably in the connections between the rostral anteri-
or cingulate, medial orbitofrontal, precuneus and parahip-
pocampal regions. No significant correlations were seen
with depression score and functional connectivity for the
controls or for weighted networks. See Figure 2 and Sup-
porting Information table S7 and summary Supporting
Information table S14. Additionally no significant reciprocal
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(negative correlations) were observed. See Supporting Infor-
mation table S15.

Depression Correlates with Reduced Structural

Connectivity in preHD

Negative correlations were seen between depression
score and structural connectivity (binary matrices only)
for both HADS-D (df 5 67, pFWE 5 0.036) and BDI-II
(df 5 67, pFWE 5 0.019), notably in the connections between
the rostral anterior cingulate, medial orbitofrontal, precu-
neus and caudate and thalamus regions. No significant
correlations were seen with depression score and
structural connectivity for the controls. See Figure 3
and Supporting Information table S8 and summary
Supporting Information table S14. Additionally no signifi-
cant positive correlations were observed. See Supporting
Information table S15.

Apathy Correlates with Increased Functional but

Not Structural Connectivity in preHD

Positive correlations were seen between self-reported
apathy and both binary (df 5 86, pFWE 5 0.005) and weight-
ed functional matrices (df 5 86, pFWE 5 0.034); however, no
correlation with apathy and structural (binary or weight-
ed) matrices was observed. See Figure 4 and Supporting
Information tables S9 and S16. HADS-A showed no corre-
lation with functional or structural (binary or weighted)
connectivity matrices (See Supporting Information table
S17). This suggests that the correlations we demonstrate
between depression scores and connectivity are specific for
depressive symptoms and not anxiety.

Structural Connectivity Replication Analysis

For weighted connectivity matrices, negative correlations
were seen between depression score and structural

Figure 1.

Cortical modules and total within module (2) connectivity cor-

relation with depression scores. Spheres represent brain

regions. Red – module 1 and purple – module 2. Significant

Pearson partial correlations between total within module

functional connectivity and HADS-D and BDI-II scores were

only seen with module 2. Rho 5 correlation coefficient, P 5 P-

value, DF 5 degrees of freedom. [Color figure can be viewed at

wileyonlinelibrary.com]
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connectivity for both HADS-D (df 5 47, pFWE 5 0.014) and
BDI-II (df 5 47, pFWE 5 0.045), notably in the connections
between the rostral anterior cingulate, medial orbitofrontal,
precuneus and caudate and thalamus regions (See Fig. 5).
No significant correlations were seen between depression
score and structural connectivity for the controls. No

significant correlations were seen between binary matrices
and depression scores for either group. See Supporting
Information table S10 and summary Supporting Information
table S14. Additionally no significant reciprocal (positive)
correlations were observed. See Supporting Information
table S15.

Figure 2.

Track-On HD fMRI cohort: NBS analysis displaying connections that show positive correlation

with depression scores for resting state fMRI in preHD. Blue lines indicate significant correlations

between functional connections and HADS-D (df 5 89, P 5 0.008) and BDI-II (df 5 89, P 5 0.026)

depression scores. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3.

Track-On HD diffusion MRI cohort: NBS analysis displaying connections that show negative cor-

relation with depression scores for diffusion MRI in preHD. Red lines indicate significant positive

correlations between structural connections and HADS-D (df 5 67, P 5 0.036) and BDI-II

(df 5 67, P 5 0.019) depression scores. [Color figure can be viewed at wileyonlinelibrary.com]
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Group Differences between preHD and Controls

For cohorts with no significant group differences in
depression scores (Track-On HD fMRI and Track-HD
diffusion), preHD participants showed greater functional
connectivity (binary matrices only) between precuneus,

isthmus cingulate and inferior parietal regions bilaterally
compared to controls (pFWE 5 0.036) and reduced structural
connectivity between basal ganglia hubs and cortical
regions including the precuneus, isthmus cingulate, inferi-
or parietal, and medial orbitofrontal compared to controls
(pFWE 5 0.018), (weighted matrices only). See Figure 6 and

Figure 4.

Track-On HD fMRI cohort: NBS analysis displaying connections

that show positive correlation with Baltimore self-reported apa-

thy score for resting state fMRI in preHD. Blue lines indicate

significant negative correlations between binary (df 5 86,

P 5 0.036) and weighted (df 5 86, P 5 0.005) functional connec-

tions and Baltimore self-reported apathy score. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 5.

Track-HD diffusion MRI replication cohort. NBS analysis displaying connections that show negative

correlation with depression scores for diffusion MRI in preHD. Red lines indicate significant posi-

tive correlations between structural connections and HADS-D (df 5 67, P 5 0.036) and BDI-II

(df 5 67, P 5 0.019) depression scores. [Color figure can be viewed at wileyonlinelibrary.com]

r Depressive Symptoms in preHD r

r 2825 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Supporting Information tables S11 and S12. Similarly for
the Track-On HD diffusion cohort reduced structural con-
nectivity was seen between basal ganglia hubs and cortical
regions (pFWE 5 0.035) (weighted matrices only); however,
in this cohort there were significant group differences in
depression scores raising the possibility that depression
may be driving this result. See Supporting Information
table S13.

Off Medication Analyses

All analyses in the study were repeated with the use of
anti-depressant medications included as a covariate and
revealed similar results. A binary covariate was used with
1 denoting use of antidepressants within 30 days prior to
MRI scanning and 0 denoting no antidepressant use with-
in this time period. The Track-On HD fMRI cohort had 33
preHD and 11 controls on anti-depressants, the diffusion
tractography cohort had 25 preHD and 10 controls on
anti-depressants and the Track-HD replication cohort had
8 preHD and 3 controls on anti-depressants. See summary
Supporting Information table S14.

DISCUSSION

In this study, brain network connections that correlated
with depressive symptoms and apathy scores in preHD
were identified. Positive correlations between depressive
symptoms and apathy scores were seen with functional
connections, predominantly between the default mode
regions, while negative correlations in structural connec-
tions were seen between the cortex and basal ganglia (for

depressive symptoms but not apathy). Furthermore these
connectivity variations associated with depressive symp-
toms were also seen in similar regions when comparing
preHD and control groups, when depression scores were
not significantly different between groups.

Previous neuroimaging studies have identified brain
regions associated with depression in HD. In preHD and
manifest HD, there is a negative correlation between grey
matter volume loss of the rostral anterior cingulate and
BDI score [Hobbs et al., 2011]. WM microstructural abnor-
malities have also been identified in early HD and preHD
patients with depressive symptoms using diffusion tensor
imaging (DTI). Variations in FA are seen in anterior cingu-
late, ventromedial frontal cortex, superior frontal cortex,
insula and cerebellum [Sprengelmeyer et al., 2014]. Simi-
larly task-based fMRI reveal an association between
depression and activation of the ventromedial prefrontal
cortex in preHD [Unschuld et al., 2012] and activation of
dorsolateral prefrontal cortex in manifest HD [Gray et al.,
2013]. Similar findings were observed in the present study
with respect to both structural and functional connectivity
of the rostral anterior cingulate and medial orbitofrontal
regions. Loss of structural connectivity between medial
orbitofrontal and thalamus, hippocampus and frontal pole
are also seen between preHD and controls.

Our results also show marked similarities to connectivity
variations in major depressive disorder without HD. We
demonstrate in preHD that depression scores are positively
correlated with the functional connectivity of a brain module
which includes the precuneus, isthmus cingulate, inferior
parietal, hippocampus, parahippocampal gyrus, entorhinal,
temporal pole, rostral anterior cingulate, and medial orbito-
frontal. These regions are found in the default mode brain

Figure 6.

NBS analysis displaying connections that show group differences in preHD versus controls for

resting state fMRI (Track-On HD) and diffusion MRI (Track-HD) cohorts. Blues lines indicate sig-

nificance for preHD> controls (P 5 0.036), while red lines indicate significant connections for

controls> preHD (P 5 0.0144). [Color figure can be viewed at wileyonlinelibrary.com]
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network [Buckner et al., 2008], which shows increases in
functional connectivity in those with MDD [Greicius et al.,
2007]. The DMN can be further sub-divided into anterior
and posterior components. The anterior DMN consists of the
medial prefrontal, posterior cingulate and parietal regions,
while the posterior DMN includes the posterior cingulate
and parietal regions [Damoiseaux et al., 2008; Li et al., 2013].
Using independent components analysis of resting state
fMRI data [Li et al., 2013] demonstrated increased functional
connectivity in anterior and posterior default mode sub-
networks in MDD. In keeping with this, using a brain net-
work approach, we demonstrate similar findings in preHD
participants, showing a correlation between depressive
symptoms and increased functional connectivity between
anterior and posterior regions of the DMN.

With respect to the structural networks, a recent study
in MDD revealed reduced structural connections between
two sub-networks, one including the precuneus, isthmus
cingulate and rostral anterior cingulate and the other
including the thalamus, caudate and medial orbitofrontal
regions [Korgaonkar et al., 2014]. In keeping with this, we
found loss of structural connectivity between medial orbi-
tofrontal, thalamus, caudate, rostral anterior cingulate, pre-
cuneus and inferior parietal.

Apathy scores showed positive correlations with functional
connections; however no significant correlations were identi-
fied between apathy scores and structural connections. The
lack of significant correlation with apathy and structural con-
nections suggests apathy may be driven by a functional pro-
cess, such as neurochemical disturbance as opposed to
underlying structural variation. Indeed dopamine modula-
tion is thought to play a role in apathy related to Parkinson’s
disease thus a similar mechanism may account for apathy in
HD [Sinha et al., 2013]. Functional connections correlating
with apathy, including medial orbitofrontal and cingulate
connections to the parahippocampal gyrus, are consistent
with the brain regions implicated in apathy in other neurode-
generative disorders [Benoit et al., 2002; Thobois et al., 2010].

Group differences were found in connections associated
with depression comparing preHD and controls, such as
functional connections between precuneus, inferior parietal
and isthmus cingulate and structural connections between
the precuneus, isthmus cingulate, caudate, thalamus and
medial orbitofrontal regions. This analysis was performed
in cohorts were depression scores did not differ signifi-
cantly between preHD and controls suggesting that the
group differences identified may relate to HD pathology
rather the depression.

A small proportion of both our preHD and control par-
ticipants were taking regular antidepressants. We control
for the effect of this by repeating all analyses and includ-
ing the use of anti-depressants as a covariate, which pro-
vided similar findings to those demonstrated in the main
analysis.

While it is difficult to perform large imaging studies in
preHD looking specifically at depression and apathy, by

conducting a correlation analysis over a range of clinical
scores this enabled us to perform the largest imaging
study to date looking specifically at depressive symptoms
and apathy in HD. One limitation of this approach is how
specific these network variations are for preHD related
depression rather than depression in general. We try and
account for this by showing an absence of correlation
between depressive symptoms in controls and functional
and structural connectivity, particularly in a control cohort
with no significant differences in depression scores relative
to preHD. While a group analysis between depressed
preHD subjects and non-depressed preHD subjects may
have been preferable, low numbers of those with moderate
or severe depression made this unfeasible thus a correla-
tion analysis was performed to examine connectivity rela-
tionships over a wide range of depressive symptoms.

The structural and functional Track-On HD analyses
only showed significant results with binary matrices while
the replication structural analysis only showed significant
results with weighted matrices. Binary matrices indicate
the absence or presence of a connection while weighted
matrices indicate the strength of a connection. Thus, this
discrepancy between cohorts may be due to the fact that
the higher depression scores seen in Track-On HD relate
to connection loss, while lower depression scores seen in
Track-HD relate to reductions in connection in strength.

Both the nucleus accumbens and globus pallidus have
been implicated in the pathophysiology of apathy [Sinha
et al., 2013]. However, we were unable to include these
structures in our analysis as automatic segmentation of
these regions are not sufficiently reliable [Hibar et al., 2015].

CONCLUSION

Increased functional connections between the DMN are
associated with depressive and apathy symptoms in
preHD, while reduced structural connections between the
basal ganglia and the DMN are associated with depressive
symptoms but not apathy. Furthermore, these connectivity
variations associated with depressive symptoms were also
present between preHD and control groups, regardless of
depression or apathy. These findings reveal the specific
functional and structural brain connections implicated in
the common neuropsychiatric symptoms occurring in
preHD.

TRACK-ON HD INVESTIGATORS

B Leavitt, A Coleman, J Decolongon, A. Sturrock, T. Pet-
kau, (University of British Columbia, Vancouver); A Durr,
C Jauffret, D Justo, S Lehericy, K Nigaud, R Valabrègue
(ICM and APHP, Piti�e- Salpêtrière University Hospital,
Paris). R Roos, A Schoonderbeek, E P ‘t Hart (Leiden Uni-
versity Medical Centre, Leiden); H Crawford, E Johnson,
M Papoutsi, C Berna, R I Scahill (University College
London, London)
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