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A B S T R A C T   

Clinical evidence suggests that some patients diagnosed with coronavirus disease 2019 (COVID-19) experience a variety of complications associated with significant 
morbidity, especially in severe cases during the initial spread of the pandemic. To support early interventions, we propose a machine learning system that predicts the 
risk of developing multiple complications. We processed data collected from 3,352 patient encounters admitted to 18 facilities between April 1 and April 30, 2020, in 
Abu Dhabi (AD), United Arab Emirates. Using data collected during the first 24 h of admission, we trained machine learning models to predict the risk of developing 
any of three complications after 24 h of admission. The complications include Secondary Bacterial Infection (SBI), Acute Kidney Injury (AKI), and Acute Respiratory 
Distress Syndrome (ARDS). The hospitals were grouped based on geographical proximity to assess the proposed system’s learning generalizability, AD Middle region 
and AD Western & Eastern regions, A and B, respectively. The overall system includes a data filtering criterion, hyperparameter tuning, and model selection. In test 
set A, consisting of 587 patient encounters (mean age: 45.5), the system achieved a good area under the receiver operating curve (AUROC) for the prediction of SBI 
(0.902 AUROC), AKI (0.906 AUROC), and ARDS (0.854 AUROC). Similarly, in test set B, consisting of 225 patient encounters (mean age: 42.7), the system performed 
well for the prediction of SBI (0.859 AUROC), AKI (0.891 AUROC), and ARDS (0.827 AUROC). The performance results and feature importance analysis highlight the 
system’s generalizability and interpretability. The findings illustrate how machine learning models can achieve a strong performance even when using a limited set of 
routine input variables. Since our proposed system is data-driven, we believe it can be easily repurposed for different outcomes considering the changes in COVID-19 
variants over time.   

1. Introduction 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- 
2) has led to a global health emergency since the emergence of the 
coronavirus disease 2019 (COVID-19) [1]. Despite containment efforts, 
more than 491 million confirmed cases have been reported globally, 
including 892,170 cases in the United Arab Emirates (UAE) as of April 4, 
2022 [1]. Due to unexpected burdens on healthcare systems, identifying 
high risk groups using prognostic models has become vital to support 
patient triage and resource allocation. 

Most of the published prognostic models for patients with COVID-19 
focus on predicting mortality or the need for intubation [2]. While the 
prediction of such adverse events is important for patient triage, clinical 
evidence suggests that patients with COVID-19 may also experience a 

variety of complications in organ systems that could lead to severe 
morbidity and mortality [3,4], especially amongst severe cases during 
the early waves of the pandemic. In this study, we identified three such 
complications associated with poor patient outcomes based on clinical 
evidence, prior to the emergence of the less severe variants [5]: Acute 
Respiratory Distress Syndrome (ARDS) [6], Acute Kidney Injury (AKI) 
[7], and Secondary Bacterial Infection (SBI) [8]. 

ARDS-related pneumonia has been reported as a major complication 
among patients with COVID-19 that have poor prognosis [9] and was a 
major cause of ventilator shortages worldwide [6,10,11]. In a Chinese 
study published in 2020, 31.0% of patients developed ARDS within a 
median of 12 days from the onset of COVID-19, and ARDS was the 
second most frequently observed complication after sepsis [10]. Addi-
tionally, only a few patients manifest clear clinical symptoms in the 
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early stages of developing ARDS [6,12], so it is difficult to suspect ARDS 
unless it occurs. Hence, we identified early prediction of the risk of 
developing ARDS, prior to its onset, of high importance, since ARDS was 
considered as one of the main risk factors of death among hospitalized 
patients with COVID-19 [13]. 

Although COVID-19 primarily emerged as a respiratory disease, 
some patients with COVID-19 experience both respiratory and extra- 
respiratory complications including renal complications such as AKI 
[7,14]. Patients with AKI require special care and resources such as renal 
replacement therapy and dialysis [15]. It was estimated that AKI 
developed in 36.6% of patients admitted with COVID-19 in metropolitan 
New York in 2020, of which 35% had died [15]. Therefore, risk pre-
diction of AKI can help in initiating preventive interventions in order to 
avoid quite poor patient prognosis. 

Moreover, several studies reported alarming percentages of hospi-
talized patients with COVID-19 who develop SBI [10]. SBI is known for 
poor outcomes in several respiratory viral infections. Hence, it led to 
increased burdens on hospitals in the 1918 influenza pandemic, 2009 
H1N1 influenza pandemic, and in seasonal flu [16–18]. Patients with 
COVID-19 who developed SBI have shown worse outcomes, including 
admission to the Intensive Care Unit (ICU) and mortality, compared to 
those who did not develop SBI [19]. Therefore, early prediction of SBI 
can potentially improve patient prognosis, such as by taking aseptic 
procedures especially when hospitals get crowded [8]. 

In recent years, machine learning gained popularity for the devel-
opment of algorithms for clinical decision support tools [20–22]. In the 
context of COVID-19, most machine learning studies have focused either 
on diagnosis or prognosis based on adverse events, mostly mortality and 
intubation [2,23,24]. We summarize a few examples in Table 1. Since 
ARDS is considered a major manifestation of the COVID-19 disease, 
some studies focused on developing machine learning models to predict 
ARDS as an outcome [6,12], such as by using a large set of hematological 
and biochemical markers [12]. One limitation of such approaches is that 
they rely on laboratory-test results that may not be routinely measured. 
In another study, the authors used both statistical machine learning 
models and deep neural networks for the prediction of ARDS, by 
combining a large feature set of chest Computed Tomography (CT) 
findings, demographics, epidemiology, clinical symptoms, and 
laboratory-test results [6]. Similarly, for AKI prediction amongst pa-
tients with COVID-19, a multivariate logistic regression was developed 
using findings of CT imaging, laboratory-test results, vital-sign mea-
surements, and patient demographics [25]. While recent work on SBI 
mainly focused on its clinical manifestations and occurrence [16,26,27], 
one study investigated sepsis risk prediction among patients with 
COVID-19 using hematological parameters and other biomarkers [28]. 
To summarize, existing work tends to predict a single complication at a 
time, which is less informative than predicting multiple complications 
known to be common among patients with COVID-19, use costly input 
features that may not be readily available, or rely on training deep 
neural networks that require high computational resources and large 
training datasets. 

Therefore, there is a pressing need for a low-cost predictive system 
that uses routine clinical data to predict complications and support pa-
tient management. In this work, we address this need by developing and 
evaluating a machine learning system that predicts the risk of ARDS, SBI, 
and AKI among patients with COVID-19 admitted to the Abu Dhabi 
Health Services (SEHA) facilities, UAE, from April 1st, 2020 to April 
30th, 2020, during the first wave of the pandemic. While we focus on 
three complications only, namely because their occurrence could be 
identified retrospectively using clinical criteria, the system and pro-
posed training framework can be scaled to incorporate predictions of 
other complications, and can be fine-tuned using datasets of other pa-
tient cohorts. An overview of the pipeline is shown in Fig. 1. Next, we 
describe our methodology in Section 2 and the performance and 
explainability results in Section 3. We then discuss the limitations and 
strengths of the study in Section 4, and conclude by highlighting the 

potential of our system in clinical settings in Section 5. To allow for 
reproducibility and external validation, we made our code and one of 
the evaluation test sets publicly available at: https://github.com/n 
yuad-cai/COVID19Complications. 

2. Methods 

This study is reported following the TRIPOD guidance [34]. 

2.1. Data source 

This study is a retrospective multicentre study that includes anony-
mized data recorded within 3,493 COVID-19 hospital encounters at 18 
Abu Dhabi Health Services (SEHA) healthcare facilities in Abu Dhabi, 
United Arab Emirates. The study received approval by the Institutional 
Review Board (IRB) from the Department of Health (Ref: DOH/CVDC/ 
2020/1125) and New York University Abu Dhabi (Ref: HRPP-2020-70). 

Table 1 
Examples of machine learning studies that aim to predict various outcomes for 
in-patients with confirmed COVID-19 diagnosis. We refer the readers to exten-
sive published literature reviews [2,23,24].  

Reference Outcome Input Data Models Study 
Location 

[29] Deterioration 
(intubation or 
ICU admission or 
mortality) 

Chest X-ray 
images and 
clinical data 
(patient 
demographics, 
seven vital-sign 
variables, and 
24 laboratory- 
test results) 

Convolutional 
neural network 
for chest X-ray 
images and 
gradient 
boosting model 
for clinical data 

United 
States 

[30] Mortality Five laboratory- 
test results 

Support vector 
machine 

United 
States 

[31] Severe 
progression (high 
oxygen flow rate, 
mechanical 
ventiliation or 
mortality) 

Chest CT scans, 
patient 
demographics, 
five vital-sign 
variables, 
symptoms, 
comorbidities, 
14 laboratory- 
test results, and 
chest CT 
radiology report 
findings 

Deep neural 
network and 
logistic 
regression 

France 

[32] Prognostication 
(intubation or 
hospital 
admission, or 
mortality) 

Chest X-ray 
images, two 
vital-sign 
variables, and 
nine laboratory- 
test results 

Convolutional 
neural network 

United 
States 

[28] Sepsis Eight 
laboratory-test 
results 

Gradient 
boosting model 

China 

[25] AKI Findings of 
abdominal CT 
scans, 
demographics, 
vital signs, 
comorbidities, 
and three 
laboratory-test 
results 

Logistic 
regression 

United 
States 

[33] ARDS Demgraphics, 
interventions, 
comorbidities, 
17 laboratory- 
test results, and 
eight vital signs 

Gradient 
boosting model 

United 
States  
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Informed consent was not required for this study as it was determined as 
exempt. All methods were performed in accordance with the relevant 
guidelines and regulations. There were nine facilities in the Middle re-
gion, which includes the capital city, and nine facilities in the Eastern 
and Western regions. Those regions are highlighted in Fig. 2(a). Fig. 2(b) 
shows the flowchart of how the exclusion criteria was applied to obtain 
the final data splits. We excluded 127 non-adult encounters and 14 
pregnant encounters and split the dataset into training and test sets. The 
training sets were used for model training and selection, while the test 
sets were used for evaluation. Training set A consisted of 1,829 en-
counters recorded in the Middle region between April 1, 2020 and April 
25, 2020. To evaluate for temporal generalizability, test set A included 
587 encounters recorded in the Middle region between April 26, 2020 
and April 30, 2020. Training set B included 711 encounters admitted to 
the Eastern and Western regions between April 1, 2020 and April 25, 
2020 and test set B included 225 encounters admitted to the same 
hospitals between April 26, 2020, and April 30, 2020. 

2.2. Outcomes 

Based on clinical evidence and in collaboration with clinical experts, 

we focused on predicting three clinically diagnosed events, SBI, AKI [35] 
and ARDS [36] that are associated with poor patient prognosis. For each 
patient encounter in the training and test sets, we identified the first 
occurrence (i.e., date and time), if any, of each complication based on 
the criteria shown in Table 2. SBI is defined based on positive cultures 
within 24 h of sample collection, AKI is defined based on the KDIGO 
classification criteria [35], and ARDS is defined based on the Berlin 
definition [36], which required the processing of free-text chest radi-
ology reports. Further details on the processing of those reports is 
described in Supplementary Section A. 

2.3. Input features 

We considered data recorded within the first 24 h of admission as 
input features for the predictive models. This data included continuous 
and categorical features related to the patient baseline information, 
demographics, and vital signs. Within the patient’s baseline and de-
mographic information, age and Body Mass Index (BMI) were treated as 
continuous features, whereas pre-existing medical conditions (i.e., hy-
pertension, diabetes, chronic kidney disease, and cancer), symptoms 
recorded at admission (i.e., cough, fever, shortness of breath, sore 

Fig. 1. Overview of our proposed model 
development approach and expected appli-
cation in practice. As shown in the first row, 
we develop our complication-specific models 
by first preprocessing the data, identifying 
the occurrences of the complications based 
on the criteria shown in Table 2, training and 
selecting the best-performing models on the 
validation set, and then evaluating the per-
formance on the test set, retrospectively. As 
for the application (second row), we expect 
our system to predict the risk of developing 
any of the three complications for any pa-
tient after 24 h of admission.   

Fig. 2. (a) The UAE map showcasing the location of the healthcare facilities included in this study. (b) Flowchart for the overall dataset showing how the inclusion 
and exclusion criteria were applied to obtain the final training and test sets, where n represents the number of patient encounters, and p represents the number of 
unique patients. 
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throat, and rash) and patient sex were treated as binary features. As for 
the vital signs, we included seven continuous features, including systolic 
blood pressure, diastolic blood pressure, respiratory rate, peripheral 
pulse rate, oxygen saturation, auxiliary temperature, and the Glasgow 
Coma Score. We selected those features as they are commonly used in 
early warning score systems [37]. All vital signs measurements were 
processed into minimum, maximum, and mean statistics. We summa-
rized patient demographics, prevalence of the complications, and the 
distributions of the input features across the training and test sets. 

2.4. Predictive modeling 

The proposed system predicts the risk of developing each of the three 
complications during the patient’s stay after 24 h of admission. This is 
represented by a vector y consisting of three predictions, where each 
prediction is computed by a complication-specific model, such that 

y =
[
ySBI, yAKI, yARDS],

where ycomplication ∈ [0, 1]. 
The overall workflow of the model development is depicted in Fig. 1. 

For each complication-specific model, we excluded from its training and 
test sets patients who developed that complication prior to the time of 
prediction. For AKI, we also excluded patients with chronic kidney 
disease. Then for each complication, our system trains four model en-
sembles based on four types of base learners: logistic regression (LR), k- 
nearest neighbors (KNN), support vector machine (SVM) and a light 
gradient boosting model (LGBM). Missing data was imputed using me-
dian imputation for all models except for LGBM, which can natively 
learn from missing data, and the data was further scaled using min-max 
scaling for LR and standard scaling for SVM and KNN. 

For each type of base learner, the system performs a stratified k-folds 
cross-validation using the complication’s respective training set with k 
= 3. We performed random hyperparameter search for each base learner 
[38] with 30 iterations, resulting in three trained models for each 
hyperparameter set selected per iteration. The choice of random search 
was motivated by its relative simplicity, and high efficiency and per-
formance compared to other hyperparameter tuning methods [38]. The 
hyperparameter search ranges are summarized in Supplementary Sec-
tion B. The ranges were defined based on initial experiments with 
manually chosen hyperparameters. 

We then selected the top two hyperparameter sets whose models 
achieved the highest average area under the receiving operator 

characteristic curve (AUROC) on the validation sets, resulting in six 
trained models. We created an ensemble of those six models, and each 
model within the ensemble was further calibrated using isotonic 
regression on its respective validation set to ensure non-harmful deci-
sion making [39], except for the LR models. Isotonic regression takes a 
trained model’s raw predictions as inputs, and computes well-calibrated 
output probabilities. This is done by grouping the raw predictions into 
bins associated with estimates of empirical probabilities [40]. The final 
prediction of each complication consisted of an average of the calibrated 
predictions of all models within an ensemble. All analysis was performed 
using Python (version 3.7.3). The LR, KNN, and SVM models were 
implemented using the Python scikit-learn package and the LGBM 
models were implemented using the LightGBM package [41]. 

2.5. Model interpretability 

We performed post-hoc feature importance analysis using the 
SHapley Additive exPlanations (SHAP) [42,43]. SHAP values are 
indicative of the relative importance of the input variables and their 
impact on the predictions. The analysis was conducted using the 
open-source SHAP package [43], where we obtained the mean absolute 
SHAP values of the features for the six models per ensemble. For each 
feature, the six SHAP values were averaged and then ranked to reveal 
the overall importance of the features with respect to the ensembled 
prediction. We present the four top ranked features per complication 
ensemble for each test set using bar plots. 

2.6. Performance assessment 

We evaluated each complication ensemble using the AUROC and the 
area under the precision-recall curve (AUPRC) on the test set. The 
AUROC is a measure of the model’s ability to discriminate between 
positive (complications) and negative cases (no complication) [44], 
while the AUPRC is a measure of model robustness when dealing with 
imbalanced datasets, i.e. unequal distribution of positive and negative 
cases [45]. The closer the AUROC and AUPRC are to 1, the better the 
performance of the model. Confidence intervals for all of the evaluation 
metrics were computed using bootstrapping with 1,000 iterations [46]. 
We also assessed the calibration of the ensemble, after post-hoc cali-
bration of its trained models, using reliability plots and reported cali-
bration intercepts and slopes [39]. 

3. Results 

A total of 3,352 encounters were included in the study and the sta-
tistics of the characteristics of the final data splits are presented in 
Table 3. Across all the data splits, the mean age ranges between 39.3 and 
45.5 years and the proportion of males ranges between 84.8% and 
88.9%. The mortality rate was also less than 4% across all data splits, 
ranging between 1.3% and 3.7%. ARDS was the most prevalent 
complication developed in the first 24 h of admission across all datasets. 
The incidence of the complications developed after 24 h were higher in 
the test sets than in their respective training sets. The distributions of the 
vital signs and demographics in terms of the mean and interquartile 
ranges, are shown in Table 4. 

The performance results of the models selected by our system across 
the two test sets in terms of the AUROC and AUPRC are shown in 
Table 5. The Receiver Operating Characteristic curve (ROC), Precesion 
Recall Curve (PRC), and reliability plots are also visualized in Fig. 3(a) 
and (b), and 3(c), respectively. Across both test sets, our data-driven 
approach achieved good performance (>0.82 AUROC) for all of the 
complications. In test set A, AKI was the best discriminated endpoint at 
24 h from admission, with 0.906 AUROC. This is followed by SBI (0.902 
AUROC), and SBI (0.854 AUROC). In test set B, AKI was the best 
discriminated endpoint with 0.891 AUROC, followed by SBI (0.859 
AUROC), and ARDS (0.827 AUROC). 

Table 2 
Criteria used to define the occurrence of complications.  

Complication Definition Reference 

SBI Positive blood, urine, throat or sputum cultures within 
24 h of sample collection 

a 

AKI Based on the Kidney Disease Improving Global 
Guidelines (KDIGO) classification, increase in Serum 
Creatinine by ≥ 0.3 mg/dl within 48 h 

[35] 

OR 
Increase in Serum Creatinine by ≥ to 1.5 times 
OR 
Urine volume < 0.5 ml/kg/h for 6 hb 

ARDS Based on the Berlin definition, presence of bilateral 
opacity in radiology reports 

[36] 

AND 
Oxygenation: PaO2/FiO2 ≤ 300 mm Hg 
AND 
Timing: ≤ one week 
AND 
Origin: pulmonary  

a Based on SEHA’s clinical standards. 
b Urine output was not measured in our dataset because it is collected in the 

intensive care unit. 
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The prevalence of the predicted complications ranged between 3.2%- 
6.9% and 7.1%–10.7% in the training and test sets, respectively. This 
high class imbalance is reflected in the AUPRC results, since the AUPRC 
depends on the prevalence of the outcome and tends to have a low value 
when there is class imbalance [47]. 

We also observe that LR was selected as the best performing model 
on the validation sets for most complications, highlighting its predictive 
power despite its simplicity compared to the other machine learning 
models. LGBM was selected for ARDS in test set B, as shown in Sup-
plementary Section C. 

The top four important features for each complication are shown in 
Fig. 4 across the two test sets. Age was among the top predictive features 
for all the complications in both test sets. Similarly, systolic blood 
pressure was one of the top features for predicting SBI and AKI across 
both sets. Other features such as peripheral pulse rate and respiratory 
rate were among the top predictive features across both sets, for AKI and 
ARDS respectively. 

The calibration results show that our ensemble models were 
adequately calibrated across all complications as the calibration slopes 
were approximately equal to 1, as shown in Table 5 and Fig. 3(c). This is 
also reflected in the sample patient timelines visualized in Fig. 5, where 
the predicted risks for the patient who experienced the complications 
were relatively higher than those predicted for the patient who did not 
experience any complications. In Fig. 5(a), the patient shown developed 
all three complications during their hospital stay of 44 days. This 
highlights the importance of predicting all complications simulta-
neously, especially for patients who may develop more than one 
complication. In Fig. 5(b), the patient did not develop any complications 
during their hospital stay of two days. To compare both patients, the 
system’s predictions for patient (a) were relatively higher than those for 
patient (b). For example, the AKI predictions were 0.73 and 0.002, 
respectively, despite the fact that patient (a) developed AKI at around 20 

days from admission. This demonstrates the value of our system in 
predicting the risk of developing complications early during the pa-
tient’s stay. 

4. Discussion 

In this study, we developed an automated prognostic system to 
support patient assessment and triage early on during the patient’s stay. 
We demonstrate that the system can predict the risk of multiple com-
plications simultaneously and achieves a good performance across all 
complications across two geographically independent datasets. The 
feature importance analysis revealed that age, systolic blood pressure 
and respiratory rate are highly predictive of several complications across 
the two datasets. Since COVID-19 was predominantly a pulmonary 
illness especially in its early variants [48], it was not surprising that 
respiratory rate ranked among the highest predictive features. We also 
identified age and systolic blood pressure as markers for severity among 
patients with COVID-19, which is aligned with clinical literature [49, 
50]. Specifically, systolic blood pressure has been determined as an 
important covariate of morbidity and mortality in patients with 
COVID-19 [51]. This analysis demonstrates that our system’s learning is 
clinically meaningful and relevant. 

In addition, we assessed our models’ calibration through reporting 

Table 3 
Summary of the baseline characteristics of the patient cohort in the training sets 
and test sets and the prevalence of the predicted complications. Note that n 
represents the total number of patients while % is the proportion of patients 
within the respective dataset.   

Training 
set A 

Test set 
A 

Training 
set B 

Test set 
B 

Patient Cohort 

Encounters, n 1829 587 711 225 
Age, mean (IQR) 41.7 (17.0) 45.5 

(18.0) 
39.3 (17.0) 42.7 

(20.0) 
Male, n (%) 1582 

(86.5) 
522 
(88.9) 

622 (87.5) 191 
(84.8) 

Arab, n (%) 295 (16.1) 89 
(15.2) 

120 (16.9) 43 
(19.1) 

Non-Arab, n (%) 1534 
(83.9) 

498 
(84.8) 

591 (83.1) 182 
(80.9) 

Mortality, n (%) 36 (2.0) 22 (3.7) 9 (1.3) 3 (1.3) 

Complications 

SBI, n (%) 92 (5.0) 45 (7.7) 23 (3.2) 17 (7.6) 
Developed within 24 h from 

admission, n (%) 
1 (0.1) 3 (0.5) 1 (0.1) 1 (0.4) 

Developed after 24 h from 
admission, n (%) 

91 (5.0) 42 (7.2) 22 (3.1) 16 (7.1) 

AKI, n (%) 126 (6.9) 52 (8.9) 32 (4.5) 16 (7.1) 
Developed within 24 h from 

admission, n (%) 
28 (1.5) 9 (1.5) 14 (2.0) 3 (1.3) 

Developed after 24 h from 
admission, n (%) 

98 (5.4) 43 (7.3) 18 (2.5) 13 (5.8) 

ARDS, n (%) 117 (6.4) 57 (9.7) 45 (6.3) 24 
(10.7) 

Developed within 24 h from 
admission, n (%) 

61 (3.3) 26 (4.4) 23 (3.2) 13 (5.8) 

Developed after 24 h from 
admission, n (%) 

56 (3.1) 31 (5.3) 22 (3.1) 11 (4.9)  

Table 4 
Characteristics of the variables that were used as input features to our models. 
The mean and interquartile ranges are shown for the demographic features, and 
vital-sign measurements. For the comorbidities and symptoms admission, n 
denotes the number of patients and % denotes the percentage of patients per the 
respective dataset.  

Variable, unit Training set 
A 

Test set A Training 
set B 

Test set B 

Demographics, mean (IQR) 

Age 41.7 (17.0) 45.5 
(18.0) 

39.3 (17.0) 42.7 
(20.0) 

BMI 26.9 (5.2) 26.7 
(5.7) 

26.5 (5.7) 27.9 
(6.2) 

Male, n (%) 1582 (86.5) 522 
(88.9) 

622 (87.5) 191 
(84.8) 

Comorbidities, n (%) 

Hypertension 550 (30.1) 213 
(36.3) 

168 (23.6) 71 (31.6) 

Diabetes 427 (23.3) 221 
(37.6) 

121 (17.0) 73 (32.4) 

Chronic kidney disease 68 (3.7) 30 (5.1) 20 (2.8) 7 (3.1) 
Cancer 30 (1.6) 7 (1.2) 12 (1.7) 8 (3.6) 

Symptoms at admission, n (%) 

Cough 851 (46.5) 338 
(57.6) 

259 (36.4) 99 (44.0) 

Fever 28 (1.5) 20 (3.4) 3 (0.4) 3 (1.3) 
Shortness of breath 190 (10.4) 99 (16.9) 71 (10.0) 34 (15.1) 
Sore throat 238 (13.0) 89 (15.2) 118 (16.6) 28 (12.4) 
Rash 29 (1.6) 10 (1.7) 15 (2.1) 5 (2.2) 

Vital-sign measurements, mean (IQR) 

Systolic blood pressure, 
mmHg 

126.3 
(15.0) 

126.8 
(16.0) 

128.8 
(15.5) 

128.2 
(15.7) 

Diastolic blood pressure, 
mmHg 

77.5 (9.8) 76.9 
(9.9) 

77.9 (10.3) 77.5 
(10.7) 

Respiratory rate, breaths 
per minute 

18.9 (1.0) 20.2 
(2.5) 

18.1 (0.7) 18.7 
(0.8) 

Peripheral pulse rate, 
beats per minute 

82.6 (11.5) 85.4 
(11.6) 

81.7 (13.4) 82.5 
(12.5) 

Oxygen saturation, % 98.4 (1.6) 97.5 
(2.1) 

98.5 (1.0) 98.2 
(1.4) 

Temperature auxiliary, ◦C 36.9 (0.4) 37.0 
(0.7) 

36.9 (0.4) 37.1 
(0.6) 

Glasgow Coma Score 14.8 (0.0) 15.0 
(0.0) 

14.8 (0.0) 14.8 
(0.0)  
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the calibration slopes and intercepts and visualized the calibration 
curves. Sufficiently large datasets are usually needed to produce stable 
calibration curves at model validation stage [39]. Despite the size of our 
dataset, we found that reporting the calibration slopes and intercepts 
would provide a concise summary of potential problems with our 

system’s calibration, to avoid harmful decision-making [39]. 
One of the main strengths of this study is that we used multicentre 

data collected at 18 facilities across several regions in Abu Dhabi, UAE. 
COVID-19 treatment is free for all patients in the UAE, hence there were 
no obvious gaps in terms of access to healthcare services in our dataset. 
Across the training and test sets in regions A & B, 15.2%–19.1% of en-
counters were for Arab patients. This reflects the diversity of our dataset, 
since Abu Dhabi is residence for more than 200 nationalities, of which 
only 19.0% of the population is Emirati. This diversity makes our find-
ings relevant to a global audience. While most previous studies have 
focused on European or Chinese patient cohorts [52–54], our study is 
one of few studies with large sample sizes (3,352 COVID-19 patient 
encounters) that focus on the patient cohort in the UAE. Compared to 
other international patient cohorts, our cohort is relatively younger 
(39.3–45.5 years across training and test sets), with a lower overall 
mortality rate (1.3%–3.7% across the training and test sets), suggesting 
that our system needs to be further validated on populations with 
different demographic distributions [10,55,56]. Our data-driven 
approach and open-access code can be easily adapted for such purposes. 

Another strength is that our system predicts three complications 
simultaneously that are indicative of patient severity, in order to avoid 
poor patient outcomes. From a clinical perspective, several studies re-
ported worse prognosis among patients with COVID-19 who had multi- 
organ failure, and co-infections [6,8,10,57]. Most of the existing 
COVID-19 prognostic studies focus on predicting mortality as an adverse 
event outcome [2]. The low mortality rates in our dataset strongly 
discouraged the development of a mortality risk prediction score, as 
such small sample sizes may lead to biased models [2]. An important 
aspect of this study is that the labeling criteria of the complications rely 
on renowned clinical standards and hospital-acquired data to identify 
the exact time of the occurrence of such complications. In collaboration 
with the clinical experts, this approach was considered more reliable 
than using International Classification of Disease (ICD) codes [58,59]. 
Despite the development of new ontologies [60], ICD codes are gener-
ally used for billing purposes and their derivation may vary across fa-
cilities, especially during a pandemic [61]. We also introduce new 
benchmark results that can be contested with other competing models 

Table 5 
Performance evaluation of the best performing models on test sets A & B, which 
were selected based on the average AUROC performance on the validation sets, 
as shown in Supplementary Section C. Model type indicates the type of the base 
learners within the final selected ensemble. All the metrics were computed using 
bootstrapping with 1,000 iterations [46].  

Complication Result Test Set A Test Set B 

SBI Model Type LR LR 
AUROC 0.902 (0.862, 

0.939) 
0.859 (0.762, 0.932) 

AUPRC 0.436 (0.297, 
0.609) 

0.387 (0.188, 0.623) 

Calibration Slope 0.933 (0.321, 
1.370) 

1.031 (− 0.066, 
1.550) 

Calibration 
Intercept 

0.031 (− 0.111, 
0.213) 

0.010 (− 0.164, 
0.273) 

AKI Model Type LR LR 
AUROC 0.906 (0.856, 

0.948) 
0.891 (0.804, 0.961) 

AUPRC 0.436 (0.278, 
0.631) 

0.387 (0.115, 0.679) 

Calibration Slope 0.655 (0.043, 
1.292) 

1.370 (− 0.050, 
2.232) 

Calibration 
Intercept 

0.059 (− 0.136, 
0.251) 

− 0.072 (− 0.183, 
0.154) 

ARDS Model Type LR LGBM 
AUROC 0.854 (0.789, 

0.909) 
0.827 (0.646, 0.969) 

AUPRC 0.288 (0.172, 
0.477) 

0.399 (0.150, 0.760) 

Calibration Slope 0.598 (0.028, 
1.149) 

0.742 (− 0.029, 
1.560) 

Calibration 
Intercept 

0.000 (− 0.159, 
0.164) 

0.050 (− 0.166, 
0.243)  

Fig. 3. The (a) ROC curves, (b) PRC curves, and (c) calibration curves are shown for all model ensembles evaluated on test set A (top) and test set B (bottom). The 
color legend for all figures is shown on the right. The numerical values for the AUROC, AUPRC, calibration slopes and intercepts can be found in Table 5. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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on test set B. Future work should also investigate the use of multi-label 
deep learning classifiers for larger datasets, while accounting for the 
exclusion criteria during training. 

Moreover, our system uses routinely collected data and does not 
incur high data collection costs. Other prognostic machine learning 
studies have also adopted this strategy to predict adverse outcomes [62, 
63]. By using routinely collected data rather than hematologic, cardiac, 
or biochemical laboratory tests that are associated with high processing 
times, our system is suitable for low-cost deployment. Existing studies 
achieved comparable performance with our system. For example, an AKI 
prediction model achieved 0.78 AUROC using findings of abdominal CT 
scans, vital-sign measurements, comorbidities, and laboratory-test re-
sults [25]. Although the results are not directly comparable due to dif-
ferences in study design, our system achieved 0.91 and 0.89 AUROC in 
test sets A & B, respectively, without needing any imaging or 
laboratory-test results. In another study, an ARDS prediction model 
achieved 0.89 AUROC using patient demographics, interventions, 
comorbidities, 17 laboratory-test results and eight vital signs [33]. In 
comparison, our system achieved 0.85 AUROC in test set A and 0.83 
AUROC in test set B. This implies that we should consider including 
additional variables to improve the performance of the model, such as 
laboratory-test results. One other study highlighted the predictive 

ability of eight laboratory-test results for the prediction of sepsis, where 
it achieved 0.93 AUROC [28]. We avoided the use of laboratory-test 
results to ensure that there is no overlap between the set of input fea-
tures and the variables used to define the output complications (i.e. label 
leakage), however this is an area of future work. 

Our study also has several limitations. One limitation of the labeling 
procedure is that it could miss patients for whom the data used in 
identifying a particular complication was not collected. However, this 
issue is more closely related to data collection practices at institutions as 
clinical data is often not completely missing at random. Another limi-
tation is that since we relied on a minimal feature set, our system does 
not account for possible effects of treatment on the predicted outcomes 
and feature interactions, which is an area of future study. Moreover, the 
models are not perfectly calibrated due to small dataset size, which 
could also be attributed to the fact that the final predictions are based on 
model ensembles, rather than an individually calibrated model. Future 
work should investigate how to further improve the calibration of 
ensemble models. Furthermore, we utilized a dataset collected during 
the first wave of the pandemic, which did not include any information 
indicating the type of variant. Hence, the results presented here may not 
be directly applicable to patients with new COVID-19 variants. How-
ever, the system can be easily reused, fine-tuned, and validated using 

Fig. 4. The four most important features are shown for each complication in (a) test set A and (b) test set B. Feature importance was computed using the average 
SHAP values of the six models per ensemble. 

Fig. 5. Timeline showing the development of complications with respect to number of days from admission (x-axis) for two sample patients. (a) For [ySBI, yAKI, 
yARDS], our system predictions (multiplied by a 100 to obtain percentages) were [64%, 73%, 51%]. (b) This patient did not develop and complications and our model 
predictions were [0.2%, 0.2%, 2%]. 
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new datasets. 

5. Conclusion 

Our data-driven approach and results highlight the promise of ma-
chine learning in risk prediction in general and COVID-19 complications 
in particular. The proposed approach performs well when applied to two 
independent multicentre training and test sets in the UAE. The system 
can be easily implemented in practice due to several factors. First, the 
input features that our system uses are routinely collected by hospitals 
that accommodate patients with COVID-19 as recommended by the 
World Health Organization. Second, training the machine learning 
models within our system does not require high computational re-
sources. Finally, through feature importance analysis, our system can 
offer interpretability, and is also fully automated as it does not require 
any manual interventions. To conclude, we propose a clinically appli-
cable system that predicts complications among patients with COVID- 
19. Our system can serve as a guide to anticipate the course of pa-
tients with COVID-19 and to help initiate more targeted and 
complication-specific decision-making on treatment and triage. 
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