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ABSTRACT Lower respiratory tract infections (LRTIs) have high morbidity and mor-
tality rates. However, traditional etiological detection methods have not been able
to meet the needs for the clinical diagnosis and prognosis of LRTIs. The rapid devel-
opment of metagenomic next-generation sequencing (mNGS) provides new insights
for the diagnosis and treatment of LRTIs; however, little is known about how to
interpret the application of mNGS results in LRTIs. In this study, lower respiratory
tract specimens from 46 patients with suspected LRTIs were tested simultaneously
using conventional microbiological detection methods and mNGS. Receiver operat-
ing characteristic (ROC) curves were used to evaluate the performance of the loga-
rithm of reads per kilobase per million mapped reads [lg(RPKM)], genomic coverage,
and relative abundance of the organism in predicting the true-positive pathogenic
bacteria. True-positive viruses were identified according to the lg(RPKM) threshold of
bacteria. We also evaluated the ability to predict drug resistance genes using mNGS.
Compared to that using conventional detection methods, the false-positive detection
rate of pathogenic bacteria was significantly higher using mNGS. It was concluded
from the ROC curves that the lg(RPKM) and genomic coverage contributed to the
identification of pathogenic bacteria, with the performance of lg(RPKM) being the
best (area under the curve [AUC] = 0.99). The corresponding lg(RPKM) threshold for
identifying the pathogenic bacteria was 21.35. Thirty-five strains of true-positive vi-
rus were identified based on the lg(RPKM) threshold of bacteria, with the detection
of human gammaherpesvirus 4 being the highest and prone to coinfection with
Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas malto-
philia. Antimicrobial susceptibility tests (AST) revealed the resistance of bacteria con-
taining drug resistance genes (detected by mNGS). However, the drug resistance
genes of some multidrug-resistant bacteria were not detected. As an emerging tech-
nology, mNGS has shown many advantages for the unbiased etiological detection
and the prediction of antibiotic resistance. However, a correct understanding of
mNGS results is a prerequisite for its clinical application, especially for LRTIs.

IMPORTANCE LRTIs are caused by hundreds of pathogens, and they have become a
great threat to human health due to the limitations of traditional etiological detec-
tion methods. As an unbiased approach to detect pathogens, mNGS overcomes such
etiological diagnostic challenges. However, there is no unified standard on how to
use mNGS indicators (the sequencing reads, genomic coverage, and relative abun-
dance of each organism) to distinguish between pathogens and colonizing microor-
ganisms or contaminant microorganisms. Here, we selected the mNGS indicator with
the best identification performance and established a cutoff value for the identifica-
tion of pathogens in LRTIs using ROC curves. In addition, we also evaluated the ac-
curacy of antibiotic resistance prediction using mNGS.
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Lower respiratory tract infections (LRTIs) are prevalent worldwide, with high morbid-
ity and mortality, especially in children, elderly, and immunocompromised popula-

tions (1, 2). The timely and accurate determination of infectious pathogens in LRTIs is
difficult, as LRTIs are caused by hundreds of pathogens, including bacteria, virus, and
fungi. In immunocompromised patients, almost all bacteria or fungi can be considered
potential pathogens in pulmonary infections (3).

At present, conventional pathogen testing includes microbial cultures, microscopic
smears, histopathology, polymerase chain reactions (PCR), nucleic acid hybridization,
and serological antibody testing. However, because of the limitations of microbial cul-
tures and microscopic smears in terms of their detection rates, speeds, and available
assay targets, it is difficult to satisfy the needs of clinicians (4).

Histopathological analysis is the diagnostic gold standard for invasive fungal infec-
tions, but it is time-consuming and lacks pathogen specificity (5). PCR assays require
the design of specific primers or probes for microbial pathogens, and thus, the ability
to detect pathogens is limited (6). Additionally, it is difficult to accurately predict the
window period for serum antibody detection (7).

Due to the lack of microbiological diagnostic methods, clinicians often prescribe antibi-
otics empirically to patients with negative etiological test results, which can exacerbate a
reinfection and drive the emergence of antibiotic resistance and multidrug-resistant patho-
gens (8). Due to the above reasons, it is necessary to identify a fast and accurate method
to detect multiple pathogenic microorganisms from LRTIs.

Advancements in genome sequencing technologies and bioinformatics approaches,
such as metagenomic next-generation sequencing (mNGS) (9), provide powerful options
for overcoming such clinical diagnostic challenges. The mNGS (also termed high-through-
put sequencing technology) has high efficiency and short turnaround time and is an
unbiased approach to detect all pathogens in a clinical sample. In addition to the above
advantages, mNGS can provide genetic information for evolutionary tracing, the prediction
of antibiotic resistance, and the presence of virulence factors and can be used to infer the
concentration of pathogens based on the number of reads (10). There have been several
reports on the use of mNGS for the detection of pathogenic microorganisms in infections
of the central nervous system, blood, respiratory tract, and focal tissue (11–13). However,
there are still many challenges preventing its use in clinical applications. One of the primary
challenges is that there is no unified standard for interpreting mNGS results. There are
three main indicators in the mNGS report, including the sequencing reads, the genomic
coverage, and the relative abundance of each organism. It has not yet been reported
which indicator is the best for distinguishing between pathogens and colonizing microor-
ganisms or contaminant microorganisms that are present in the sample, reagents, or labo-
ratory environment. This is particularly true for infections of the respiratory tract, which is
not a sterile environment (14).

In this study, we first evaluated the performance of the above three indicators to
identify pathogenic bacteria in LRTIs using receiver operating characteristic (ROC)
curves and established a cutoff value for the identification of pathogens. Using the cut-
off value, we analyzed the true-positive viruses in LRTIs and identified which viruses
were prone to coinfection with bacteria. In addition, we also analyzed the accuracy of
antibiotic resistance prediction using mNGS.

RESULTS
Patient demographics and detection results of different methods. The 46 patients

enrolled in our study were mainly from the respiratory department, geriatrics department,
and intensive care unit (ICU), and the average age was 70.67 6 13.33 years old. Most of
the patients were male (n = 33, 72%); female patients accounted for 28% (n = 13). Among
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the underlying diseases, hypertension (n = 17, 37%), type 2 diabetes (n = 9, 20%), and
chronic obstructive pulmonary disease (COPD) (n = 8, 17%) were most prevalent. A total of
38 strains of bacteria, 1 strain of Aspergillus fumigatus, and 2 strains of human respiratory
syncytial virus (RSV) were detected using conventional methods, but 63 strains of bacteria,
1 strain of Aspergillus fumigatus, and 61 strains of viruses were identified by mNGS
(Table 1).

TABLE 1 Characteristics and detection results of patientsa

Patient ID Sex Age (yr) Underlying disease(s)

Detection results for:

Conventional detection mNGS test
P1 Male 78 Cerebral infarction, hypertension Pce Pce/HHV-7
P2 Male 56 Hypertension Pce Pce/Aba/Kpn
P3 Male 81 Anemia Pae/Aba/Pma Pae/Aba/Pma
P4 Male 80 COPD Pae Pae/RhV-A
P5 Male 73 Senile dementia Pae/Pma Pae/Pma/Kpn/HHV-1/EBV/CMV/HCov-NL63
P6 Male 70 Hypertension Spn Spn/RSV-B
P7 Male 62 Hypertension, type 2 diabetes Pae/Pst/Bca Pae/Pst/Bca/Eco/EBV
P8 Male 60 Cerebral infarction Pae Pae/Sau/Kpn/Eco
P9 Male 92 COPD/hypertension, type 2 diabetes Eco Eco/Kpn
P10 Male 78 Hypertension, type 2 diabetes Aba/Pma/Kpn Aba/Pma/Kpn/EBV
P11 Male 59 Hypertension Aba/Pma Aba/Pma/CMV
P12 Female 90 Pulmonary heart disease Kpn Kpn/Sgc/HHV-1/HCoV-HKU1/EBV/HHV-7/RhV-A
P13 Female 86 Hypertension Aba Aba/HHV-1/EBV/RhV-A
P14 Female 92 Type 2 respiratory failure Sau/Sma/Pae Sau/Sma/Pae/Eco/Kpn/EBV
P15 Female 55 Coronary heart disease Aba Aba/Pae/Sau

EBV
P16 Male 85 Liver cirrhosis Sau/Pma Sau/Pma
P17 Male 65 None Sau Sau/Spy/hMPV
P18 Male 94 COPD Aba/Pma/Pae Aba/Pma/Pae/Eco/Kpn/Sma/EBV
P19 Male 47 Hypertension Spn/Eco/RSV Spn/Eco/CMV/Nab/RSV-B/RhV-B/HRV3
P20 Male 53 None Acid-fast bacillus Mtu/Sau/HHV-7
P21 Female 63 Type 2 diabetes None HHV-1/EBV/HHV-7/Cpt
P22 Male 55 Pleural effusion RSV RSV-B/hMPV
P23 Male 77 Type 2 diabetes, hypertension None EBV
P24 Male 36 Ankylosing spondylitis Aspergillus fumigatus Sau/HHV-7/hMPV/HCov-NL63/Aspergillus fumigatus
P25 Female 65 Hypertension None Cpt
P26 Female 70 Type 2 diabetes Brevundimonas diminuta None
P27 Male 62 None Kpn CMV
P28 Female 73 Hypertension None None
P29 Male 62 COPD None EBV/CMV
P30 Male 62 Hypertension None Hin/HHV-7/EBV
P31 Male 83 Hypertension, COPD None Kpn/EBV/HHV-7
P32 Female 57 SLE None Sau/HHV-1/EBV
P33 Female 70 None Eco HPV-B19
P34 Male 75 Type 2 diabetes None None
P35 Male 76 Anemia None HHV-1/EBV
P36 Male 85 Type 2 respiratory failure None Hin/Bca
P37 Male 73 Hypertension None EBV/CMV/HHV-7
P38 Male 51 Type 2 diabetes None EBV/HHV-7
P39 Female 84 COPD, hypertension None Spn/Hin
P40 Male 86 COPD Rhizobium radiobacter EBV
P41 Male 90 None None EBV/HHV-7

HCov-NL63
P42 Male 60 Pulmonary heart disease None HHV-7
P43 Male 71 Type 2 diabetes None HHV-1/HHV-7
P44 Female 67 COPD/Hypertension None RhV-A
P45 Female 68 None None None
P46 Male 74 Coronary heart disease None None
aCOPD, chronic obstructive pulmonary disease; Aba, Acinetobacter baumannii; Eco, Escherichia coli; Pce, Burkholderia cenocepacia; Kpn, Klebsiella pneumoniae; Pma,
Stenotrophomonas maltophilia; Spn, Streptococcus pneumoniae; Pae, Pseudomonas aeruginosa; Pst, Providencia stuartii; Sau, Staphylococcus aureus; Bca,Moraxella
catarrhalis; Sma, Serratia marcescens; HHV-7, human betaherpesvirus 7; RhV-A, rhinovirus A; RhV-B, rhinovirus B; HHV-1, human alphaherpesvirus 1; EBV, human
gammaherpesvirus 4; CMV, human betaherpesvirus 5; HCov-NL63, human coronavirus NL63; RSV-B, human respiratory syncytial virus B; Sgc, Streptococcus agalactiae;
HCoV-HKU1, human coronavirus HKU1; Spy, Streptococcus pyogenes; hMPV, human metapneumovirus; Nab, Nocardia abscessus; Mtu,Mycobacterium tuberculosis; SLE,
systemic lupus erythematosus; Cpt, Chlamydia psittaci; Hin, Haemophilus influenzae; HPV-B19, human parvovirus B19.
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Identification of bacteria by conventional microbiological detection methods
and mNGS. According to the comprehensive evaluation, 20 patients were diagnosed
with bacterial infections of the lower respiratory tract, and others were diagnosed with
nonbacterial infections. There was no statistical significance in demographic character-
istics between the two groups (Table 2). Of the lower respiratory tract samples from
these patients, 37 were sputum samples and the others were bronchoalveolar lavage
fluid (BALF). All specimens were detected by conventional methods, and a total of 38
bacteria were identified in 24 samples. A total of 34 strains of bacteria were the true-
positive pathogenic bacteria (Fig. 1A), and 4 strains (including 1 strain each of
Escherichia coli, Klebsiella pneumoniae, Brevundimonas diminuta, and Rhizobium radio-
bacter) were considered false-positive pathogens, accounting for 10.5% of the 38 bac-
teria. The majority of specimens (11 cases) contained a single pathogen, while 4 sam-
ples had two pathogens, and the remaining 5 cases had three pathogenic bacteria. An
acid-fast bacillus was detected using acid-fast staining. The most frequently detected
bacteria were Pseudomonas aeruginosa (seven cases), followed by Acinetobacter bau-
mannii (six cases) and Stenotrophomonas maltophilia (six cases) (Fig. 1B).

The lower respiratory tract specimens of the 46 patients were also sequenced by
mNGS. A total of 63 bacteria were identified from 28 specimens, while 29 strains (46%)
were false-positive pathogenic bacteria. The most commonly detected bacteria were K.
pneumoniae (nine cases), followed by Staphylococcus aureus (eight cases), Pseudomonas
aeruginosa (eight cases), and Acinetobacter baumannii (seven cases) (Fig. 1C).

Evaluating the performance of the sequencing reads, the genomic coverage,
and the relative abundance of each organism for the identification of pathogens.
With the final clinical diagnosis as the gold standard, ROC curves were used to evaluate
the performance of the sequencing reads, the genomic coverage, and the relative abun-
dance of each organism in predicting true-positive pathogenic bacteria. To rule out the
effect of sequencing depth and gene length in different pathogens, the number of
sequencing reads was replaced with the logarithm of reads per kilobase per million
mapped reads [lg(RPKM)], and the calculation for RPKM was gene reads/[the total mapped
reads (millions) � gene length (KB)]. As shown in Table 3, the lg(RPKM), genomic coverage,
and relative abundance of the true-positive pathogenic bacteria group were significantly
higher than those of the false-positive pathogenic bacteria group (P , 0.01). From the
ROC curve of the three indicators, we found that the area under the curve (AUC) of the lg
(RPKM) was the largest (0.99), followed by that for genomic coverage (0.98) and the relative
abundance (0.83). The corresponding cutoff values were 21.35, 12.92, and 0.25, respec-
tively (Fig. 2). The correlation between the three indicators of true-positive pathogenic bac-
teria was also analyzed using Spearman’s method, and a significant positive correlation
was observed between the lg(RPKM) and genomic coverage (r = 0.951). There was no sig-
nificant correlation between relative abundance and the other two indicators (Fig. 3).

Analysis of the true-positive viruses based on mNGS results. Because of the best
identification performance, the lg(RPKM) was used to identify true-positive viruses. As
shown in the Fig. 4A, no statistically significant difference was observed between the
lg(RPKM) of bacteria and viruses, and thus, we used the bacterial lg(RPKM) threshold to
identify the infectious viruses. A total of 61 viruses were identified by mNGS, 35 of
which were considered to be true-positive viruses according to the lg(RPKM) threshold
and the rest of which were considered to be false positives. The most frequent true-

TABLE 2 Demographic characteristics of bacterial and nonbacterial infections of the lower respiratory tracta

Group Age (yr)

Sex Department
Underlying disease(s)
presence

Male Female GER RES ICU Yes No
Bacterial infections 72.806 14.82 16 (80%) 4 (20%) 4 (20%) 11 (55%) 5 (25%) 18 (90%) 2 (10%)
Nonbacterial infections 69.046 12.09 17 (65.38%) 9 (34.62%) 4 (15%) 19 (73%) 3 (12%) 22 (85%) 4 (15%)
P value 0.348 0.336 0.391 0.684
aGER, geriatrics department; RES, respiratory department; ICU, intensive care unit.
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positive virus was human gammaherpesvirus 4 (10 cases), followed by human alpha-
herpesvirus 1 (5 cases). Human gammaherpesvirus 4 and human betaherpesvirus 7
accounted for 33% of the false-positive viruses (Fig. 4B). In addition, we studied which
viruses were prone to coinfection with particular bacteria. As shown in Fig. 5, human
gammaherpesvirus 4 was most likely to be coinfected with bacteria and 6 of 10 (60%)
strains of human gammaherpesvirus 4 were coinfected with 13 strains of bacteria.

FIG 1 Identification of pathogenic bacteria by conventional methods and mNGS. (A) The pathogen
distribution of 34 true-positive pathogenic bacteria. (B) Histogram of conventional methods to detect
pathogenic bacteria. (C) Histogram of mNGS detection for pathogenic bacteria.

TABLE 3 Comparison of three indicators between true- and false-positive pathogenic
bacteria (median [25th percentile, 75th percentile])

Group lg(RPKM) Coverage (%) Relative abundance (%)
True positive 0.35 (20.63, 1.04) 78.92 (40.02, 85.87) 14.10 (1.85, 43.60)
False positive 22.15 (22.55,21.55) 2.94 (0.60, 7.02) 0.20 (0.10, 2.20)
P value 0.00 0.00 0.00
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Performance of mNGS in antimicrobial resistance prediction. The resistance
genes of bacteria were predicted based on the mNGS data. We also investigated the con-
sistency between antibiotic resistance genes and the results of antimicrobial susceptibility
tests (AST). As shown in Table 4, the drug resistance genes blaOXA-23, blaOXA-51, and blaTEM
were detected in four strains of A. baumannii, while only blaOXA-23 and blaOXA-51 were
detected in one strain of A. baumannii. Enzymes encoded by blaOXA-23 and blaOXA-51 belong
to carbapenem-hydrolyzing class D b-lactamases, which can inactivate penicillin, cephalo-
sporin, and carbapenem and cannot typically be inhibited by clavulanic acid, sulbactam, or
tazobactam. The results of the drug sensitivity tests showed that all five strains of A. bau-
mannii were resistant to ampicillin/sulbactam (SAM), piperacillin-tazobactam (TZP), ceftazi-
dime (CAZ), cefepime (FEP), ceftriaxone (CRO), and imipenem (IPM).

The class A b-lactamase resistance genes were detected in four of the six strains
of Enterobacteriaceae, including blaCTX-M, blaSHV, blaTEM, and blaKPC. The enzymes
encoded by blaCTX-M, blaSHV, and blaTEM are extended-spectrum-lactamases (ESBLs),
which can hydrolyze penicillin (ampicillin [AMP]), cephalosporin (cefazolin [CZO],
CAZ, CRO), and monobactam (aztreonam [ATM]) and can be inhibited by enzyme
inhibitors. KPC carbapenemases encoded by blaKPC are resistant to penicillin, cephalo-
sporin, monobactam, and carbapenems; however, newer b-lactamase inhibitors can
inhibit them, such as avibactam, relebactam, and vaborbactam. As shown in Table 5,
the presence of antibiotic resistance genes was consistent with the results of drug
sensitivity tests.

The mecA gene encodes a low-affinity penicillin-binding protein (PBP2a) that con-
fers resistance to the entire class of b-lactams, except for ceftaroline and ceftobiprole.
mecA was detected in all three strains of S. aureus, and those strains were resistant to
penicillin (PEN) and oxacillin (OXA) (Table 6).

DISCUSSION

The detection of pathogenic bacteria by traditional methods is limited due to the
use of broad-spectrum antibiotics, as well as the presence of bacteria that are fastidi-
ous or slow growing. By directly sequencing the DNA or RNA from samples, mNGS

FIG 2 Evaluating the performance of (A) lg(RPKM), (B) genomic coverage, and (C) relative abundance for distinguishing
between the true- and false-positive pathogenic bacteria groups using ROC curves.
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effectively overcomes the deficiencies of traditional detection methods. In this study,
an acid-fast bacillus was detected using acid-fast staining, but it was unclear if the bac-
terium was Mycobacterium tuberculosis due to its slow growth phenotype. The bacte-
rium was subsequently identified as Mycobacterium tuberculosis using mNGS (634
reads). Mycobacterium tuberculosis was considered present if at least one read was
aligned at either the species or genus level due to difficulties in DNA extraction and
the possibility of contamination (15). The detection rate of false-positive pathogenic
bacteria by mNGS was significantly higher than that by conventional methods. Thus, it
is important to distinguish between true- and false-positive pathogenic bacteria when
interpreting mNGS results.

We used lg(RPKM), genomic coverage, and relative abundance as tools to identify
true-positive pathogenic bacteria from mNGS data and evaluated their identification
using ROC curves. An identification cutoff was also established. From our analysis, it
was concluded that the lg(RPKM) and genomic coverage could identify true-positive
pathogenic bacteria, with the performance of lg(RPKM) being the best. It was also seen
from the correlation analyses that no significant correlation was present between the
relative abundance and lg(RPKM) of pathogenic bacteria, mainly because the relative
abundance was influenced by the total number of bacterial genomes in the sample.
Therefore, the relative abundance was not ideal for the identification of true-positive
and false-positive pathogenic bacteria.

The traditional methods for detecting respiratory viruses are based on virus-infected
cell cultures, immunology-related reactions between antigens and antibodies, or PCR anal-
yses (16). Virus isolation and culture is considered the gold standard for the identification
of respiratory viruses (17), while its 4-week time requirement is too long to be used in clini-
cal laboratories. The disadvantages of immunology-related reactions can lead to false-neg-
ative results during the window period (18). PCR is a targeted detection method but

FIG 3 The correlation among the three indicators was analyzed using Spearman’s method. (A) A significant positive
correlation was observed between lg(RPKM) and genomic coverage. (B) No significant correlation was observed between
the relative abundance and lg(RPKM). (C) No significant correlation was observed between the relative abundance and
genomic coverage.
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cannot be used for the detection of unknown viruses (19). Thus, the application of mNGS
overcomes such problems for the identification of respiratory viruses.

Due to the limitations of detection methods in our study (indirect immunofluores-
cence), most respiratory viruses were not detected by traditional detection methods.
However, mNGS greatly improved the detection rate of respiratory virus and effec-
tively made up for the limitations of traditional detection methods for unknown
viruses. In our study, herpesvirus was the predominant true-positive virus, accounting
for 54.3% of the total true-positive viruses. It has been reported that rhinovirus, influ-
enza A virus, and adenovirus were the main pathogenic viruses of community-
acquired pneumonia (20), and we could conclude from our research that herpesvirus
was the main virus detected in hospitalized patients. Twenty-five false-positive her-
pesviruses were identified, accounting for 96.2% of the total false-positive viruses.
False positives were caused by the different genome lengths of various viruses (ge-
nome length of herpesviruses . 150 Kb, genome length of nonherpesviruses # 30
Kb). The longer the viral genome, the more reads were produced, and the higher the
false-positive rate.

According to previous studies, respiratory viruses can influence the pathogens of
pneumonia by altering the carrying structure of bacteria in the upper respiratory tract
and the colonization of the lower respiratory tract by specific bacteria (2). Thus, we
investigated which viruses were prone to coinfection with particular bacteria. Our find-
ings showed that human gammaherpesvirus 4 was prone to coinfection with P.

FIG 4 Analysis of the true-positive viruses based on mNGS results. (A) There was no statistically significant
difference between the lg(RPKM) of bacteria and viruses. (B) Identification of the true-positive viruses based on
the bacterial lg(RPKM) threshold.
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aeruginosa, A. baumannii, and S. maltophilia. Another study also reported that human
gammaherpesvirus 4 was associated with fever or acute exacerbation of chronic lung
disease (21), possibly due to the bacteria with which the patients were coinfected.

The traditional ASTs include disk diffusion and MIC methods, which are too time-
consuming to be used for precision medicine. Predicting resistance genes by mNGS
provides us with a new strategy to infer antimicrobial susceptibility. In our study, the
presence of drug-resistant genes was consistent with the results of ASTs. Additionally,
the drug resistance genes identified by mNGS were associated with bacterial suscepti-
bility to b-lactam antibiotics, while genes that conferred resistance to other classes of
antibiotics were not detected. Additionally, five strains of Pseudomonas aeruginosa that
were resistant to carbapenem antibiotics did not contain genes associated with drug
resistance. That finding may be due to the following reasons: (i) there is not a standard
database that contains all validated antimicrobial resistance genes or point mutations
in genes that are associated with antimicrobial resistance, (ii) predicting antimicrobial
resistance accurately using mNGS is difficult due to the lack of knowledge of drug re-
sistance caused by genetic mutations and the emergence of new resistance mecha-
nisms, and (iii) increased expressions of intrinsic resistant genes (e.g., those encoding
efflux pumps, outer membrane proteins, and intrinsic b-lactamase) can also lead to
antimicrobial resistance (22), especially in P. aeruginosa and A. baumannii. Thus, many
challenges remain in inferring antimicrobial susceptibility using mNGS data.

FIG 5 Heat map showing the trends in coinfections between bacteria and viruses.

TABLE 4 Drug resistance genes of A. baumannii predicted by mNGS and the corresponding
ASTa

Patient ID Resistance genes

Resistance to drug:

SAM TZP CAZ CRO FEP IPM
P3 blaOXA-23, blaOXA-51, blaTEM R R R R R R
P11 blaOXA-23, blaOXA-51, blaTEM R R R R R R
P13 blaOXA-23, blaOXA-51 R R R R R R
P15 blaOXA-23, blaOXA-51, blaTEM R R R R R R
P18 blaOXA-23, blaOXA-51, blaTEM R R R R R R
aR, resistant.
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This study had limitations. Fungal pathogens were not analyzed due to their small
sample size, most of the true-positive viruses identified by the bacterial lg(RPKM)
threshold could not be confirmed by other methods, and the clinical significance of
the herpesvirus detections remained to be determined. However, despite this, our
study still provided a new perspective on the applicability of mNGS in LRTIs.
Compared with conventional microbiological detection methods, mNGS has multiple
advantages. Although many challenges remain necessary to overcome for its use in
clinical applications, mNGS will be a revolutionary technology for clinical microbio-
logical diagnostics.

MATERIALS ANDMETHODS
Ethics statement. This project was reviewed and approved by the Ethical Review Committee of

Zhenjiang First People’s Hospital. An ethics review was exempted as the study was retrospective and
the patients were anonymized.

Specimen collection and processing.We retrospectively analyzed the clinical data of 46 patients in
our hospital who were suspected to have LRTIs. The lower respiratory tract specimens, including sputum
or bronchoalveolar lavage fluid (BALF), from these patients were tested simultaneously by conventional
microbiological detection methods and mNGS. The sputum or BALF of each patient was divided into
two portions; one was sent to the clinical microbiology laboratory for conventional microbiological
detection, and the other was sent to a commercial laboratory for mNGS testing.

Conventional microbiological detection. In the clinical microbiology laboratory, specimens were
used for special pathological staining and semiquantitative culture. Gram staining (BASO), acid-fast
staining (BJ-ec), and lactic acid phenol cotton blue staining (RICH SCIENCE) were performed to identify
bacteria, Mycobacterium tuberculosis complex, and fungi, respectively. Bacterial culture was performed
by inoculating specimens on blood agar plates (CHROMagar), MacConkey agar (CHROMagar), and choc-
olate agar (CHROMagar) and incubating at 35°C for 24 to 48 h. If a typical colony of pathogenic bacteria
grew, bacterial identification and drug sensitivity tests were carried out using the Vitek 2 compact sys-
tem (bioMérieux). Sabouraud agar plates (CHROMagar) were used for fungi culture at 28°C for 7 days.
Filamentous fungi were identified according to their morphology. Influenza A/B, parainfluenza 1/2/3,
human respiratory syncytial virus (hRSV), adenovirus, Mycoplasma pneumoniae, Chlamydia, and
Legionella pneumophila were detected by indirect immunofluorescence (Euroimmun).

The mNGS test. Specimens (3 mL) used for mNGS were collected in sterile containers, which were
then sealed and placed in a foam box containing an ice pack. Specimens were then immediately trans-
ported to a commercial laboratory (Vision Medicals) for pathogen testing. Once the laboratory received
the specimens, sample processing, nucleic acid extraction, DNA library preparation, high-throughput
sequencing, bioinformatics analysis, and the interpretation of mNGS data were performed according to
the laboratory’s standard operating procedures. To detect the pathogens as much as possible, DNA and
RNA sequencing were performed simultaneously. The total DNA and RNA from all samples were
extracted using a QIAamp UCP pathogen DNA kit (Qiagen) and QIAamp viral RNA kit (Qiagen), respec-
tively. Human DNA was removed using Benzonase (Qiagen) and Tween 20 (Sigma), and rRNA was
removed by a Ribo-Zero rRNA removal kit (Illumina). cDNA was synthesized by reverse transcription.
Libraries were constructed using a Nextera XT DNA library prep kit (Illumina), and the quality of libraries
was assessed by Qubit dsDNA HS assay kit and high sensitivity DNA kit (Agilent) on an Agilent 2100
Bioanalyzer. Sequencing was performed using Illumina Nextseq CN500. Peripheral blood mononuclear
cell (PBMC) samples with 105 cells/mL from healthy donors were used as a negative control in parallel

TABLE 5 Drug resistance genes of Enterobacteriaceae species predicted by mNGS and the corresponding ASTa

Patient ID Bacteria Resistance gene(s)

Resistance to drug:

SAM TZP CAZ CRO FEP IPM AMP CZO ATM
P9 E. coli blaCTX-M R S R R I S R R R
P19 E. coli blaCTX-M, blaTEM R S R R R S R R R
P10 K. pneumoniae blaCTX-M, blaSHV, blaTEM, blaKPC R R R R R R R R
P14 Serratia marcescens blaCTX-M, blaSHV, blaTEM R R R R S R
aR, resistant; I, intermediate; S, susceptible

TABLE 6 Drug resistance genes of S. aureus predicted by mNGS and the corresponding ASTa

Patient ID

Resistance to drug:

PEN OXA
P14 R R
P16 R R
P17 R R
aAll three resistance genes aremecA. R, resistant.
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with each batch, and the same protocol was performed alongside the specimens to serve as nontem-
plate controls (23). The high-quality data were obtained by removing low-quality reads, adapter contam-
ination, duplicate reads, and reads shorter than 50 bp using Trimmomatic (24). Low-complexity reads
were removed by Kcomplexity with default parameters (25). Human sequence data were identified and
excluded by mapping to a human reference genome (hg38) using Burrows-Wheeler Aligner software
(26). A set of criteria similar to the National Center for Biotechnology Information (NCBI) criteria (https://
www.ncbi.nlm.nih.gov/assembly/help/anomnotrefseq/) were designed for selecting representative as-
sembly for microorganisms (bacteria, viruses, fungi, protozoa, and other multicellular eukaryotic patho-
gens) from the NCBI nucleotide and genome databases. Pathogen lists were selected according to Johns
Hopkins ABX Guide, Manual of Clinical Microbiology, and clinical case reports or research articles pub-
lished in current peer-reviewed journals. The final database included about 13,000 genomes. Microbial
reads were then aligned to database with SNAP v1.0 beta.18. Virus-positive was defined as the coverage
of three or more nonoverlapping regions on the genome. Other pathogens were considered to be posi-
tive detection if the reads per million (RPM) ratio or RPM-r (the RPM of a given species or genus in the
clinical sample divided by the RPM in negative control) was $5 (23). Sequencing reads, genomic cover-
age, the relative abundance of each organism, and drug resistance genes were included in the mNGS
report.

Diagnosis of lower respiratory tract infections. The final clinical diagnoses of the 46 patients were
confirmed based on the comprehensive evaluation of clinical symptoms, X-ray evidence, traditional
microbiological tests, mNGS, serological examinations [including the fungus (1-3)-b-D-glucan test, serum
cryptococcal capsular polysaccharide antigen test, and Mycoplasma pneumoniae serological antibody
detection], and other clinical examinations (the galactomannan antigen detection test). The pathogens
detected by traditional tests or mNGS were considered true positives only if they were consistent with
the final clinical diagnosis; otherwise, they were considered false positives (colonizing microorganism or
contaminant microorganism).

Statistical analysis. The data were analyzed using SPSS 25.0 software. The Shapiro-Wilk test was
used to determine whether the quantitative data conformed to a normal distribution, and the Student’s
t test and the Wilcoxon rank test were used to compare two groups that were in normal distribution or
not in normal distribution, respectively. Pearson chi-squared (x 2) test or Fisher’s exact test was used for
the comparison of frequencies of the categorical data. The correlation between two different indicators
was analyzed and expressed as Spearman’s r values. An ROC curve was drawn to choose the best indica-
tor of the true-positive specific pathogen. A P value of,0.05 was considered statistically significant.
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