Research Article

T-Cell Cytokine Gene Polymorphisms and Vitamin D Pathway Gene Polymorphisms in End-Stage Renal Disease due to Type 2 Diabetes Mellitus Nephropathy: Comparisons with Health Status and Other Main Causes of End-Stage Renal Disease

Alicja E. Grzegorzewska,¹ Grzegorz Ostromecki,² Paulina Zielińska,³ Adrianna Mostowska,⁴ and Paweł P. Jagodziński⁴

¹Department of Nephrology, Transplantology and Internal Diseases, Poznań University of Medical Sciences (PUMS), 49 Przybyszewskiego Boulevard, 60-355 Poznań, Poland

²DaVita Clinic Piła Dialysis Center, Wojska Polskiego 43, 64-420 Piła, Poland

³Student Nephrology Research Group, Department of Nephrology, Transplantology and Internal Diseases, PUMS, Przybyszewskiego 49, 60-355 Poznań, Poland

⁴Department of Biochemistry and Molecular Biology, PUMS, Święcickiego 6, 60-781 Poznań, Poland

Correspondence should be addressed to Alicja E. Grzegorzewska; alicja_grzegorzewska@yahoo.com

Received 17 July 2014; Revised 22 September 2014; Accepted 22 September 2014; Published 22 December 2014

Academic Editor: Salwa Ibrahim

Copyright © 2014 Alicja E. Grzegorzewska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. T-cell cytokine gene polymorphisms and vitamin D pathway gene polymorphisms were evaluated as possibly associated with end-stage renal disease (ESRD) resulting from type 2 diabetes mellitus (DM) nephropathy. *Methods*. Studies were conducted among hemodialysis (HD) patients with ESRD due to type 2 DM nephropathy, chronic glomerulonephritis, chronic infective tubulointerstitial nephritis, and hypertensive nephropathy as well as in healthy subjects. A frequency distribution of T-cell-related interleukin (IL) genes (*IL18* rs360719, *IL12A* rs568408, *IL12B* rs3212227, *IL4R* rs1805015, *IL13* rs20541, *IL28B* rs8099917, *IL28B*, and rs12979860) and vitamin D pathway genes (GC genes: rs2298849, rs7041, and rs1155563; VDR genes: rs2228570, rs1544410; and RXRA genes: rs10776909, rs10881578, and rs749759) was compared between groups. *Results*. No significant differences in a frequency distribution of tested polymorphisms were shown between type 2 DM nephropathy patients and controls. A difference was found in *IL18* rs360719 polymorphic distribution between the former group and chronic infective tubulointerstitial nephritic patients (*P*_{trend} = 0.033), which also differed in this polymorphism from controls (*P*_{trend} = 0.005). *Conclusion*. T-cell cytokine and vitamin D pathway gene polymorphisms are not associated with ESRD due to type 2 DM nephropathy in Polish HD patients. *IL18* rs360719 is probably associated with the pathogenesis of chronic infective tubulointerstitial nephritis.

1. Introduction

Diabetes mellitus (DM) is the most common cause of endstage renal disease (ESRD) in many hemodialysis (HD) centers. In Australia and New Zealand, the incident ESRD population (1991–2005) who began renal replacement therapy (RRT) included 30.0% type 2 DM and 4.5% type 1 DM subjects [1]. In the HEMODIALYSIS (HEMO) study, the group of HD patients comprised approximately 45% of DM subjects [2]. Diabetic ESRD patients compared to nondiabetic ESRD subjects show higher both mortality rate [3] and prevalence of coronary artery disease (CAD) [4], are more prone to severe infections [5] and worse response to hepatitis B vaccination [6], and more often suffer from adynamic bone disease associated with low serum parathyroid hormone (PTH) levels [7]. In this paper we will focus on ESRD due to type 2 DM nephropathy. Together with altered glucose metabolism and insulin resistance, deficiency of vitamin D [8] and aberrant T-cell cytokine balance [9] were found to be associated with

				summer from from the more	Principles in the to	thursd a mining	mine Poince.	
Gene symbol	rs number	Alleles	Primers for PCR amplification $(5'-3')$	Annealing temp. (°C)	PCR product length (bp)	HRM ^a analysis Melting temp. range (°C)	RFLI Restriction enzyme	^{bb} analysis Restriction fragment length (bp)
	rs7041	G/T	F: GGAGGTGAGTTTATGGAACAGC R: GGCATTAAGCTGGTATGAGGTC	66.3	493		HaellI	T = 493 G = 414 + 79
GC	rs1155563	C/T	F: GGTTATTCTAAGACTGTGCTCTTGC R: ATGTGTTCTCACTGTTCGACTCC	63.0	116	71-78		
	rs2298849	C/T	F: TCCACTGGCAAAACACATTAC R: GGGACATCTGCATTTATCCTG	60.6	118	73–83		
	rs10881578	A/G	F: TCTTGAGCAATGCCAGCAG R: CCACAGCTCACACATCCAATC	60.6	75	80-90		
RXRA	rs10776909	C/T	F: CAGCCTGTGGCCTGCTCA R: AACCTCCGGCCCTTGGAG	60.6	95	82-92		
	rs749759	A/G	F: ATAGGGCTTGCCTGCCTAGA R: CTCCACCATAGCCCAAGTGA	62.6	382		BstXI	A = 382 G = 243 + 139
activ	rs1544410	A/G	F: GGAGACACAGATAAGGAAATAC R: CCGCAAGAAACCTCAAATAACA	60.6	248		FspI	A (B) = 248 G (b) = $175 + 73$
V DA	rs2228570	C/T	F: GCACTGACTCTGGCTCTGAC R: ACCCTCCTGCTCCTGTGGCT	72.5	341		FokI	C(F) = 341 T (f) = 282 + 59
^a HRM analysis: ^b RFLP analysis:	: high resolutio restriction fra	n melt an: gment len	alysis. gth polymorphism analysis.					

TABLE 1: HRM and RFLP conditions for the identification of polymorphisms genotyped in the vitamin D pathway related genes.

TABLE 2: Characteristics of hemodialy	lysis patients ($n = 893$)
---------------------------------------	------------------------------

Parameter	Type 2 DM nephropathy	Other causes of ESRD	P value
Demographic data	<i>n</i> = 366	<i>n</i> = 527	
Male sex, <i>n</i> (% of all)	201 (54.9)	307 (58.3)	0.337 ^b
Age at RRT beginning, years	62.9 ± 14.1	57.2 ± 17.2	< 0.0001 ^c
RRT duration, years	3.29 (0.06-28.0)	4.42 (0.12-28.2)	< 0.0001 ^c
Death rate, cases per 100 patient-years	0.48	0.42	
Death rate, cases per 100 RRT-years	7.97	4.63	
Clinical data	<i>n</i> = 332	<i>n</i> = 527	
Coronary artery disease, <i>n</i> (% of all)	174 (52.4)	168 (31.9)	< 0.0001 ^b
Myocardial infarction, n (% of all)	98 (29.5)	101 (19.2)	0.009 ^b
Parathyroidectomy, <i>n</i> (% of all)	2 (0.60)	21 (3.98)	0.0009 ^b
Treatment with cinacalcet hydrochloride	24 (7.2)	98 (18.6)	$< 0.0001^{b}$
Laboratory data	<i>n</i> = 366	<i>n</i> = 527	
Anti-HBc positive, <i>n</i> (% of all)	95 (26.0)	126 (23.9)	0.528 ^b
HBsAg positive, n (% of all anti-HBc positive)	7 (7.4)	11 (8.7)	0.807^{b}
Anti-HCV positive, <i>n</i> (% of all)	26 (7.1)	57 (10.8)	0.062 ^b
HCV RNA positive, <i>n</i> (% of all anti-HCV positive)	14 (53.8)	39 (68.4)	0.225^{b}
Responders to hepatitis B vaccine, <i>n</i> (% of all)	202 (55.2)	315 (59.8)	0.191 ^b
25(OH)D (ng/mL) ^a	13.3 ± 3.9	14.5 ± 5.6	0.182 ^{a,d}
Total calcium (mg/dL)	8.83 ± 0.67	8.91 ± 0.82	0.264^{d}
Phosphates (mg/dL)	5.03 ± 1.44	5.25 ± 1.49	0.054^{d}
PTH (pg/mL)	296 (12.9–3,757)	463 (12.7–3,741)	< 0.0001 ^c
Total alkaline phosphatase (U/L)	98.2 (25.8–1,353)	97.1 (40.5–1,684)	0.528 ^c

25(OH)D: 25-hydroxycholecalciferol, anti-HBC: antibodies to core antigen of hepatitis B virus, anti-HCV: antibodies to hepatitis C virus, HBsAg: surface antigen of hepatitis B virus, DM: diabetes mellitus, ESRD: end-stage renal disease, HCV RNA: ribonucleic acid of hepatitis C virus, PTH: parathyroid hormone, and RRT: renal replacement therapy.

A significant difference is indicated using bold font.

 $a^{n} = 66$ for type 2 DM nephropathy; n = 96 for other renal diseases.

^bFisher's exact test.

^cMann-Whitney test.

^dUnpaired *t*-test, Welch corrected.

this severe complication of type 2 DM. There is a link between vitamin D and T-cell functional balance: active form of vitamin D $[1,25(OH)_2D]$ has the inhibitory effect on the T helper (Th) 17 and Th1 response [10].

Abnormalities in T-cell cytokine equilibrium [11–13] and plasma vitamin D concentrations [14–16] are related to cardiovascular events [13, 16] and immunononcompetence during infections [11, 14] and vaccinations [12, 15]. Serum PTH levels are dependent on serum vitamin D concentrations [17], and T cells are implicated in the mechanism of PTH action in bone [18].

Vitamin D activity may be adequately expressed if vitamin D pathway components (vitamin D binding protein, also referred to as group-specific component (GC), vitamin D receptor (VDR), and retinoid X receptors (RXRs)) are properly structured and regulated. The recent study by Zhang et al. [19] has shown that *VDR* BsmI polymorphism correlates with type 2 DM nephropathy and may be susceptible for early onset of this nephropathy. Among T-cell-related cytokine gene polymorphisms, promoter polymorphic variants of *IL*10 [20, 21] and *IL6* [22] were already associated with the risk of type 2 DM nephropathy. Monocyte chemoattractant protein 1 (MCP-1) has been reported to participate in the pathogenesis of early type 2 DM nephropathy [23], but *MCP1* polymorphism in the promoter region was not differentially distributed between ESRD patients with type 2 DM nephropathy and healthy controls [24, 25].

To our knowledge, there are scarce data, if any, on ESRD due to type 2 DM nephropathy showing a frequency distribution of single nucleotide polymorphisms (SNPs) of T-cell-related IL genes: IL18 rs360719, IL12A rs568408, IL12B rs3212227, IL4R rs1805015, IL13 rs20541, IL28B rs8099917, and IL28B rs12979860 as well as vitamin D pathway genes: GC genes (GC rs2298849, rs7041, and rs1155563), VDR genes (VDR rs2228570, rs1544410), and RXR α genes (RXRA rs10776909, rs10881578, and rs749759). The aim of our study was to determine the potential association between aforementioned polymorphisms of T-cell-related cytokine genes and vitamin D pathway genes and ESRD due to type 2 DM nephropathy. For comparisons, aforementioned genotype frequencies of healthy controls as well as ESRD patients with other main causes of ESRD were used. Polymorphism related associations, if exist, could contribute to explanation of susceptibility to ESRD due to type 2 DM nephropathy and phenotype differences between ESRD patients with type 2 DM nephropathy and other causes of ESRD.

Parameter	Type 2 DM nephropathy (1)	Chronic glomerulonephritis (2)	Chronic tubulointerstitial nephritis (3)	Hypertensive nephropathy (4)	<i>P</i> value
Demographic data	<i>n</i> = 366	<i>n</i> = 178	<i>n</i> = 118	<i>n</i> = 231	
Male sex, n (% of all)	201 (54.9)	110 (61.8)	63 (53.4)	134 (58.0)	0.386 ^b < 0.0001 ^c
Age at RRT beginning, years	62.9 ± 14.1	47.4 ± 17.6	59.9 ± 16.6	63.3 ± 13.6	1 versus 2: <0.001 ^c 2 versus 3: <0.001 ^c 2 versus 4: <0.001 ^c
RRT duration, years	3.29 (0.06-28.0)	5.73 (0.16–28.2)	4.82 (0.33-26.5)	3.82 (0.12–20.4)	1 versus 2: <0.001 [°] 1 versus 3: <0.01 [°] 2 versus 4: <0.001 [°]
Death rate, cases per 100 patient-years	0.48	0.41	0.44	0.42	
Death rate, cases per 100 dialysis-years	7.97	2.87	5.28	6.70	
Clinical data	<i>n</i> = 332	<i>n</i> = 178	<i>n</i> = 118	<i>n</i> = 231	
Coronary artery disease, <i>n</i> (% of all)	174 (52.4)	43 (24.2)	29 (24.6)	96 (41.5)	<0.0001 ^b 1 versus 2: <0.0001 ^e 1 versus 3: <0.0001 ^e 1 versus 4: 0.013 ^e 2 versus 4: 0.0002 ^e 3 versus 4: 0.002 ^e .0.0001 ^b
Myocardial infarction, <i>n</i> (% of all)	98 (29.5)	25 (14.0)	17 (14.4)	59 (25.5)	<0.0001° 1 versus 2: <0.0001° 1 versus 3: <0.0001° 1 versus 4: <0.0001° 2 versus 4: 0.005° 3 versus 4: 0.02°
PTX, <i>n</i> (% of all)	2 (0.60)	14 (7.9)	5 (4.2)	2 (0.87)	<0.0001° 1 versus 2: <0.0001° 1 versus 3: 0.015° 2 versus 4: 0.0004° 3 versus 4: 0.046°
Treatment with cinacalcet hydrochloride	24 (7.2)	48 (27.0)	21 (17.8)	29 (12.6)	<0.0001 ^b 1 versus 2: <0.0001 ^e 1 versus 3: 0.0008 ^e 1 versus 4: 0.017 ^e 2 versus 4: 0.003 ^e
Laboratory data	<i>n</i> = 366	<i>n</i> = 178	<i>n</i> = 118	<i>n</i> = 231	
Anti-HBc positive, n (% of all)	95 (26.0)	53 (29.8)	25 (21.2)	48 (20.8)	0.233 ^b
HBsAg positive, <i>n</i> (% of all anti-HBc positive)	7 (7.4)	10 (18.9)	0 (0.0)	1 (2.08)	0.0007 ^b 1 versus 2: 0.032 ^e 2 versus 3: 0.007 ^e 2 versus 4: 0.001 ^e
Anti-HCV positive, <i>n</i> (% of all)	26 (7.1)	33 (18.5)	11 (9.3)	13 (5.6)	<0.0001 ⁻ 1 versus 2: 0.0004 ^e 2 versus 3: 0.031 ^e 2 versus 4: <0.0001 ^e
HCV RNA positive, <i>n</i> (% of all anti-HCV positive)	14 (53.8)	27 (81.8)	4 (36.4)	8 (61.5)	<0.0001 ^b 1 versus 2: <0.0001 ^e 2 versus 3: 0.0004 ^e 2 versus 4: <0.0001 ^e

TABLE 3: Characteristics of hemodialysis patients grouped by a cause of ESRD.

Parameter	Type 2 DM nephropathy (1)	Chronic glomerulonephritis (2)	Chronic tubulointerstitial nephritis (3)	Hypertensive nephropathy (4)	<i>P</i> value
Responders to hepatitis B vaccine, <i>n</i> (% of all)	202 (55.2)	107 (60.1)	70 (59.3)	138 (59.7)	0.598 ^b
25(OH)D (ng/mL) ^a	13.3 ± 3.9	14.2 ± 7.3	15.7 ± 4.3	14.1 ± 3.9	0.453 ^d
Total calcium (mg/dL)	8.83 ± 0.67	8.85 ± 0.85	9.04 ± 0.61	8.88 ± 0.87	0.239 ^d
Phosphates (mg/dL)	5.03 ± 1.44	5.63 ± 1.59	4.92 ± 1.29	5.15 ± 1.47	0.0007 ^d 1 versus 2: <0.001 ^c 2 versus 3: <0.01 ^c 2 versus 4: <0.05 ^c
PTH (pg/mL)	296 (12.9–3,757)	632 (12.7–3,118)	426 (45.8–3,741)	364 (19.5–2,351)	<0.0001 ^c 1 versus 2: <0.001 ^c 1 versus 3: <0.05 ^c 1 versus 4: <0.05 ^c 2 versus 4: <0.001 ^c
Total ALP (U/L)	98.2 (25.8–1,353)	113 (44.5–860)	89.0 (40.5–1,684)	90.9 (41.0–1,110)	0.010 ^c 2 versus 4: <0.05 ^c

25(OH)D: 25-hydroxycholecalciferol, anti-HBC: antibodies to core antigen of hepatitis B virus, anti-HCV: antibodies to hepatitis C virus, HBsAg: surface antigen of hepatitis B virus, DM: diabetes mellitus, ESRD: end-stage renal disease, HCV RNA: ribonucleic acid of hepatitis C virus, PTH: parathyroid hormone, and RRT: renal replacement therapy.

^an = 66 for type 2 DM nephropathy, n = 40 for chronic glomerulonephritis, n = 13 for chronic interstitial nephritis, and n = 43 for hypertensive nephropathy. ^bChi squared test.

^cKruskal-Wallis test.

^dANOVA test.

^eFisher's exact test.

2. Material and Methods

2.1. Patients and Controls. Blood samples for genotype analyses are collected since 2009 from ESRD patients (estimated glomerular filtration rate (eGFR) category G5 in accordance with KDIGO recommendations [26]). All subjects were treated with HD on enrolment. Controls were recruited from blood donors and healthy volunteers unrelated to patients. All enrolled individuals live/lived in the Greater Poland region of Poland.

Genotyping of *IL18* rs360719, *IL12A* rs568408, *IL12B* rs3212227, *IL4R* rs1805015, and *IL13* rs20541 polymorphisms was performed in 2009–2012 using currently available material. Results had been analyzed in our previous studies in the context of responsiveness to the surface antigen of hepatitis B virus (HBsAg) using data of all (not segregated) patients [27–30]. For this study, we used results of controls and patients with type 2 DM nephropathy, chronic glomerulonephritis, chronic infective tubulointerstitial nephritis, and hypertensive nephropathy.

IL28B rs8099917, *IL28B* rs12979860, *GC* rs2298849, *GC* rs7041, *GC* rs1155563, *VDR* rs2228570, *VDR* rs1544410, *RXRA* rs10776909, *RXRA* rs10881578, and *RXRA* rs749759 polymorphisms were analyzed in winter 2013/2014 among HD patients with ESRD (n = 893) due to type 2 DM nephropathy (n = 366), chronic glomerulonephritis (n = 178), chronic infective tubulointerstitial nephritis (n = 118), and hypertensive nephropathy (n = 231) as well as healthy controls (n = 378).

DM was not diagnosed in patients having renal diseases other than type 2 DM nephropathy.

Healthy individuals and HD patients with other renal diseases as cause of ESRD served as reference groups for a frequency distribution of tested polymorphic variants. All examined subjects were of Caucasian race.

Basic clinical and laboratory data were collected on enrolment and they are updated every year.

2.2. Genotyping. Genomic DNA for genotype analysis was isolated from peripheral blood lymphocytes by salt-out extraction procedure.

Genotyping of *IL18* rs360719, *IL12A* rs568408, *IL12B* rs3212227, *IL4R* rs1805015, and *IL13* rs20541 polymorphisms was performed as previously described [27–30].

IL28B rs8099917 and *IL28B* rs12979860 polymorphisms were genotyped using high-resolution melting curve analysis (HRM) on the LightCycler 480 system (Roche Diagnostics, Mannheim, Germany) with the use of 5x HOT FIREPol EvaGreen HRM Mix (Solis BioDyne, Tartu, Estonia). The PCR program consisted of an initial step at 95°C for 15 min to activate HOT FIREPol DNA polymerase, followed by 50 amplification cycles of denaturation at 95°C for 10 s, annealing at 61°C for 10 s, and elongation at 72°C for 15 s. Amplified DNA fragments were then subjected to HRM with 0.1°C increments in temperatures ranging from 76 to 96°C. Primers used for PCR with subsequent HRM analysis were as follows: rs8099917F 5'TTTGTCACTGTTCCTCCTTTTG3', rs8099917R 5'AAGACATAAAAAGCCAAGCTACCA3'

Parameter	Type 2 DM nephropathy (frequency)	Healthy subjects (frequency)	Odds ratio (95% CI)	Two-tailed P	P _{trend}
IL18 rs360719	<i>n</i> = 248	<i>n</i> = 240			
TT	133 (0.54)	121 (0.50)	Referent		0.233
CT	102 (0.41)	98 (0.41)	0.947 (0.654-1.372)	0.777	
CC	13 (0.05)	21 (0.09)	0.563 (0.270-1.174)	0.145	
CT + CC	115 (0.46)	119 (0.50)	0.879 (0.616-1.254)	0.526	
MAF	128 (0.26)	140 (0.29)	0.845 (0.638-1.119)	0.268	
IL12A rs568408	<i>n</i> = 234	<i>n</i> = 240			
GG	173 (0.74)	171 (0.71)	Referent		0.782
AG	52 (0.22)	63 (0.26)	0.816 (0.534-1.246)	0.389	
AA	9 (0.04)	6 (0.03)	1.483 (0.517-4.256)	0.600	
AG + AA	61 (0.26)	69 (0.29)	0.874 (0.583-1.309)	0.538	
MAF	70 (0.15)	75 (0.16)	0.976 (0.684–1.393)	0.965	
IL12B rs3212227	<i>n</i> = 247	<i>n</i> = 240			
AA	156 (0.63)	151 (0.63)	Referent		0.639
AC	84 (0.34)	77 (0.32)	1.056 (0.721–1.547)	0.846	
CC	7 (0.03)	12 (0.05)	0.563 (0.217–1.473)	0.345	
AC + CC	91 (0.37)	89 (0.37)	0.990 (0.685–1.430)	1.000	
MAF	98 (0.20)	101 (0.21)	0.927 (0.680–1.268)	0.699	
IL4R rs1805015	<i>n</i> = 303	<i>n</i> = 225			
TT	205 (0.68)	162 (0.72)	Referent		0.304
CT	82 (0.27)	53 (0.24)	1.223 (0.818-1.828)	0.360	
CC	16 (0.05)	10 (0.04)	1.264 (0.559–2.861)	0.684	
CT + CC	98 (0.32)	63 (0.28)	1.229 (0.843–1.793)	0.295	
MAF	114 (0.19)	73 (0.16)	1.197 (0.866–1.653)	0.313	
IL13 rs20541	<i>n</i> = 303	<i>n</i> = 230			
CC	168 (0.55)	124 (0.54)	Referent		0.457
CT	114 (0.38)	84 (0.36)	1.002 (0.695–1.443)	1.000	
TT	21 (0.07)	22 (0.10)	0.705 (0.371-1.338)	0.324	
CT + TT	135 (0.45)	106 (0.46)	0.940 (0.666–1.326)	0.726	
MAF	156 (0.26)	128 (0.28)	0.899 (0.684–1.182)	0.489	
IL28B rs8099917	<i>n</i> = 339	<i>n</i> = 375			
TT	219 (0.65)	245 (0.65)	Referent		0.504
GT	107 (0.31)	123 (0.33)	0.973 (0.709–1.336)	0.872	
GG	13 (0.04)	7 (0.02)	2.078 (0.814-5.302)	0.169	
GT + GG	120 (0.35)	130 (0.35)	1.033 (0.759–1.405)	0.875	
MAF	133 (0.20)	137 (0.18)	1.092 (0.837–1.423)	0.560	
IL28B rs12979860	<i>n</i> = 336	<i>n</i> = 372			
CC	141 (0.42)	164 (0.44)	Referent		0.669
CT	157 (0.47)	166 (0.45)	1.100 (0.804–1.505)	0.576	
TT	38 (0.11)	42 (0.11)	1.052 (0.643–1.723)	0.900	
CT + TT	195 (0.56)	208 (0.56)	1.090 (0.809–1.469)	0.595	
MAF	116 (0.29)	250 (0.34)	1.049 (0.842–1.307)	0.713	
GC rs2298849	$n = 364^{a}$	<i>n</i> = 375			
ТТ	226 (0.62)	237 (0.63)	Referent		0.250
СТ	110 (0.30)	124 (0.33)	0.930 (0.679–1.274)	0.688	
CC	28 (0.08)	14 (0.04)	2.097 (1.077-4.086)	0.035	
CT + CC	138 (0.38)	138 (0.37)	1.049 (0.778–1.413)	0.762	
MAF	166 (0.23)	152 (0.20)	1.162 (0.907–1.490)	0.262	

TABLE 4: Comparison of the distribution of polymorphic variants of tested genes between ESRD patients treated with hemodialysis due to type 2 DM nephropathy and healthy subjects.

		TABLE 1. Continued			
Parameter	Type 2 DM nephropathy (frequency)	Healthy subjects (frequency)	Odds ratio (95% CI)	Two-tailed P	P_{trend}
GC rs7041	n = 343	<i>n</i> = 361			
GG	112 (0.33)	116 (0.32)	Referent		0.572
GT	163 (0.47)	186 (0.52)	0.908 (0.650-1.268)	0.609	
ТТ	68 (0.20)	59 (0.16)	1.194 (0.773-1.844)	0.440	
GT + TT	231 (0.67)	245 (0.68)	0.977 (0.712-1.339)	0.936	
MAF	299 (0.44)	304 (0.42)	1.062 (0.860-1.312)	0.612	
GC rs1155563	n = 362	n = 377	. ,		
ТТ	180 (0.50)	189 (0.50)	Referent		0.541
СТ	141 (0.39)	155 (0.41)	0.955 (0.703-1.297)	0.815	
CC	41 (0.11)	33 (0.09)	1.305 (0.789–2.155)	0.311	
CT + CC	182 (0.50)	188 (0.50)	1.017 (0.762 - 1.356)	0.941	
MAF	223 (0.31)	221 (0.29)	1.077(0.762 - 1.350) 1.074(0.859 - 1.341)	0.511	
VDR rs2228570	n = 345	n = 371	1.071 (0.009 1.011)	0.307	
<u>CC</u>	101 (0 29)	103 (0.28)	Referent		0.401
СТ	101(0.2)) 175(0.51)	183 (0.49)	0.975(0.691-1.376)	0.930	
ТТ	69 (0.20)	85 (0.23)	0.828(0.544 - 1.260)	0.394	
CT + TT	244 (0.71)	268 (0.72)	0.929 (0.671–1.285)	0.679	
MAF	313 (0.45)	353 (0.48)	0.915 (0.743–1.126)	0.432	
VDR rs1544410	n = 359	n = 372	. ,		
GG	137 (0.38)	148 (0.40)	Referent		0.753
AG	165 (0.46)	165 (0.44)	1.080 (0.787-1.483)	0.686	
AA	57 (0.16)	59 (0.16)	1.044 (0.678-1.607)	0.912	
AG + AA	222 (0.62)	224 (0.60)	1.071 (0.795–1.442)	0.705	
MAF	279 (0.39)	283 (0.38)	1.035 (0.839–1.278)	0.788	
RXRA rs10776909	<i>n</i> = 364	<i>n</i> = 378			
CC	233 (0.64)	250 (0.66)	Referent		0.426
СТ	111 (0.30)	112 (0.30)	1.063 (0.774–1.461)	0.746	
TT	20 (0.05)	16 (0.04)	1.341 (0.679–2.651)	0.490	
CT + TT	131 (0.36)	128 (0.34)	1.098 (0.812–1.485)	0.590	
MAF	151 (0.21)	144 (0.19)	1.112 (0.862–1.435)	0.452	
RXRA rs10881578	<i>n</i> = 365	<i>n</i> = 377			
AA	197 (0.54)	183 (0.48)	Referent		0.168
AG	134 (0.37)	154 (0.41)	0.808 (0.775–1.046)	0.185	
GG	34 (0.09)	40 (0.11)	0.790 (0.479–1.301)	0.376	
AG + GG	168 (0.46)	194 (0.51)	0.804 (0.603–1.073)	0.143	
MAF	202 (0.28)	234 (0.31)	0.850 (0.680–1.063)	0.172	
RXRA rs749759	<i>n</i> = 355	<i>n</i> = 370			
GG	207 (0.58)	221 (0.60)	Referent		0.850
AG	125 (0.35)	123 (0.33)	1.085 (0.794–1.216)	0.632	
AA	23 (0.06)	26 (0.07)	0.944 (0.522–1.708)	0.881	
AG + AA	148 (0.42)	149 (0.40)	1.061 (0.789–1.426)	0.706	
MAF	171 (0.24)	175 (0.24)	1.024 (0.804–1.304)	0.894	

TABLE 4: Continued.

ESRD: end-stage renal disease, DM: diabetes mellitus, and MAF: minor allele frequency.

^aNot consistent with Hardy-Weinberg equilibrium.

rs12979860F 5'CGTGCCTGTCGTGTACTGAA3', and rs12979860R 5'AGGCTCAGGGTCAATCACAG3'.

Genotyping of the *GC* rs1155563, *GC* rs2298849, *RXRA* rs10881578, and *RXRA* rs10776909 polymorphisms was carried out by HRM on the Bio-Rad CFX96 Real Time PCR system (Bio-Rad, Hercules, CA). DNA fragments amplified

with the use of specific primers were subjected to HRM with 0.1°C increments in temperatures ranging from 71 to 92°C. Genotyping of the *GC* rs7041, *RXRA* rs749759, *VDR* rs1544410, and *VDR* rs2228570 was performed using the polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method according to the

TABLE 5: Comparison of the distribution of polymorphic variants of tested genes between ESRD patients treated with hemodialysis due to type 2 DM nephropathy and the most common causes of ESRD other than type 2 DM nephropathy (chronic glomerulonephritis, chronic tubulointerstitial nephritis, and hypertensive nephritis).

Canatuma	Type 2 DM nephropathy	Other causes of ESRD	Odde ratio (95% CI)	Two tailed P	D
Genotype	(frequency)	(frequency)	Odds 1atio (93% CI)	Two-talled F	I trend
IL18 rs360719	<i>n</i> = 248	n = 353			
TT	133 (0.54)	186 (0.53)	Referent	_	0.362
CT	102 (0.41)	135 (0.38)	1.057 (0.752–1.485)	0.795	
CC	13 (0.05)	32 (0.09)	0.568 (0.287-1.124)	0.107	
CT + CC	115 (0.46)	167 (0.47)	0.963 (0.696–1.334)	0.868	
MAF	128 (0.26)	199 (0.28)	0.886 (0.684-1.149)	0.370	
IL12A rs568408	<i>n</i> = 234	<i>n</i> = 337			
GG	173 (0.74)	234 (0.69)	Referent		0.303
AG	52 (0.22)	89 (0.26)	0.790 (0.533-1.060)	0.275	
AA	9 (0.04)	14 (0.04)	0.870 (0.368-2.055)	0.831	
AG + AA	61 (0.26)	103 (0.31)	0.801 (0.552-1.163)	0.260	
MAF	70 (0.15)	117 (0.17)	0.837 (0.606-1.157)	0.319	
IL12B rs3212227	<i>n</i> = 247	<i>n</i> = 352			
AA	156 (0.63)	205 (0.58)	Referent	_	0.176
AC	84 (0.34)	132 (0.38)	0.836 (0.593-1.068)	0.337	
CC	7 (0.03)	15 (0.04)	0.613 (0.244–1.540)	0.376	
AC + CC	91 (0.37)	147 (0.42)	0.814 (0.582–1.136)	0.236	
MAF	98 (0.20)	162 (0.23)	0.828 (0.624–1.098)	0.215	
IL4R rs1805015	n = 303	n = 436			
 TT	205 (0.68)	295 (0.68)	Referent		0.871
СТ	82 (0.27)	121 (0.28)	0.975(0.700-2.360)	0.933	
CC	16(0.05)	20 (0.05)	1.151 (0.583 - 2.275)	0.728	
CT + CC	98 (0.32)	141(0.32)	1.000(0.731 - 1.368)	1.000	
MAF	114 (0.19)	161 (0.18)	1.023(0.784 - 1.335)	0.919	
<u>II.13 rs20541</u>	n = 303	n = 436	1.020 (0.701 1.000)	0.919	
<u>CC</u>	168 (0 55)	242 (0.56)	Referent		0.902
СТ	100(0.33) 114(0.38)	166 (0.38)	0.989(0.726 - 1.348)	1,000	0.902
ТТ	21(0.07)	28 (0.06)	1080(0.594 - 1.967)	0.878	
CT + TT	135(0.45)	194(0.44)	1.000(0.391 1.907) 1.002(0.746 - 1.346)	1,000	
MAF	156 (0.26)	222(0.25)	1.002(0.710 1.010) 1.015(0.800 - 1.287)	0.950	
II 28B rs8099917	n = 339	n = 493	1.013 (0.000 1.207)	0.950	
TT	219 (0.65)	317 (0.64)	Referent		0.858
CT	107(0.31)	162(0.33)	0.956 (0.709 - 1.289)	0.820	0.050
GG	107(0.51) 13(0.04)	102(0.33) 14(0.03)	1344 (0.620 - 2.916)	0.549	
GT + GG	13(0.04) 120(0.35)	176 (0.36)	0.987 (0.739 - 1.318)	0.941	
MAF	120(0.33) 133(0.20)	190 (0.30)	1022(0799-1309)	0.941	
II 28B rs12979860	n - 336	n - 488	1.022 (0.799 1.309)	0.910	
CC	n = 330	n = 400	Pafarant		0.952
CT	141(0.42) 157(0.47)	209(0.43)	1 052 (0 792 1 415)	0.763	0.932
	137(0.47)	221(0.43)	1.035(0.765-1.415) 0.071(0.612, 1.541)	0.703	
	50 (0.11) 105 (0.56)	30 (0.12) 270 (0.57)	0.971(0.012 - 1.341) 1.026(0.792, 1.272)	0.907	
	195(0.30)	279(0.37)	1.030(0.782 - 1.373)	0.030	
MAF	116 (0.29)	337 (0.35)	1.006 (0.819–1.237)	0.994	
GU 182290049	n = 304	n = 524	Defen (0.100
	226 (0.62)	339 (0.65) 165 (0.21)	Keierent		0.109
	110(0.30)	165 (0.31)	1.000 (0.745–1.342)	1.000	
	28 (0.08)	20 (0.04)	2.100 (1.155–3.819)	0.014	
CT + CC	138 (0.38)	185 (0.35)	1.119 (0.848–1.477)	0.436	
MAF	166 (0.23)	205 (0.20)	1.215 (0.964–1.530)	0.111	

			Indee 5. Continued.			
$\begin{array}{c c c c c c c } GC rs/041 & n = 504 \\ \hline GG & 112 (0.33) & 182 (0.36) & Referent & - & 0.247 \\ \hline GT & 17T & 68 (0.20) & 88 (0.17) & 1.25 (0.844-1.528) & 0.480 \\ \hline TT & 68 (0.20) & 88 (0.17) & 1.25 (0.844-1.583) & 0.267 \\ \hline TT & 231 (0.67) & 324 (0.64) & 1125 (0.824-1.548) & 0.340 \\ \hline MAF & 299 (0.44) & 412 (0.41) & 1125 (0.925-1.548) & 0.340 \\ \hline MAF & 299 (0.44) & 412 (0.41) & 1125 (0.925-1.369) & 0.259 \\ \hline CC rsl155563 & n = 362 & n = 527 \\ \hline TT & 180 (0.50) & 252 (0.48) & Referent & - & 0.614 \\ \hline CT & 141 (0.39) & 213 (0.40) & 0.927 (0.696-1.234) & 0.610 \\ \hline CC & 41 (0.11) & 62 (0.12) & 0.926 (0.597-1.453) & 0.740 \\ \hline CT + CC & 182 (0.50) & 275 (0.52) & 0.927 (0.709-1.211) & 0.585 \\ \hline MAF & 223 (0.31) & 337 (0.32) & 0.947 (0.772-1.161) & 0.638 \\ \hline VDR rs2228570 & n = 345 & n = 503 \\ \hline CC & 101 (0.29) & 130 (0.26) & Referent & - & 0.541 \\ \hline CT & 175 (0.51) & 275 (0.55) & 0.819 (0.594-1.130) & 0.249 \\ \hline CT + TT & 244 (0.71) & 373 (0.74) & 0.842 (0.620-1.143) & 0.273 \\ \hline MAF & 313 (0.45) & 471 (0.47) & 0.943 (0.772-1.45) & 0.588 \\ \hline VDR rs1228570 & n = 359 & n = 512 \\ \hline GG & 137 (0.38) & 189 (0.57) & Referent & - & 0.598 \\ \hline AAF & 316 (0.45) & 235 (0.46) & 0.969 (0.270-1.303) & 0.880 \\ \hline AAF & 279 (0.39) & 411 (0.40) & 0.948 (0.78-1.152) & 0.626 \\ \hline VDR rs1544410 & n = 359 & n = 512 \\ \hline AG & 136 (0.46) & 235 (0.46) & 0.969 (0.720-1.303) & 0.880 \\ \hline AA & 57 (0.16) & 88 (0.17) & 0.894 (0.59-1.32) & 0.613 \\ \hline AG & AA & 57 (0.16) & 88 (0.17) & 0.894 (0.59-1.32) & 0.626 \\ \hline CT + TT & 20 (0.05) & 22 (0.04) & 1.202 (0.641-2.254) & 0.629 \\ \hline TR XRA rs10776909 & n = 364 & n = 525 \\ \hline CC & 233 (0.64) & 0.95 (0.720-1.303) & 0.880 \\ \hline AG & AA & 157 (0.51) & 0.974 & 0.561-0.599 \\ \hline CT + TT & 131 (0.36) & 218 (0.41) & 0.734 (0.561-0.999) & 0.050 \\ \hline T = XRA rs1078691578 & n = 352 \\ \hline AA & 197 (0.54) & 220 (0.44) & 0.739 (0.561-0.59) & 0.059 \\ \hline T = AA & 197 (0.54) & 220 (0.44) & 0.739 (0.561-0.59) & 0.059 \\ \hline T = AA & 197 (0.54) & 220 (0.44) & 0.739 (0.561-0.57) & 0.059 \\ \hline AA & 197 (0.54) & 220 (0.44) & 0.739 (0.561-0.57)$	Genotype	Type 2 DM nephropathy (frequency)	Other causes of ESRD (frequency)	Odds ratio (95% CI)	Two-tailed P	$P_{\rm trend}$
GG112 (0.33)182 (0.36)Referent-0.247GT163 (0.47)236 (0.47)1.122 (0.824-1.528)0.480GT + TT231 (0.67)324 (0.64)1.159 (0.867-1.548)0.340MAF299 (0.44)412 (0.41)1.125 (0.825-1.369)0.259GC rsl155563 $n = 362$ $n = 527$ TT180 (0.50)252 (0.48)Referent-0.614CT141 (0.39)213 (0.40)0.927 (0.696-1.234)0.610CT + CC182 (0.50)275 (0.52)0.927 (0.709-1.211)0.638CT + CC182 (0.50)275 (0.52)0.927 (0.709-1.211)0.638VDR rs228570 $n = 345$ $n = 503$ CC101 (0.29)130 (0.26)Referent-0.541TT69 (0.20)98 (0.19)0.906 (0.60-1.356)0.682.CT + TT244 (0.71)373 (0.74)0.842 (0.620-1.143)0.273.MAF313 (0.45)471 (0.47)0.943 (0.776-1.145)0.588.VDR rs1544410 $n = 359$ $n = 51$ CG137 (0.38)189 (0.37)Referent-0.598AG150 (0.46)235 (0.66)0.969 (0.720-1.303)0.880AA57 (0.16)88 (0.17)0.894 (0.579-1.132)0.621AG137 (0.38)189 (0.37)Referent-0.598AG165 (0.46)235 (0.46)0.969 (0.720-1.303)0.880AA57 (0.16)8	GC rs7041	<i>n</i> = 343	<i>n</i> = 506			
GT 163 (0.47) 226 (0.47) 1.122 (0.824–1.528) 0.480 TT 68 (0.20) 88 (0.17) 1.256 (0.846–1.863) 0.267 GT TT 231 (0.67) 324 (0.64) 1.159 (0.867–1.548) 0.340 MAF 299 (0.44) 412 (0.41) 1.125 (0.957–1.369) 0.259 GC rs115563 $n = 362$ $n = 527$ - 0.614 CT 141 (0.39) 213 (0.40) 0.927 (0.697–1.313) 0.740 CC 41 (0.11) 62 (0.12) 0.926 (0.597–1.438) 0.740 CT + CC 182 (0.50) 275 (0.52) 0.927 (0.799–1.211) 0.585 MAF 223 (0.31) 37 (0.32) 0.947 (0.772–1.161) 0.638 VDR rs228570 $n = 353$ $n = 503$ - 0.541 CT 175 (0.51) 275 (0.55) 0.819 (0.59) 0.429 TT 69 (0.20) 98 (0.19) 0.946 (0.606–1.356) 0.622 CT + TT 244 (0.71) 373 (0.74) 0.842 (0.620–1.143) 0.273 MAF 313 (0.45) 471 (0.47) 0.943 (0.761–1.143) 0.273	GG	112 (0.33)	182 (0.36)	Referent	—	0.247
TT 68 (0.20) 88 (0.17) 1.25 (0.846-1.863) 0.267 GT + TT 231 (0.67) 324 (0.64) 1.159 (0.867-1.548) 0.359 GT = TT 239 (0.44) 412 (0.41) 1.125 (0.923-1.369) 0.259 GC rell35563 n = 362 n = 527 0.610 CT 180 (0.50) 223 (0.40) 0.927 (0.696-1.234) 0.610 CT + CC 141 (0.39) 213 (0.40) 0.927 (0.070-1.21) 0.854 MAF 223 (0.31) 337 (0.32) 0.947 (0.772-1.161) 0.638 VDR rs228870 n = 345 n = 503 CC 101 (0.29) 133 (0.42) 0.948 (0.620-1.143) 0.273 MAF 313 (0.45) 471 (0.47) 0.943 (0.776-1.14) 0.273 MAF 313 (0.45) 471 (0.47) 0.948 (0.720-1.333) 0.613 VDR rs154410 n = 359 n = 512 GG 137 (0.38) 189 (0.37) Referent - 0.598 AA 222 (0.62) 323 (0.63) 0.948 (0.780-1.353) 0.722	GT	163 (0.47)	236 (0.47)	1.122 (0.824–1.528)	0.480	
GT + TT 231 (0.67) 324 (0.64) 1.159 (0.867-1.548) 0.340 MAF 299 (0.44) 412 (0.41) 1.125 (0.925-1.369) 0.259 CT 180 (0.50) 252 (0.48) Referent - 0.614 CT 141 (0.39) 213 (0.40) 0.927 (0.696-1.234) 0.610 CC 41 (0.11) 62 (0.12) 0.926 (0.597-1.435) 0.740 CT + CC 182 (0.50) 275 (0.52) 0.927 (0.709-1.211) 0.585 MAF 223 (0.31) 37 (0.32) 0.947 (0.772-1.16) 0.638 VDR rs2228570 n = 345 n = 503 - 0.541 CT 175 (0.51) 275 (0.55) 0.89 (0.594-1130) 0.249 TT 69 (0.20) 98 (0.19) 0.906 (0.606-1.356) 0.682 CT + TT 244 (0.71) 373 (0.74) 0.482 (0.620-1.143) 0.273 VDR rs154410 n = 359 n = 512 - 0.598 AG 157 (0.16) 88 (0.17) 0.894 (0.790-1.133) 0.880 AAA 57 (0.16) 88 (0.17) 0.894 (0.781-1.253) 0.722 <td< td=""><td>TT</td><td>68 (0.20)</td><td>88 (0.17)</td><td>1.256 (0.846-1.863)</td><td>0.267</td><td></td></td<>	TT	68 (0.20)	88 (0.17)	1.256 (0.846-1.863)	0.267	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	GT + TT	231 (0.67)	324 (0.64)	1.159 (0.867–1.548)	0.340	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MAF	299 (0.44)	412 (0.41)	1.125 (0.925–1.369)	0.259	
TT 180 (0.50) 252 (0.48) Referent 0.614 CT 141 (0.39) 213 (0.40) 0.927 (0.696-1.234) 0.610 CC 41 (0.11) 62 (0.12) 0.926 (0.597-1.435) 0.740 CT + CC 182 (0.50) 275 (0.52) 0.927 (0.709-1.21) 0.585 MAF 223 (0.31) 337 (0.32) 0.947 (0.772-1.161) 0.638 VDR rs2228570 n = 345 n = 503 0.541 CC 101 (0.29) 130 (0.26) Referent 0.541 CT + TT 69 (0.20) 98 (0.19) 0.906 (0.606-1.356) 0.682 TT + OS (0.20) 98 (0.19) 0.906 (0.606-1.356) 0.682 0.578 CT + TT 244 (0.71) 373 (0.74) 0.842 (0.620-1.143) 0.273 MAF 313 (0.45) 471 (0.47) 0.943 (0.776-1.145) 0.880 0.598 AG 157 (0.16) 88 (0.17) 0.894 (0.599-1.332) 0.613 0.598 AG 133 (0.45) 411 (0.40) 0.948 (0.718-1.25) 0.626 <td< td=""><td>GC rs1155563</td><td><i>n</i> = 362</td><td><i>n</i> = 527</td><td></td><td></td><td></td></td<>	GC rs1155563	<i>n</i> = 362	<i>n</i> = 527			
CT 141 (0.39) 213 (0.40) 0.927 (0.596-1.234) 0.610 CC 41 (0.11) 62 (0.12) 0.926 (0.597-1.435) 0.740 CT + CC 182 (0.50) 275 (0.52) 0.927 (0.709-1.211) 0.585 MAF 223 (0.31) 337 (0.32) 0.947 (0.772-1.161) 0.638 VDR rs2228570 $n = 345$ $n = 503$ - 0.541 CC 101 (0.29) 130 (0.26) Referent - 0.541 CT 175 (0.51) 275 (0.55) 0.819 (0.594-1.130) 0.249 TT 69 (0.20) 98 (0.19) 0.906 (0.606-1.356) 0.682 CT + TT 244 (0.71) 373 (0.74) 0.943 (0.776-1.145) 0.588 VDR rs1544410 $n = 359$ $n = 512$ - - 0.598 GG 137 (0.38) 189 (0.37) Referent - 0.598 AG 155 (0.46) 235 (0.46) 0.599 (1.720-1.303) 0.613 - AG 155 (0.46) 233 (0.64) 0.948 (0.778-1.152) 0.626 RXRA rs10776909 $n = 364$ $n = 526$ - <	TT	180 (0.50)	252 (0.48)	Referent	—	0.614
$\begin{array}{c cccc} C & 41 (0.11) & 62 (0.12) & 0.926 (0.597-1.435) & 0.740 \\ CT + CC & 182 (0.50) & 275 (0.52) & 0.927 (0.079-1.415) & 0.585 \\ \hline \\ CT + CC & 182 (0.31) & 337 (0.32) & 0.947 (0.772-1.16) & 0.638 \\ \hline \\ \hline \\ VDR rs2228570 & n = 345 & n = 503 \\ \hline \\ CC & 101 (0.29) & 130 (0.26) & Referent & - & 0.541 \\ TT & 69 (0.20) & 98 (0.19) & 0.906 (0.606-1.356) & 0.682 \\ \hline \\ CT + TT & 244 (0.71) & 373 (0.74) & 0.842 (0.620-1.143) & 0.273 \\ \hline \\ MAF & 313 (0.45) & 471 (0.47) & 0.943 (0.776-1.145) & 0.588 \\ \hline \\ CDR rs1544410 & n = 359 & n = 512 \\ \hline \\ GG & 137 (0.38) & 189 (0.37) & Referent & - & 0.598 \\ AG & 165 (0.46) & 235 (0.46) & 0.969 (0.720-1.033) & 0.880 \\ AA & 57 (0.16) & 88 (0.17) & 0.984 (0.78-1.152) & 0.613 \\ \hline \\ AKF & 279 (0.39) & 411 (0.40) & 0.948 (0.78-1.152) & 0.613 \\ \hline \\ CC & 233 (0.64) & 308 (0.59) & Referent & - & 0.298 \\ CT & 111 (0.30) & 196 (0.37) & 0.749 (0.561-0.999) & 0.050 \\ \hline \\ TT & 20 (0.05) & 22 (0.04) & 1.202 (0.641-2.254) & 0.629 \\ \hline \\ CT + TT & 131 (0.36) & 218 (0.41) & 0.794 (0.603-1.046) & 0.108 \\ \hline \\ MAF & 151 (0.21) & 240 (0.23) & 0.883 (0.702-1.112) & 0.317 \\ \hline \\ RXRA rs10881578 & n = 365 & n = 52 \\ \hline \\ RXRA rs10881578 & n = 365 & n = 52 \\ \hline \\ RXRA rs10881578 & n = 365 & n = 52 \\ \hline \\ RXRA rs10881578 & n = 365 & n = 52 \\ \hline \\ RXRA rs10881578 & n = 365 & n = 52 \\ \hline \\ RXRA rs10881578 & n = 365 & n = 52 \\ \hline \\ AA & 197 (0.54) & 252 (0.48) & Referent & - & 0.134 \\ AG & 134 (0.37) & 220 (0.42) & 0.779 (0.586-1.035) & 0.096 \\ GG & 34 (0.09) & 53 (0.10) & 0.821 (0.51-3.12) & 0.478 \\ \hline \\ AG & 134 (0.37) & 220 (0.42) & 0.779 (0.586-1.035) & 0.096 \\ \hline \\ GG & 207 (0.58) & 265 (0.52) & Referent & - & 0.088 \\ \hline \\ MAF & 202 (0.28) & 236 (0.31) & 0.850 (0.690-1.046) & 0.139 \\ \hline \\ RXRA rs10881578 & n = 355 \\ \hline \\ \hline \\ AA & 32 (0.06) & 37 (0.07) & 0.796 (0.589-1.035) & 0.096 \\ \hline \\ GG & 207 (0.58) & 265 (0.52) & Referent & - & & 0.082 \\ \hline \\ AG & 4G & 134 (0.37) & 220 (0.42) & 0.757 (0.567-1.005) & 0.059 \\ \hline \\ AG & 23 (0.06) & 37 (0.70) & 0.796 (0.589-1.381) & 0.490 \\ \hline \\ \\ AG & AA & 23 (0.06) & 37 (0.70) & 0$	CT	141 (0.39)	213 (0.40)	0.927 (0.696–1.234)	0.610	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC	41 (0.11)	62 (0.12)	0.926 (0.597-1.435)	0.740	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT + CC	182 (0.50)	275 (0.52)	0.927 (0.709–1.211)	0.585	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	MAF	223 (0.31)	337 (0.32)	0.947 (0.772–1.161)	0.638	
$\begin{array}{cccc} CC & 101 (0.29) & 130 (0.26) & Referent & - & 0.541 \\ CT & 175 (0.51) & 275 (0.55) & 0.819 (0.594 - 1.130) & 0.249 \\ TT & 69 (0.20) & 98 (0.19) & 0.906 (0.606 - 1.556) & 0.682 \\ CT + TT & 244 (0.71) & 373 (0.74) & 0.842 (0.520 - 1.143) & 0.273 \\ \hline MAF & 313 (0.45) & 471 (0.47) & 0.943 (0.776 - 1.145) & 0.588 \\ \hline VDR rs1544410 & n = 359 & n = 512 \\ \hline GG & 137 (0.38) & 189 (0.37) & Referent & - & 0.598 \\ \hline AA & 57 (0.16) & 88 (0.17) & 0.894 (0.599 - 1.332) & 0.613 \\ \hline AF & 222 (0.62) & 323 (0.63) & 0.948 (0.778 - 1.152) & 0.626 \\ \hline RXRA rs10776909 & n = 364 & n = 526 \\ \hline CC & 233 (0.64) & 308 (0.59) & Referent & - & 0.298 \\ CT & 111 (0.30) & 196 (0.37) & 0.749 (0.561 - 0.999) & 0.050 \\ TT & 20 (0.05) & 22 (0.04) & 1.202 (0.641 - 2.54) & 0.629 \\ CT + TT & 131 (0.36) & 218 (0.41) & 0.794 (0.631 - 0.466) \\ MAF & 151 (0.21) & 240 (0.23) & 0.883 (0.702 - 1.112) & 0.317 \\ \hline RXRA rs10788 & n = 365 & n = 525 \\ \hline AA & 197 (0.54) & 252 (0.48) & Referent & - & 0.134 \\ GG & 134 (0.37) & 220 (0.42) & 0.779 (0.586 - 1.035) & 0.096 \\ \hline GG & 34 (0.09) & 53 (0.10) & 0.821 (0.51 - 1.312) & 0.478 \\ \hline AA & 197 (0.54) & 252 (0.48) & Referent & - & 0.134 \\ \hline AG & 134 (0.37) & 220 (0.42) & 0.787 (0.602 - 1.029) & 0.088 \\ \hline MAF & 202 (0.28) & 326 (0.31) & 0.801 (0.690 - 1.046) & 0.199 \\ \hline RXRA rs749759 & n = 355 & n = 514 \\ \hline GG & 207 (0.58) & 225 (0.44) & Referent & - & 0.032 \\ \hline AG & 125 (0.35) & 212 (0.41) & 0.757 (0.586 - 1.035) & 0.096 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.597 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.795 (0.567 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07) & 0.796 (0.557 - 1.005) & 0.059 \\ \hline AA & 23 (0.06) & 37 (0.07)$	VDR rs2228570	<i>n</i> = 345	<i>n</i> = 503			
$\begin{array}{ccccc} {\rm CT} & 175 (0.51) & 275 (0.55) & 0.819 (0.594-1.130) & 0.249 \\ {\rm TT} & 69 (0.20) & 98 (0.19) & 0.906 (0.606-1.356) & 0.682 \\ {\rm CT} + {\rm TT} & 244 (0.71) & 373 (0.74) & 0.842 (0.620-1.143) & 0.273 \\ {\rm MAF} & 313 (0.45) & 471 (0.47) & 0.943 (0.776-1.145) & 0.588 \\ \hline \\ \hline \\ \hline \\ VDr {\rm rs}1544410 & n = 359 & n = 512 \\ \hline \\ {\rm GG} & 137 (0.38) & 189 (0.37) & {\rm Referent} & - & 0.598 \\ {\rm AG} & 165 (0.46) & 235 (0.46) & 0.969 (0.720-1.303) & 0.880 \\ {\rm AG} & 165 (0.46) & 235 (0.46) & 0.969 (0.720-1.303) & 0.613 \\ {\rm AG} + {\rm AA} & 57 (0.16) & 88 (0.17) & 0.894 (0.599-1.322) & 0.613 \\ {\rm AG} + {\rm AA} & 222 (0.62) & 323 (0.63) & 0.948 (0.718-1.253) & 0.722 \\ \hline \\ {\rm MAF} & 279 (0.39) & 411 (0.40) & 0.948 (0.778-1.152) & 0.626 \\ \hline \\ {\rm RXRA rs10776909} & n = 364 & n = 526 \\ \hline \\ {\rm CC} & 233 (0.64) & 308 (0.59) & {\rm Referent} & - & 0.298 \\ {\rm CT} & 111 (0.30) & 196 (0.37) & 0.749 (0.561-0.999) & 0.050 \\ \hline \\ {\rm TT} & 20 (0.05) & 22 (0.04) & 1.202 (0.641-2.254) & 0.629 \\ \hline \\ {\rm TT} & 20 (0.05) & 22 (0.04) & 1.202 (0.641-2.254) & 0.629 \\ \hline \\ {\rm CT} + {\rm TT} & 131 (0.36) & 218 (0.41) & 0.794 (0.633-1.046) & 0.108 \\ \hline \\ {\rm MAF} & 151 (0.21) & 240 (0.23) & 0.830 (0.792-1.112) & 0.317 \\ \hline \\ {\rm RXRA rs10881578} & n = 365 & n = 525 \\ \hline \\ {\rm AA} & 197 (0.54) & 252 (0.48) & {\rm Referent} & - & 0.134 \\ {\rm AG} & 134 (0.37) & 220 (0.42) & 0.779 (0.586-1.035) & 0.096 \\ \hline \\ {\rm GG} & 34 (0.09) & 53 (0.10) & 0.821 (0.513-1.312) & 0.478 \\ {\rm AG} + {\rm GG} & 168 (0.46) & 273 (0.52) & 0.787 (0.629-1.029) & 0.088 \\ \hline \\ {\rm MAF} & 202 (0.28) & 326 (0.31) & 0.850 (0.699-1.046) & 0.139 \\ \hline \\ {\rm RXRA rs749759} & n = 355 & n = 514 \\ \hline \\ {\rm GG} & 207 (0.58) & 265 (0.52) & {\rm Referent} & - & 0.082 \\ {\rm AG} + {\rm AG} & 168 (0.46) & 273 (0.57) & 0.796 (0.459-1.381) & 0.490 \\ \hline \\ {\rm AG} + {\rm AA} & 148 (0.42) & 249 (0.48) & 0.761 (0.579-1.005) & 0.559 \\ \hline \\ {\rm AA} & 23 (0.060) & 37 (0.077) & 0.796 $	CC	101 (0.29)	130 (0.26)	Referent	—	0.541
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT	175 (0.51)	275 (0.55)	0.819 (0.594–1.130)	0.249	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TT	69 (0.20)	98 (0.19)	0.906 (0.606-1.356)	0.682	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT + TT	244 (0.71)	373 (0.74)	0.842 (0.620-1.143)	0.273	
VDR rsl54410 $n = 359$ $n = 512$ GG137 (0.38)189 (0.37)Referent $-$ 0.598AG165 (0.46)235 (0.46)0.969 (0.709-1.303)0.880AA57 (0.16)88 (0.17)0.894 (0.599-1.322)0.613AG + AA222 (0.62)232 (0.63)0.948 (0.778-1.253)0.722MAF279 (0.39)411 (0.40)0.948 (0.778-1.152)0.626RXRA rsl0776909 $n = 364$ $n = 526$ $-$ 0.298CT111 (0.30)196 (0.37)0.749 (0.561-0.999)0.050TT20 (0.05)22 (0.04)1.202 (0.641-2.254)0.629CT + TT131 (0.36)218 (0.41)0.794 (0.603-1.046)0.108MAF151 (0.21)240 (0.23)0.883 (0.702-1.112)0.317RXRA rsl0881578 $n = 365$ $n = 525$ $-$ 0.134AG134 (0.37)220 (0.42)0.779 (0.586-1.035)0.096GG134 (0.37)220 (0.42)0.779 (0.581-1.312)0.478AG + GG168 (0.46)273 (0.52)0.787 (0.602-1.029)0.088MAF202 (0.28)326 (0.31)0.850 (0.690-1.046)0.139RXRA rsf04759 $n = 355$ $n = 514$ $-$ 0.082GG207 (0.58)265 (0.52)Referent $-$ 0.082AG + AA148 (0.42)249 (0.48)0.761 (0.579-1.000)0.053AG125 (0.35)212 (0.41)0.755 (0.567-1.005)0.059AG + AA148 (0.42)249 (0.48)0.761	MAF	313 (0.45)	471 (0.47)	0.943 (0.776-1.145)	0.588	
GG 137 (0.38) 189 (0.37) Referent - 0.598 AG 165 (0.46) 235 (0.46) 0.969 (0.720-1.303) 0.880 AA 57 (0.16) 88 (0.17) 0.894 (0.599-1.332) 0.613 AG + AA 222 (0.62) 323 (0.63) 0.948 (0.718-1.253) 0.722 MAF 279 (0.39) 411 (0.40) 0.948 (0.778-1.152) 0.626 RXRA rs10776909 n = 364 n = 526 - 0.298 CT 111 (0.30) 196 (0.37) 0.749 (0.561-0.999) 0.050 TT 20 (0.05) 22 (0.04) 1.202 (0.641-2.254) 0.629 CT + TT 131 (0.36) 218 (0.41) 0.794 (0.603-1.046) 0.108 MAF 151 (0.21) 240 (0.23) 0.838 (0.702-1.112) 0.317 RXRA rs10881578 n = 365 n = 525 - 0.134 GG 34 (0.37) 220 (0.42) 0.779 (0.586-1.035) 0.096 GG 34 (0.07) 220 (0.42) 0.779 (0.586-1.035) 0.096 GG	VDR rs1544410	<i>n</i> = 359	<i>n</i> = 512			
AG 165 (0.46) 235 (0.46) 0.969 (0.720-1.303) 0.880 AA 57 (0.16) 88 (0.17) 0.894 (0.599-1.332) 0.613 AG + AA 222 (0.62) 323 (0.63) 0.948 (0.718-1.253) 0.722 MAF 279 (0.39) 411 (0.40) 0.948 (0.778-1.152) 0.626 RXRA rs10776909 n = 364 n = 526 - 0.298 CT 111 (0.30) 196 (0.37) 0.749 (0.561-0.999) 0.050 TT 20 (0.05) 22 (0.04) 1.202 (0.641-2.254) 0.629 CT + TT 131 (0.36) 218 (0.41) 0.794 (0.603-1.046) 0.108 MAF 151 (0.21) 240 (0.23) 0.883 (0.702-1.112) 0.317 RXRA rs10881578 n = 365 n = 525 - 0.134 AG 197 (0.54) 252 (0.48) Referent - 0.134 AG 197 (0.54) 252 (0.48) Referent - 0.134 AG 134 (0.37) 220 (0.42) 0.779 (0.586-1.035) 0.096 GG 34 (0.09) 53 (0.10) 0.821 (0.513-1.312) 0.478	GG	137 (0.38)	189 (0.37)	Referent	—	0.598
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AG	165 (0.46)	235 (0.46)	0.969 (0.720-1.303)	0.880	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AA	57 (0.16)	88 (0.17)	0.894 (0.599–1.332)	0.613	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AG + AA	222 (0.62)	323 (0.63)	0.948 (0.718-1.253)	0.722	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MAF	279 (0.39)	411 (0.40)	0.948 (0.778-1.152)	0.626	
CC 233 (0.64) 308 (0.59) Referent - 0.298 CT 111 (0.30) 196 (0.37) 0.749 (0.561-0.999) 0.050 TT 20 (0.05) 22 (0.04) 1.202 (0.641-2.254) 0.629 CT + TT 131 (0.36) 218 (0.41) 0.794 (0.603-1.046) 0.108 MAF 151 (0.21) 240 (0.23) 0.883 (0.702-1.112) 0.317 RXRA rs10881578 n = 365 n = 525 AA 197 (0.54) 252 (0.48) Referent - 0.134 AG 134 (0.37) 220 (0.42) 0.779 (0.586-1.035) 0.096 GG 34 (0.09) 53 (0.10) 0.821 (0.513-1.312) 0.478 AG + GG 168 (0.46) 273 (0.52) 0.787 (0.602-1.029) 0.088 MAF 202 (0.28) 326 (0.31) 0.850 (0.690-1.046) 0.139 RXRA rs749759 n = 355 n = 514 0.082 AG	RXRA rs10776909	<i>n</i> = 364	<i>n</i> = 526			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC	233 (0.64)	308 (0.59)	Referent	—	0.298
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CT	111 (0.30)	196 (0.37)	0.749 (0.561-0.999)	0.050	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TT	20 (0.05)	22 (0.04)	1.202 (0.641-2.254)	0.629	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CT + TT	131 (0.36)	218 (0.41)	0.794 (0.603–1.046)	0.108	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MAF	151 (0.21)	240 (0.23)	0.883 (0.702–1.112)	0.317	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RXRA rs10881578	<i>n</i> = 365	<i>n</i> = 525			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AA	197 (0.54)	252 (0.48)	Referent	_	0.134
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AG	134 (0.37)	220 (0.42)	0.779 (0.586-1.035)	0.096	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GG	34 (0.09)	53 (0.10)	0.821 (0.513-1.312)	0.478	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	AG + GG	168 (0.46)	273 (0.52)	0.787 (0.602-1.029)	0.088	
RXRA rs749759 $n = 355$ $n = 514$ GG207 (0.58)265 (0.52)Referent-0.082AG125 (0.35)212 (0.41)0.755 (0.567-1.005)0.059AA23 (0.06)37 (0.07)0.796 (0.459-1.381)0.490AG + AA148 (0.42)249 (0.48)0.761 (0.579-1.000)0.053MAF171 (0.24)286 (0.28)0.823 (0.661-1.025)0.092	MAF	202 (0.28)	326 (0.31)	0.850 (0.690-1.046)	0.139	
GG 207 (0.58) 265 (0.52) Referent - 0.082 AG 125 (0.35) 212 (0.41) 0.755 (0.567–1.005) 0.059 AA 23 (0.06) 37 (0.07) 0.796 (0.459–1.381) 0.490 AG + AA 148 (0.42) 249 (0.48) 0.761 (0.579–1.000) 0.053 MAF 171 (0.24) 286 (0.28) 0.823 (0.661–1.025) 0.092	RXRA rs749759	<i>n</i> = 355	<i>n</i> = 514			
AG125 (0.35)212 (0.41)0.755 (0.567-1.005)0.059AA23 (0.06)37 (0.07)0.796 (0.459-1.381)0.490AG + AA148 (0.42)249 (0.48)0.761 (0.579-1.000)0.053MAF171 (0.24)286 (0.28)0.823 (0.661-1.025)0.092	GG	207 (0.58)	265 (0.52)	Referent		0.082
AA23 (0.06)37 (0.07)0.796 (0.459-1.381)0.490AG + AA148 (0.42)249 (0.48)0.761 (0.579-1.000)0.053MAF171 (0.24)286 (0.28)0.823 (0.661-1.025)0.092	AG	125 (0.35)	212 (0.41)	0.755 (0.567-1.005)	0.059	
AG + AA148 (0.42)249 (0.48)0.761 (0.579-1.000)0.053MAF171 (0.24)286 (0.28)0.823 (0.661-1.025)0.092	AA	23 (0.06)	37 (0.07)	0.796 (0.459–1.381)	0.490	
MAF 171 (0.24) 286 (0.28) 0.823 (0.661–1.025) 0.092	AG + AA	148 (0.42)	249 (0.48)	0.761 (0.579–1.000)	0.053	
	MAF	171 (0.24)	286 (0.28)	0.823 (0.661–1.025)	0.092	

TABLE 5: Continued.

ESRD: end-stage renal disease, DM: diabetes mellitus, and MAF: minor allele frequency.

^aNot consistent with Hardy-Weinberg equilibrium.

manufacturer's instructions (Fermentas, Vilnius, Lithuania). Primer sequences and conditions for HRM and PCR-RFLP analyses are presented in Table 1.

For quality control, the genotyping analysis was blinded to the subject's case-control status. In addition, approximately 10% of the randomly chosen samples were regenotyped. Samples that failed the genotyping were excluded from further statistical analyses. 2.3. 25(OH)D Testing. Plasma 25(OH)D was determined in blindly selected 162 HD patients in the winter season of the year to avoid differences in sunlight exposure between patients who used to sunbathe and those who did not. Plasma 25(OH)D concentration was measured in HD patients who had not been treated with vitamin D or had stopped such a treatment for at least 3 weeks to obtain the so-called basic vitamin D concentrations. Under these conditions, there were

Odds ratio (95% CI) Two-tailed P Genotype Genotype frequencies P_{trend} Type 2 DM nephropathy versus chronic infective tubulointerstitial nephritis IL18 rs360719 *n* = 248 n = 77TT 133 (0.54) 54 (0.70) Referent 0.033 CT 102 (0.41) 19 (0.25) 2.180 (1.217-3.905) 0.009^a CC 1.320 (0.412-4.228) 0.783 13 (0.05) 4(0.05)CT + CC115 (0.46) 23 (0.30) 2.030 (1.173-3.512) **0.012**^a MAF 128 (0.26) 27 (0.18) 1.636 (1.031-2.596) 0.046 Chronic infective tubulointerstitial nephritis versus healthy controls IL18 rs360719 n = 77n = 240TT Referent 0.005 54 (0.70) 121 (0.50) CT 19 (0.25) 98 (0.41) 0.434 (0.242-0.781) 0.006^a

21 (0.09)

119 (0.50)

140 (0.29)

TABLE 6: Selected comparisons of the polymorphic variants distribution of tested genes between type 2 DM nephropathy patients, chronic infective tubulointerstitial nephritic patients, and healthy subjects.

DM: diabetes mellitus; MAF: minor allele frequency.

Significant differences are indicated using bold font.

^aSignificant after the Bonferroni correction (P < 0.017).

4 (0.05)

23 (0.30)

27 (0.18)

no patients showing optimal plasma 25(OH)D levels (35– 80 ng/mL for adults). To examine plasma 25(OH)D levels, a chemiluminescent microparticle immunoassay (CMIA) was used according to the manufacturer's instructions (Abbott Diagnostics ARCHITECT 25-OH VITAMIN D CMIA).

2.4. Statistical Methods. Results are presented as percentage for categorical variables, as mean with one standard deviation for normally distributed continuous variables or as median with range for not normally distributed continuous variables as tested by the Shapiro-Wilk test. Statistical tests used for comparison of data obtained in selected groups are indicated at *P* values.

Hardy-Weinberg equilibrium (HWE) was tested to compare the observed genotype frequencies to the expected ones using Chi-square test. Distributions of tested polymorphisms were consistent with HWE with three exceptions which are indicated in tables showing analysis of genotype and allele distributions. The Fisher exact probability test or Chi-square test was used to evaluate differences in genotype and allele prevalence between the examined groups. Homozygotes for the major allele were the reference group. The odds ratio (OR) with *P* value and 95% confidence intervals (95% CI) value were calculated. All probabilities were two-tailed. Polymorphisms were tested for association using the Chi-square test for trend ($P_{\rm trend}$). Power analysis was performed by Fisher's exact test.

Values of P < 0.05 were judged to be significant. However, associations were reported only if the following conditions were fulfilled.

- (1) A genotype distribution was consistent with HWE in a tested group and a referent group.
- (2) P_{trend} was below 0.05.

(3) Odds ratio remained significant after the Bonferroni correction applied for multiple testing, if appropriate.

0.160

0.004^a

0.006

Aforementioned statistical calculations were performed using GraphPad InStat 3.10, 32 bit for Windows, created on July 9, 2009 (GraphPad Software, Inc., La Jolla, USA), Cytel-Studio version 10.0, created on January 16, 2013 (CytelStudio Software Corporation, Cambridge, USA), and Statistica version 10, 2011 (StatSoft, Inc., Tulsa, USA).

3. Results

0.427 (0.140-1.303)

0.433 (0.250-0.750)

0.516 (0.326-0.818)

Characteristics of the examined HD patients are presented in Tables 2 and 3. ESRD patients due to type 2 DM nephropathy compared to non-DM ESRD patients showed older age at RRT onset, shorter treatment with RRT, higher death rate on RRT, higher prevalence of CAD and myocardial infarction, lower serum PTH level, and lower frequency of parathyroidectomy and treatment with cinacalcet.

In respect of the examined parameters, type 2 DM nephropathy patients differed the most significantly from chronic glomerulonephritic subjects, the least significantly from hypertensive nephropathy patients.

There were no differences in frequency distributions of tested genotypes between type 2 DM nephropathy patients and healthy subjects (Table 4) as well as other ESRD patients analyzed together (Table 5) which could be judged as significant associations.

Comparisons of genotype and allele frequencies between type 2 DM nephropathy patients and other ESRD groups revealed associations only with chronic infective tubulointerstitial nephritic patients in respect of *IL18* rs360719 (Table 6, no significant results are shown). Frequency of *IL18* rs360719 allele C carriers was higher in type 2 DM nephropathy patients than in those with chronic infective tubulointerstitial

CC

MAF

CT + CC

	Type 2 DM pephropathy	Type 2 DM			
Parameter	with CAD (frequency)	nephropathy without CAD (frequency)	Odds ratio (95% CI)	Two-tailed P	$P_{\rm trend}$
IL18 rs360719	<i>n</i> = 124	<i>n</i> = 109			
ТТ	68 (0.55)	53 (0.49)	Referent		0.269
СТ	51 (0.41)	49 (0.45)	1.128 (0.725-1.754)	0.653	
CC	5 (0.04)	7 (0.06)	0.628 (0.194-2.036)	0.557	
CT + CC	56 (0.45)	56 (0.51)	0.879 (0.560-1.380)	0.645	
MAF	61 (0.25)	63 (0.29)	0.803 (0.532-1.211)	0.345	
IL12A rs568408	<i>n</i> = 117	<i>n</i> = 102			
GG	83 (0.71)	77 (0.63)	Referent		0.361
AG	28 (0.24)	22 (0.22)	1.181 (0.623-2.236)	0.630	
AA	6 (0.05)	3 (0.03)	1.855 (0.448-7.678)	0.502	
AG + AA	34 (0.29)	25 (0.25)	1.262 (0.691-2.304)	0.542	
MAF	40 (0.17)	28 (0.14)	1.311 (0.776-2.214)	0.378	
IL12B rs3212227	<i>n</i> = 124	<i>n</i> = 109			
AA	78 (0.63)	69 (0.63)	Referent		0.906
AC	43 (0.35)	36 (0.33)	1.057 (0.611-1.829)	0.889	
CC	3 (0.02)	4 (0.04)	0.664 (0.143-3.069)	0.708	
AC + CC	46 (0.37)	40 (0.37)	1.017 (0.597-1.734)	1.000	
MAF	49 (0.20)	44 (0.20)	0.974 (0.618-1.535)	0.909	
IL4R rs1805015	<i>n</i> = 144	<i>n</i> = 127			
TT	95 (0.66)	86 (0.68)	Referent		0.947
CT	42 (0.29)	32 (0.25)	1.188 (0.689-2.048)	0.581	
CC	7 (0.05)	9 (0.07)	0.704 (0.251-1.972)	0.605	
CT + CC	49 (0.34)	41 (0.32)	1.082 (0.652-1.797)	0.797	
MAF	56 (0.19)	50 (0.20)	0.985 (0.644-1.504)	0.944	
IL13 rs20541	<i>n</i> = 144	<i>n</i> = 127			
CC	80 (0.56)	71 (0.56)	Referent		0.867
CT	55 (0.38)	46 (0.36)	1.061 (0.640-1.759)	0.898	
TT	9 (0.06)	10 (0.08)	0.799 (0.307-2.077)	0.808	
CT + TT	64 (0.44)	56 (0.44)	1.014 (0.627-1.640)	1.000	
MAF	73 (0.25)	92 (0.26)	0.967 (0.657-1.423)	0.944	
IL28B rs8099917	<i>n</i> = 163	<i>n</i> = 145			
TT	105 (0.64)	97 (0.67)	Referent		0.752
GT	52 (0.32)	42 (0.29)	1.144 (0.700-1.870)	0.618	
GG	6 (0.04)	6 (0.04)	0.924 (0.288-2.961)	1.000	
GT + GG	58 (0.36)	48 (0.33)	1.116 (0.697–1.189)	0.719	
MAF	64 (0.20)	54 (0.19)	1.068 (0.714-1.597)	0.829	
IL28B rs12979860	<i>n</i> = 163	<i>n</i> = 142			
CC	69 (0.42)	66 (0.46)	Referent		0.352
СТ	73 (0.45)	62 (0.44)	1.126 (0.698-1.816)	0.715	
ТТ	21 (0.13)	14 (0.10)	1.435 (0.674-3.055)	0.448	
CT + TT	94 (0.58)	76 (0.54)	1.183 (0.752-1.861)	0.490	
MAF	115 (0.35)	90 (0.32)	1.175 (0.838-1.647)	0.396	
GC rs2298849	<i>n</i> = 172	$n = 158^{a}$			
ТТ	99 (0.58)	106 (0.67)	Referent		0.173
СТ	60 (0.35)	40 (0.25)	1.606 (0.989-2.608)	0.067	
CC	13 (0.07)	12 (0.08)	1.160 (0.505-2.663)	0.833	
CT + CC	73 (0.42)	52 (0.33)	1.503 (0.959–2.355)	0.088	
MAF	166 (0.25)	64 (0.20)	1.313 (0.909–1.895)	0.174	

		TABLE 7: Continued.			
Parameter	Type 2 DM nephropathy with CAD (frequency)	Type 2 DM nephropathy without CAD (frequency)	Odds ratio (95% CI)	Two-tailed P	P _{trend}
GC rs7041	<i>n</i> = 161	<i>n</i> = 151			
GG	57 (0.35)	46 (0.30)	Referent		0.844
GT	69 (0.43)	82 (0.54)	1.327 (0.825-2.134)	0.277	
TT	35 (0.22)	23 (0.15)	1.629 (0.900-2.949)	0.136	
GT + TT	104 (0.65)	105 (0.70)	1.061 (0.721-1.559)	0.769	
MAF	139 (0.43)	128 (0.42)	1.025 (0.746-1.409)	0.943	
GC rs1155563	<i>n</i> = 172	<i>n</i> = 157			
TT	82 (0.48)	79 (0.50)	Referent		0.645
СТ	70 (0.41)	61 (0.39)	1.106 (0.697-1.755)	0.724	
CC	20 (0.12)	17 (0.11)	1.133 (0.554-2.321)	0.856	
CT + CC	90 (0.52)	78 (0.50)	1.112 (0.721-1.714)	0.660	
MAF	110 (0.32)	95 (0.30)	1.084 (0.779–1.508)	0.695	
VDR rs2228570	<i>n</i> = 162	<i>n</i> = 152			
CC	43 (0.27)	44 (0.29)	Referent		0.316
СТ	93 (0.57)	68 (0.45)	1.400 (0.829-2.363)	0.230	
TT	26 (0.16)	40 (0.26)	0.665 (0.348-1.272)	0.252	
CT + TT	119 (0.73)	108 (0.71)	1.128 (0.688-1.849)	0.705	
MAF	145 (0.45)	148 (0.49)	0.854 (0.624-1.169)	0.365	
VDR rs1544410	<i>n</i> = 170	<i>n</i> = 155			
GG	65 (0.38)	61 (0.39)	Referent		0.772
AG	79 (0.46)	72 (0.46)	1.030 (0.641-1.653)	0.905	
AA	26 (0.15)	22 (0.14)	1.109 (0.569-2.160)	0.865	
AG + AA	105 (0.62)	94 (0.61)	1.048 (0.671-1.639)	0.909	
MAF	131 (0.39)	116 (0.37)	1.048 (0.763–1.440)	0.833	
RXRA rs10776909	<i>n</i> = 172	<i>n</i> = 158			
CC	112 (0.65)	104 (0.66)	Referent		0.621
СТ	48 (0.28)	47 (0.30)	0.948 (0.585-1.537)	0.902	
TT	12 (0.07)	7 (0.04)	1.592 (0.604-4.198)	0.473	
CT + TT	60 (0.35)	54 (0.34)	1.032 (0.655-1.625)	0.908	
MAF	72 (0.21)	61 (0.19)	1.107 (0.756-1.621)	0.672	
RXRA rs10881578	<i>n</i> = 173	<i>n</i> = 158			
AA	89 (0.51)	92 (0.58)	Referent		0.192
AG	65 (0.38)	53 (0.34)	1.268 (0.796-2.019)	0.345	
GG	19 (0.11)	13 (0.08)	1.511 (0.704–3.241)	0.340	
AG + GG	84 (0.49)	66 (0.42)	1.316 (0.852–2.032)	0.226	
MAF	103 (0.30)	79 (0.25)	1.272 (0.902–1.793)	0.199	
RXRA rs749759	<i>n</i> = 169	<i>n</i> = 153			
GG	100 (0.59)	89 (0.58)	Referent		0.812
AG	59 (0.35)	54 (0.35)	0.972 (0.610-1.551)	1.000	
AA	10 (0.06)	10 (0.07)	0.890 (0.354-2.238)	0.818	
AG + AA	69 (0.41)	64 (0.42)	0.960 (0.615–1.496)	0.910	
MAF	79 (0.23)	74 (0.24)	0.956 (0.665–1.375)	0.882	

CAD: coronary artery disease, ESRD: end-stage renal disease, DM: diabetes mellitus, and MAF: minor allele frequency.

^aNot consistent with Hardy-Weinberg equilibrium.

healthy controls (Table 8).

nephritis. The latter group showed lower frequency of *IL18* rs360719 allele C carriers compared to healthy controls (Table 6).

differed in tested genotype frequencies neither from type 2

DM nephropathy subjects without CAD (Table 7) nor from

Type 2 DM nephropathy patients with diagnosed CAD

4. Discussion

Genetic studies involving DM nephropathy and related complications are not consistent in many aspects [31–34]. Some polymorphisms tested in this study were reported as being associated with type 1 DM (*IL12B* rs3212227 [35], *IL4R* [36, 37], *IL13* [37], *VDR* rs1544410 [38, 39], and *VDR*

TABLE 8: Comparison of the distribution of polymorphic variants of tested genes between type 2 DM nephropathy patients with diagnosis of
CAD and healthy controls.

Parameter	Type 2 DM nephropathy	Healthy controls	Odds ratio (95% CI)	Two-tailed P	Ptrend
II 10 260710	with CAD (frequency)	(frequency)			trenu
1L18 rs360/19	n = 124	n = 240	D.C. (0.10.6
	68 (0.55)	121 (0.50)	Referent	0.010	0.186
CT	51 (0.41)	98 (0.41)	0.926 (0.590–1.453)	0.819	
CC	5 (0.04)	21 (0.09)	0.424 (0.153–1.174)	0.122	
CT + CC	56 (0.45)	119 (0.50)	0.837 (0.542–1.294)	0.440	
MAF	61 (0.25)	140 (0.29)	0.792 (0.558–1.124)	0.223	
<i>IL12A</i> rs568408	<i>n</i> = 117	n = 240			
GG	83 (0.71)	171 (0.71)	Referent		0.626
AG	28 (0.24)	63 (0.26)	0.916 (0.546–1.535)	0.794	
AA	6 (0.05)	6 (0.03)	2.060 (0.645-6.583)	0.348	
AG + AA	34 (0.29)	69 (0.29)	1.015 (0.624–1.653)	1.000	
MAF	40 (0.17)	75 (0.16)	1.113 (0.731–1.695)	0.695	
IL12B rs3212227	<i>n</i> = 124	n = 240			
AA	78 (0.63)	151 (0.63)	Referent		0.475
AC	43 (0.35)	77 (0.32)	1.081 (0.681–1.717)	0.813	
CC	3 (0.02)	12 (0.05)	0.484 (0.133–1.766)	0.397	
AC + CC	46 (0.37)	89 (0.37)	1.001 (0.639–1.567)	1.000	
MAF	49 (0.20)	101 (0.21)	0.924 (0.631-1.354)	0.757	
IL4R rs1805015	n = 144	<i>n</i> = 225			
ТТ	95 (0.66)	162 (0.72)	Referent		0.285
СТ	42 (0.29)	53 (0.24)	1.351 (0.838-2.179)	0.221	
CC	7 (0.05)	10 (0.04)	1.194 (0.440-3.240)	0.798	
CT + CC	49 (0.34)	63 (0.28)	1.326 (0.845-2.083)	0.246	
MAF	56 (0.19)	73 (0.16)	1.247 (0.848-1.832)	0.305	
IL13 rs20541	<i>n</i> = 144	<i>n</i> = 230			
CC	80 (0.56)	124 (0.54)	Referent		0.469
СТ	55 (0.38)	84 (0.36)	1.015 (0.653-1.578)	1.000	
ТТ	9 (0.06)	22 (0.10)	0.634 (0.278-1.447)	0.324	
CT + TT	64 (0.44)	106 (0.46)	0.936 (0.616-1.422)	0.831	
MAF	73 (0.25)	128 (0.28)	0.881 (0.630-1.231)	0.510	
IL28B rs8099917	<i>n</i> = 163	<i>n</i> = 375			
ТТ	105 (0.64)	245 (0.65)	Referent		0.584
GT	52 (0.32)	123 (0.33)	0.986 (0.663-1.467)	1.000	
GG	6 (0.04)	7 (0.02)	2.000 (0.656-6.094)	0.229	
GT + GG	58 (0.36)	130 (0.35)	1.041 (0.709-1.530)	0.845	
MAF	64 (0.20)	137 (0.18)	1.093 (0.786-1.521)	0.658	
IL28B rs12979860	<i>n</i> = 163	<i>n</i> = 372			
CC	69 (0.42)	164 (0.44)	Referent		0.281
СТ	73 (0.45)	166 (0.45)	1.045 (0.705-1.549)	0.841	
ТТ	21 (0.13)	42 (0.11)	1.188 (0.656-2.154)	0.644	
CT + TT	94 (0.58)	208 (0.56)	1.074 (0.740-1.558)	0.776	
MAF	115 (0.35)	250 (0.34)	1.077 (0.819-1.416)	0.644	
GC rs2298849	<i>n</i> = 172	<i>n</i> = 375	· · ·		
TT	99 (0.58)	237 (0.63)	Referent		0.080
СТ	60 (0.35)	124 (0.33)	1.158 (0.786-1.706)	0.486	
CC	13 (0.07)	14 (0.04)	2.223 (1.008-4.901)	0.052	
CT + CC	73 (0.42)	138 (0.37)	1.266 (0.876–1.830)	0.220	
MAF	166 (0.25)	152 (0.20)	1.311 (0.969–1.774)	0.092	

TABLE 8: Continued.									
Parameter	Type 2 DM nephropathy with CAD (frequency)	Healthy controls (frequency)	Odds ratio (95% CI)	Two-tailed P	P _{trend}				
GC rs7041	<i>n</i> = 161	<i>n</i> = 361							
GG	57 (0.35)	116 (0.32)	Referent		0.748				
GT	69 (0.43)	186 (0.52)	0.755 (0.496–1.150)	0.196					
ТТ	35 (0.22)	59 (0.16)	1.207 (0.714-2.040)	0.502					
GT + TT	104 (0.65)	245 (0.68)	0.864 (0.584-1.278)	0.482					
MAF	139 (0.43)	304 (0.42)	1.044 (0.801-1.362)	0.800					
GC rs1155563	<i>n</i> = 172	<i>n</i> = 377							
ТТ	82 (0.48)	189 (0.50)	Referent		0.378				
CT	70 (0.41)	155 (0.41)	1.041 (0.710-1.527)	0.845					
CC	20 (0.12)	33 (0.09)	1.397 (0.757-2.578)	0.332					
CT + CC	90 (0.52)	188 (0.50)	1.103 (0.769–1.583)	0.646					
MAF	110 (0.32)	221 (0.29)	1.134 (0.861–1.494)	0.411					
VDR rs2228570	<i>n</i> = 162	<i>n</i> = 371							
CC	43 (0.27)	103 (0.28)	Referent		0.386				
СТ	93 (0.57)	183 (0.49)	1.217 (0.788–1.880)	0.384					
TT	26 (0.16)	85 (0.23)	0.733 (0.416-1.290)	0.321					
CT + TT	119 (0.73)	268 (0.72)	1.064 (0.702-1.613)	0.833					
MAF	145 (0.45)	353 (0.48)	0.893 (0.687-1.160)	0.434					
VDR rs1544410	<i>n</i> = 170	<i>n</i> = 372							
GG	65 (0.38)	148 (0.40)	Referent		0.880				
AG	79 (0.46)	165 (0.44)	1.090 (0.734–1.620)	0.687					
AA	26 (0.15)	59 (0.16)	1.003 (0.581–1.732)	1.000					
AG + AA	105 (0.62)	224 (0.60)	1.067 (0.735–1.549)	0.776					
MAF	131 (0.39)	283 (0.38)	1.021 (0.784–1.329)	0.931					
RXRA rs10776909	<i>n</i> = 172	<i>n</i> = 378							
CC	112 (0.65)	250 (0.66)	Referent		0.483				
СТ	48 (0.28)	112 (0.30)	0.957 (0.638-1.434)	0.838					
ТТ	12 (0.07)	16 (0.04)	1.674 (0.767–3.656)	0.209					
CT + TT	60 (0.35)	128 (0.34)	1.046 (0.716–1.529)	0.846					
MAF	72 (0.21)	144 (0.19)	1.125 (0.819–1.545)	0.518					
RXRA rs10881578	<i>n</i> = 173	<i>n</i> = 377							
AA	89 (0.51)	183 (0.48)	Referent		0.682				
AG	65 (0.38)	154 (0.41)	0.868 (0.591–1.275)	0.494					
GG	19 (0.11)	40 (0.11)	0.977 (0.535–1.783)	1.000					
AG + GG	84 (0.49)	194 (0.51)	0.890 (0.621-1.276)	0.582					
MAF	103 (0.30)	234 (0.31)	0.942 (0.714–1.243)	0.725					
RXRA rs749759	<i>n</i> = 169	<i>n</i> = 370							
GG	100 (0.59)	221 (0.60)	Referent		0.924				
AG	59 (0.35)	123 (0.33)	1.060 (0.718–1.566)	0.842					
AA	10 (0.06)	26 (0.07)	0.850 (0.395–1.830)	0.710					
AG + AA	69 (0.41)	149 (0.40)	1.023 (0.707–1.482)	0.925					
MAF	79 (0.23)	175 (0.24)	0.985 (0.727-1.334)	0.983					

CAD: coronary artery disease, DM: diabetes mellitus, and MAF: minor allele frequency.

rs2228570 [38]), type 2 DM susceptibility (*VDR* rs2228570 [40], *VDR* rs1544410 [41]), and phenotype of type 2 DM (*VDR* rs2228570 [42], *VDR* rs1544410 [41, 43]). *VDR* rs2228570 and *IL4* polymorphisms were also related to the risk of chronic kidney disease [44, 45]. On the other hand, there are also data indicating no major effect of *IL12B* on type 1 DM susceptibility in the entire study group [46], no association of *IL4R* with type 1 DM [47], no evident causal relationship between vitamin D pathway genes and type 2 DM, myocardial infarction or mortality [48], similar distribution of genotypes, allele and haplotypes of *VDR* rs2228570 and *VDR* rs731236 between type 2 DM patients and controls [49], no contribution of *VDR* rs1544410 to type 1 DM susceptibility [50], and no association of *VDR* rs1544410 with chronic kidney disease susceptibility [51].

In this study we were not able to show significant differences in the frequency distribution of tested polymorphic variants of T-cell-related cytokine genes or vitamin D pathway genes between HD patients with ESRD due to type 2 DM nephropathy and controls as well as HD patients with other causes of ESRD analyzed together. This lack of association was present although the examined type 2 DM nephropathy patients showed clinical complications more frequently than HD patients with other renal diseases: higher dialysis related mortality rate [3], higher prevalence of CAD including myocardial infarction [4], lower serum PTH, and lower frequency of parathyroidectomy and treatment with cinacalcet, all of them predictive for higher tendency to adynamic bone disease [7]. Type 2 DM nephropathy patients with or without diagnosis of CAD also did not differ in tested genotype distributions.

Development of ESRD substantially ameliorates interpatient clinical variability related to underlying renal impairment and exposes uremia-related signs and symptoms. Comparisons of type 2 DM nephropathy patients in respect of tested genotype frequencies with subjects showing other common causes of ESRD revealed that the former group has a higher *IL18* rs360719 minor allele frequency than chronic infective tubulointerstitial nephritic group. In this case, lower IL18 rs360719 minor allele frequency in tubulointerstitial nephritic patients was observed also when their results were compared to those of healthy subjects. Sánchez et al. [52] have found a significant increase in the relative expression of IL-18 mRNA in individuals carrying the rs360719 minor allele. IL-18 is IFN- γ inducing factor. Infective tubulointerstitial nephritic patients are known to have diminished ability of blood leukocytes to produce IFN- γ [53]. Our study indicates that this may be related to lower frequency of IL18 rs360719 minor allele in this group compared to controls and type 2 DM nephropathy patients. In type 2 DM patients with overt nephropathy, positive correlations between plasma IFN-y, proteinuria, and eGFR were found [54].

Due to limited financial support, we did not perform any functional studies regarding T-cell-related interleukin and vitamin D pathway genes, especially that multiple influences independent or dependent on genetic profile need to be taken into account in such studies conducted in the uremic milieu. Although the examined patients showing ESRD due to type 2 DM nephropathy were well-defined group, they obviously were not consistent in HLA DRB1 alleles. The latter could be important in modulating susceptibility to advanced type 2 DM nephropathy and related complications, like it was shown for type 1 DM [55] or type 2 DM [41], regardless of their complications.

5. Summary

Distributions of tested T-cell cytokine gene polymorphisms or vitamin D pathway gene polymorphisms are not significantly different among patients with ESRD due to type 2 DM nephropathy and healthy individuals. Subjects with ESRD due to type 2 DM nephropathy differ in clinical manifestation from patients with other nephropathies leading to dialysis dependency, but differences in tested genotype distributions were found only in *IL18* rs360719 compared with chronic tubulointerstitial nephritic patients. This difference probably arose from the fact that pathology of chronic infective tubulointerstitial nephritis might have been associated with this specific polymorphism.

6. Conclusions

In Polish HD patients, T-cell cytokine gene polymorphisms and vitamin D pathway gene polymorphisms are not associated with ESRD due to type 2 DM nephropathy. *IL18* polymorphism is worthy to be further investigated in chronic infective tubulointerstitial nephritic patients as being possibly associated with this disease.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

- E. Villar, H. C. Sean, and S. P. McDonald, "Incidences, treatments, outcomes, and sex effect on survival in patients with end-stage renal disease by diabetes status in Australia and New Zealand (1991–2005)," *Diabetes Care*, vol. 30, no. 12, pp. 3070– 3076, 2007.
- [2] A. Sattar, C. Argyropoulos, L. Weissfeld et al., "All-cause and cause-specific mortality associated with diabetes in prevalent hemodialysis patients," *BMC Nephrology*, vol. 13, article 130, 2012.
- [3] F. Chantrel, I. Enache, M. Bouiller et al., "Abysmal prognosis of patients with type 2 diabetes entering dialysis," *Nephrology Dialysis Transplantation*, vol. 14, no. 1, pp. 129–136, 1999.
- [4] H. Al-Thani, A. Shabana, A. Hussein et al., "Cardiovascular complications in diabetic patients undergoing regular hemodialysis: a 5-year observational study," *Angiology*, 2014.
- [5] M. J. Sarnak and B. L. Jaber, "Mortality caused by sepsis in patients with end-stage renal disease compared with the general population," *Kidney International*, vol. 58, no. 4, pp. 1758–1764, 2000.
- [6] S.-M. Alavian and S. V. Tabatabaei, "The effect of diabetes mellitus on immunological response to hepatitis B virus vaccine in individuals with chronic kidney disease: a meta-analysis of current literature," *Vaccine*, vol. 28, no. 22, pp. 3773–3777, 2010.

- [7] D. Zayour, M. Daouk, W. Medawar, M. Salamoun, and G. El-Hajj Fuleihan, "Predictors of bone mineral density in patients on hemodialysis," *Transplantation Proceedings*, vol. 36, no. 5, pp. 1297–1301, 2004.
- [8] D. M. Li, Y. Zhang, B. Ding et al., "The association between vitamin D deficiency and diabetic nephropathy in type 2 diabetic patients," *Zhonghua Nei Ke Za Zhi*, vol. 52, no. 11, pp. 970–974, 2013 (Chinese).
- [9] C.-C. Wu, H.-K. Sytwu, K.-C. Lu, and Y.-F. Lin, "Role of T cells in type 2 diabetic nephropathy," *Experimental Diabetes Research*, vol. 2011, Article ID 514738, 9 pages, 2011.
- [10] Y. Tian, C. Wang, Z. Ye, X. Xiao, A. Kijlstra, and P. Yang, "Effect of 1,25-Dihydroxyvitamin D3 on Th17 and Th1 response in patients with Behçet's disease," *Investigative Ophthalmology and Visual Science*, vol. 53, no. 10, pp. 6434–6441, 2012.
- [11] J. Stachowski, "Hepatitis C virus infection in renal diseases: state of knowledge, therapeutic problems and perspectives," *Polski Merkuriusz Lekarski*, vol. 8, no. 46, pp. 303–306, 2000 (Polish).
- [12] B. D. Livingston, J. Alexander, C. Crimi et al., "Altered helper T lymphocyte function associated with chronic hepatitis B virus infection and its role in response to therapeutic vaccination in humans," *Journal of Immunology*, vol. 162, no. 5, pp. 3088–3095, 1999.
- [13] J. Zhang, G. Hua, X. Zhang, R. Tong, X. Du, and Z. Li, "Regulatory T cells/T-helper cell 17 functional imbalance in uraemic patients on maintenance haemodialysis: a pivotal link between microinflammation and adverse cardiovascular events," *Nephrology*, vol. 15, no. 1, pp. 33–41, 2010.
- [14] E. Borella, G. Nesher, E. Israeli, and Y. Shoenfeld, "Vitamin D: a new anti-infective agent?" *Annals of the New York Academy of Sciences*, vol. 1317, no. 1, pp. 76–83, 2014.
- [15] E. Zitt, H. Sprenger-Mähr, F. Knoll, U. Neyer, and K. Lhotta, "Vitamin D deficiency is associated with poor response to active hepatitis B immunisation in patients with chronic kidney disease," *Vaccine*, vol. 30, no. 5, pp. 931–935, 2012.
- [16] T. Shoji and Y. Nishizawa, "Vitamin D and survival of hemodialysis patients," *Clinical calcium*, vol. 14, no. 9, pp. 64–68, 2004 (Japanese).
- [17] L. Steingrimsdottir, O. Gunnarsson, O. S. Indridason, L. Franzson, and G. Sigurdsson, "Relationship between serum parathyroid hormone levels, vitamin D sufficiency, and calcium intake," *The Journal of the American Medical Association*, vol. 294, no. 18, pp. 2336–2341, 2005.
- [18] R. Pacifici, "Role of T cells in the modulation of PTH action: physiological and clinical significance," *Endocrine*, vol. 44, no. 3, pp. 576–582, 2012.
- [19] H. Zhang, J. Wang, B. Yi et al., "BsmI polymorphisms in vitamin D receptor gene are associated with diabetic nephropathy in type 2 diabetes in the Han Chinese population," *Gene*, vol. 495, no. 2, pp. 183–188, 2012.
- [20] N. Mtiraoui, I. Ezzidi, M. Kacem et al., "Predictive value of interleukin-10 promoter genotypes and haplotypes in determining the susceptibility to nephropathy in type 2 diabetes patients," *Diabetes/Metabolism Research and Reviews*, vol. 25, no. 1, pp. 57– 63, 2009.
- [21] I. Ezzidi, N. Mtiraoui, M. Kacem et al., "Interleukin-10-592C/A, -819C/T and -1082A/G promoter variants affect the susceptibility to nephropathy in Tunisian type 2 diabetes (T2DM) patients," *Clinical Endocrinology*, vol. 70, no. 3, pp. 401–407, 2009.
- [22] M. Karadeniz, M. Erdogan, A. Berdeli, and C. Yilmaz, "Association of interleukin-6 -174 G>C promoter polymorphism

with increased risk of type 2 diabetes mellitus patients with diabetic nephropathy in Turkey," *Genetic Testing and Molecular Biomarkers*, vol. 18, no. 1, pp. 62–65, 2014.

- [23] M. Murea, T. C. Register, J. Divers et al., "Relationships between serum MCP-1 and subclinical kidney disease: African American-Diabetes Heart Study," *BMC Nephrology*, vol. 13, no. 1, article 148, 2012.
- [24] A. E. Grzegorzewska, D. Pajzderski, A. Sowińska, and P. P. Jagodziński, "Polymporphism of monocyte chemoattractant protein 1 (*MCP1*-2518 A/G) and responsiveness to hepatitis B vaccination in hemodialysis patients," *Polskie Archiwum Medycyny Wewnetrznej*, vol. 124, no. 1-2, pp. 10–18, 2014.
- [25] A. E. Grzegorzewska, D. Pajzderski, A. Sowińska, and P. P. Jagodziński, "Monocyte chemoattractant protein-1 gene (*MCP-1-2518 A/G*) polymorphism and serological markers of hepatitis B virus infection in hemodialysis patients," *Medical Science Monitor*, vol. 20, pp. 1101–1116, 2014.
- [26] Group KDIGOKCW, "KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease," *Kidney International Supplements*, vol. 3, pp. 1–150, 2013.
- [27] A. E. Grzegorzewska, P. Wobszal, and P. P. Jagodziński, "Interleukin-18 promoter polymorphism and development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients," *Kidney and Blood Pressure Research*, vol. 35, no. 1, pp. 1–8, 2012.
- [28] A. E. Grzegorzewska, P. M. Wobszal, A. Sowińska, A. Mostowska, and P. P. Jagodziński, "Association of the interleukin-12 polymorphic variants with the development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients in response to vaccination or infection," *Molecular Biology Reports*, vol. 40, no. 12, pp. 6899–6911, 2013.
- [29] A. E. Grzegorzewska, P. M. Wobszal, A. Mostowska, and P. P. Jagodziński, "Antibodies to hepatitis B virus surface antigen and interleukin 12 and interleukin 18 gene polymorphisms in hemodialysis patients," *BMC Nephrology*, vol. 13, no. 1, article 75, 2012.
- [30] A. E. Grzegorzewska, D. Pajzderski, A. Sowińska, A. Mostowska, and P. P. Jagodziński, "IL4R and IL13 polymorphic variants and development of antibodies to surface antigen of hepatitis B virus in hemodialysis patients in response to HBV vaccination or infection," *Vaccine*, vol. 31, no. 14, pp. 1766–1770, 2013.
- [31] S. S. Rich, "Genetics of diabetes and its complications," *Journal of the American Society of Nephrology*, vol. 17, no. 2, pp. 353–360, 2006.
- [32] N. D. Palmer and B. I. Freedman, "Insights into the genetic architecture of diabetic nephropathy," *Current Diabetes Reports*, vol. 12, no. 4, pp. 423–431, 2012.
- [33] N. Franceschini, N. M. Shara, H. Wang et al., "The association of genetic variants of type 2 diabetes with kidney function," *Kidney International*, vol. 82, no. 2, pp. 220–225, 2012.
- [34] N. D. Palmer, C. W. McDonough, P. J. Hicks et al., "A genomewide association search for type 2 diabetes genes in african americans," *PLoS ONE*, vol. 7, no. 1, Article ID e29202, 2012.
- [35] A. Davoodi-Semiromi, J. J. Yang, and J.-X. She, "IL-12p40 is associated with type 1 diabetes in Caucasian-American families," *Diabetes*, vol. 51, no. 7, pp. 2334–2336, 2002.
- [36] D. B. Mirel, A. M. Valdes, L. C. Lazzeroni, R. L. Reynolds, H. A. Erlich, and J. A. Noble, "Association of IL4R haplotypes with type 1 diabetes," *Diabetes*, vol. 51, no. 11, pp. 3336–3341, 2002.
- [37] T. L. Bugawan, D. B. Mirel, A. M. Valdes, A. Panelo, P. Pozzilli, and H. A. Erlich, "Association and interaction of the IL4R,

IL4, and IL13 loci with type 1 diabetes among filipinos," *The American Journal of Human Genetics*, vol. 72, no. 6, pp. 1505–1514, 2003.

- [38] B. Frederiksen, E. Liu, J. Romanos et al., "Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes: the Diabetes Autoimmunity Study in the Young (DAISY)," *The Journal of Steroid Biochemistry and Molecular Biology*, vol. 133, no. 1, pp. 51–57, 2013.
- [39] C. Panierakis, G. Goulielmos, D. Mamoulakis, E. Petraki, E. Papavasiliou, and E. Galanakis, "Vitamin D receptor gene polymorphisms and susceptibility to type 1 diabetes in Crete, Greece," *Clinical Immunology*, vol. 133, no. 2, pp. 276–281, 2009.
- [40] Q. Wang, B. Xi, K. H. Reilly, M. Liu, and M. Fu, "Quantitative assessment of the associations between four polymorphisms (FokI, ApaI, BsmI, TaqI) of vitamin D receptor gene and risk of diabetes mellitus," *Molecular Biology Reports*, vol. 39, no. 10, pp. 9405–9414, 2012.
- [41] N. M. Al-Daghri, O. Al-Attas, M. S. Alokail et al., "Vitamin D receptor gene polymorphisms and HLA DRB1*04 cosegregation in Saudi type 2 diabetes patients," *Journal of Immunology*, vol. 188, no. 3, pp. 1325–1332, 2012.
- [42] F.-L. Vélayoudom-Céphise, L. Larifla, J.-P. Donnet et al., "Vitamin D deficiency, vitamin D receptor gene polymorphisms and cardiovascular risk factors in Caribbean patients with type 2 diabetes," *Diabetes & Metabolism*, vol. 37, no. 6, pp. 540–545, 2011.
- [43] D. A. F. Ferrarezi, N. Bellili-Muñoz, D. Dubois-Laforgue et al., "Allelic variations of the vitamin D receptor (VDR) gene are associated with increased risk of coronary artery disease in type 2 diabetics: the DIABHYCAR prospective study," *Diabetes and Metabolism*, vol. 39, no. 3, pp. 263–270, 2013.
- [44] T. B. Zhou, Z. P. Jiang, M. F. Huang, and N. Su, "Association of vitamin D receptor Fok1 (rs2228570), TaqI (rs731236) and ApaI (rs7975232) gene polymorphism with the risk of chronic kidney disease," *Journal of Receptors and Signal Transduction Research*, vol. 5, pp. 1–5, 2014.
- [45] R. D. Mittal and P. K. Manchanda, "Association of interleukin (IL)-4 intron-3 and IL-6 -174 G/C gene polymorphism with susceptibility to end-stage renal disease," *Immunogenetics*, vol. 59, no. 2, pp. 159–165, 2007.
- [46] G. Morahan, E. McKinnon, J. Berry et al., "Evaluation of IL12B as a candidate type I diabetes susceptibility gene using data from the Type I Diabetes Genetics Consortium," *Genes and Immunity*, vol. 10, supplement 1, pp. S64–S68, 2009.
- [47] H. A. Erlich, K. Lohman, S. J. MacK et al., "Association analysis of SNPs in the IL4R locus with type i diabetes," *Genes and Immunity*, vol. 10, supplement 1, pp. S33–S41, 2009.
- [48] R. Jorde, H. Schirmer, T. Wilsgaard et al., "Polymorphisms related to the serum 25-Hydroxyvitamin D level and risk of Myocardial infarction, diabetes, cancer and mortality. The Tromsø study," *PLoS ONE*, vol. 7, no. 5, Article ID e37295, 2012.
- [49] H. Bid, R. Konwar, C. Aggarwal et al., "Vitamin D receptor (FokI, BsmI and TaqI) gene polymorphisms and type 2 diabetes mellitus: a North Indian study," *Indian Journal of Medical Sciences*, vol. 63, no. 5, pp. 187–194, 2009.
- [50] M. C. Lemos, A. Fagulha, E. Coutinho et al., "Lack of association of vitamin D receptor gene polymorphisms with susceptibility to type 1 diabetes mellitus in the Portuguese population," *Human Immunology*, vol. 69, no. 2, pp. 134–138, 2008.

- [51] T. B. Zhou, Z. P. Jiang, and M. F. Huang, "Association of vitamin D receptor BsmI (rs1544410) gene polymorphism with the chronic kidney disease susceptibility," *Journal of Receptors and Signal Transduction Research*, 2014.
- [52] E. Sánchez, R. J. Palomino-Morales, N. Ortego-Centeno et al., "Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus," *Human Molecular Genetics*, vol. 18, no. 19, pp. 3739–3748, 2009.
- [53] I. P. Kudriashova, T. P. Ospel'nikova, and F. I. Ershov, "Cycloferon administration in chronic pyelonephritis: changes in interferon status," *Terapevticheskii Arkhiv*, vol. 83, no. 6, pp. 33–35, 2011 (Russian).
- [54] C.-C. Wu, J.-S. Chen, K.-C. Lu et al., "Aberrant cytokines/chemokines production correlate with proteinuria in patients with overt diabetic nephropathy," *Clinica Chimica Acta*, vol. 411, no. 9-10, pp. 700–704, 2010.
- [55] N. Israni, R. Goswami, A. Kumar, and R. Rani, "Interaction of Vitamin D receptor with HLA DRB1*0301 in Type 1 diabetes patients from North India," *PLoS ONE*, vol. 4, no. 12, Article ID e8023, 2009.