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Abstract
Background: In patients with cirrhosis, infection is frequent and a leading cause of death. This is
secondary to various immunologic abnormalities in both the innate and the adaptive immune
system. However, it remains unclear whether cirrhosis affects the inflammatory systemic
component of the innate immunity, 'the acute phase response', mostly effectuated by the liver itself.
We hypothesized that rats with cirrhosis raise a reduced acute phase response induced by
lipopolysaccharide (LPS).

Results: We examined the acute phase response induced by intraperitoneal injection of a low dose
of LPS, in sham operated control animals and in rats with liver cirrhosis induced by bile duct ligation
(BDL). We measured the serum concentrations of the most important acute phase proteins and
their liver tissue gene expressions, assessed by mRNA levels. The BDL-model itself increased the
serum concentration of α1-acid glycoprotein (α1AGP) and haptoglobin. LPS was lethal to 25% of
the cirrhotic animals and to none of the controls. Twenty-four hours after LPS, the serum
concentration of α1AGP and haptoglobin, the mRNA level of these acute phase proteins and of
α2-macroglobulin and thiostatin rose to the same level in the animals with cirrhosis and in controls.

Conclusion: In rats with experimental cirrhosis LPS caused high mortality. In the survivors, the
cirrhotic liver still synthesized acute phase proteins as the normal liver, indicating a normal hepatic
contribution to this part of the acute phase response.

Background
Liver cirrhosis is associated with a high frequency of bac-
terial infections that increases mortality [1]. The first year
after being diagnosed with cirrhosis, patients suffer a
more than 40-fold increased mortality from infection
compared with the adjusted background population [2].
This reflects multiple immunologic abnormalities second-

ary to cirrhosis. Attention has focused particularly on the
innate immune system, the many protein components of
which are synthesized by the liver itself [3]. Thus, it is a
frequently held notion that the acute phase response is
compromised in cirrhosis patients. However, studies on
this subject are few [4,5] and it has not been yet systemat-
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ically examined in either cirrhosis patients or in experi-
mental models.

The acute phase response consists of changes in the serum
concentration of multiple proteins due to a reorganiza-
tion of hepatic protein synthesis favouring "the acute
phase proteins" and decreasing the so-called "negative
acute phase proteins". This is part of the non-specific first
line of defense against microbes and plays a critical role in
the host defense mechanisms, promoting the clearance of
invading particles and modulating the immune response
against them [6,7].

The proteins acting as acute phase proteins differ from
humans to animals and from one species to another. In
rat, α1-acid glycoprotein (α1AGP), α2-macroglobulin
(α2M), haptoglobin and thiostatin [6,8] are among the
major acute phase proteins, whereas C-reactive protein,
predominant in humans, does not partake [9]. Albumin
reacts as a negative acute phase protein. The acute phase
changes in those proteins and their corresponding
mRNAs in liver tissue are well described in rats [8,9].

Injection of lipopolysaccharide (LPS), an endotoxin from
bacterial cell walls, is a standardized method for induc-
tion of the acute phase response. Earlier studies report
markedly increased mortality after administration of LPS
in rats with experimental liver cirrhosis [10].

We hypothesized that rats with cirrhosis raise a reduced
acute phase response induced by LPS. Therefore, we meas-
ured the plasma concentrations of selected important
acute phase proteins and the expression in liver tissue of
their genes assessed by mRNAs. LPS was given four weeks
after bile duct ligation (BDL), causing cirrhosis to
develop, and 24 hours before examination.

Results
Animal and model characteristics
After LPS mortality reached 25% (3/12) among the ani-
mals with cirrhosis and there was no mortality in the three
other study groups (P = 0.001, Fisher's exact test). No
interaction was found between LPS and cirrhosis for either

bilirubin, ASAT, liver weight or spleen weight, whereas all
of them were increased by cirrhosis (two-way (2-way)
ANOVA, P < 0.001). LPS also increased serum bilirubin
concentration (2-way ANOVA, P < 0.001) (Table 1).

Serum α1AGP, haptoglobin and albumin
For both α1AGP and haptoglobin, the interaction found
between LPS and cirrhosis (2-way ANOVA, P < 0.001)
decreased their serum concentrations. The serum concen-
tration – mean (SD) – of α1AGP [S: 0.07 (0.03), LPS: 1.0
(0.23), Ci: 0.5 (0.17), Ci+LPS: 1.5 (0.3) mg/ml] and hap-
toglobin [S: 0.4 (0.1), LPS: 2.0 (0.8), Ci: 1.6 (0.5), Ci+LPS:
1.9 (0.3) mg/ml] was increased by LPS, cirrhosis and both
together compared with the control group (one-way (1-
way) ANOVA, P < 0.05). Alpha-1AGP was increased by
LPS in the cirrhotic animals (1-way ANOVA, P < 0.05) and
haptoglobin tended to increase (Fig. 1).

No interaction was found between the factors for serum
albumin. Serum albumin [S: 80.2 (16.8), LPS: 70.9
(15.1), Ci: 53.7 (12.8), Ci+LPS: 49.6 (8.6) mg/ml]
decreased by cirrhosis (2-way ANOVA, P < 0.001) and not
by LPS (Fig. 2).

Relative mRNAs of acute phase protein genes
In the three treatment groups, the mRNAs were expressed
as percentage of mean values of sham-operated animals.
There was no interaction between LPS and cirrhosis for
any of the mRNAs of the four acute phase proteins:
α1AGP [S: 100 (46), LPS: 334 (83), Ci: 166 (41), Ci+LPS:
366 (80)%], haptoglobin [S: 100 (28), LPS: 158 (27), Ci:
144 (20), Ci+LPS: 174 (25)%), α2M (S: 100 (25), LPS:
337 (124), Ci:83 (16), Ci+LPS: 284 (116)%] and thiosta-
tin [S: 100 (24), LPS: 146 (25), Ci: 107 (15), Ci+LPS: 146
(24)%]. The mRNAs of these proteins were increased by
LPS (2-way ANOVA, P < 0.001) and only the mRNA of
haptoglobin increased also by cirrhosis (2-way ANOVA, P
< 0.001).

There was interaction between the two factors for the
mRNAs of albumin that increased the mRNA level. Com-
pared with the control group, the mRNA level of albumin
[S: 100 (16), LPS: 71 (9), Ci: 61 (9), Ci+LPS: 59 (15)%]

Table 1: Animal and model characteristics

Bilirubin μmol/l ** ASAT U/l * Liver weight (gram) * Spleen weight (gram)*

Sham 2.7 (0.5) 332 (143) 9.1 (0.8) 0.64 (0.10)
Sham+LPS 3.2 (0.89 345 (156) 8.8 (0.8) 0.76 (0.12)
Cirrhosis 39.5 (3.8) 519 (210) 18.5 (2.8) 1.37 (0.42)
Cirrhosis+LPS 54.2 (7.8) 912 (406) 16.5 (2.4) 1.27 (0.20)

Values are given as: mean (SD). Bilirubin and ASAT (n = 9) and liver/spleen-weights (n = 10) in sham-operated, in sham-operated injected with LPS 
(bilirubin and ASAT: n = 10, liver/spleen-weights: n = 12), in cirrhotic (bilirubin and ASAT: n = 11, liver/spleen-weights: n = 12) and in cirrhotic 
animals injected with LPS (n = 9). **Significantly increased (2-way ANOVA, P < 0.001) by both factors i.e. LPS and cirrhosis. *Significantly increased 
only by cirrhosis (2-way ANOVA, P < 0.001).
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was decreased by LPS, cirrhosis and both together (1-way
ANOVA, P < 0.05), and did not change by LPS in the cir-
rhotic animals (Fig. 3).

Relation between mRNAs and serum proteins
There was a close relationship between the mean values of
the relative values of liver tissue mRNAs and mean values
of the relative serum levels of α1AGP, haptoglobin and
albumin in the three treatment groups (r2 = 0.92, P < 0.01)
(Fig. 4).

Discussion
The aim of our work was to study selected aspects of the
acute phase response in an animal model of cirrhosis. The
main results were that, in the rats with cirrhosis, LPS
caused high mortality and increased serum of α1AGP and
of haptoglobin, and also of mRNAs of acute phase pro-
teins to a level as found in the control animals. Further-
more, that the BDL cirrhosis model itself triggered the
synthesis of α1AGP and haptoglobin.

Induction of experimental cirrhosis by BDL is a well-
described method [11]. The procedure led to cirrhosis (in
all animals) with portal hypertension, as indicated by the
markedly increased spleen weight [12]. The decreased
serum albumin, the increased bilirubin and ASAT by BDL
cirrhosis all confirm impaired liver function. Nonetheless,
the increased liver weight by the model may reflect some

Relative mRNAs of acute phase protein genesFigure 3
Relative mRNAs of acute phase protein genes. Rela-
tive mRNA levels for α1-acid glycoprotein (α1AGP), hap-
toglobin, α2-macroglobulin (α2M), thiostatin and albumin in 
liver tissue, in sham-operated (S) (n = 10), in sham-operated 
injected with LPS (LPS) (n = 12), in cirrhotic (Ci) (n = 12) and 
in cirrhotic animals injected with LPS (Ci+LPS) (n = 9). Bars 
represent mean + SD, expressed as percentage of mean val-
ues of sham-operated animals. **,* Analysed by 2-way 
ANOVA: **Significantly increased (P < 0.001) by both factors 
i.e. LPS and cirrhosis. *Significantly increased only by LPS (P < 
0.001). #Analysed by 1-way ANOVA: #Significant difference 
(P < 0.05) compared with sham-operated.
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Serum α1AGP and haptoglobinFigure 1
Serum α1AGP and haptoglobin. Serum α1-acid glyco-
protein (α1AGP) and haptoglobin (mg/ml) in sham-operated 
(S) (n = 9), in sham-operated injected with LPS (LPS) (n = 
10), in cirrhotic (Ci) (n = 11) and in cirrhotic animals injected 
with LPS (Ci+LPS) (n = 9). Bars represent mean + SD. #Sig-
nificant difference (1-way ANOVA, P < 0.05) compared with 
S. ## Significant difference (1-way ANOVA, P < 0.05) for 
Ci+LPS compared with Ci.
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Serum albumin. Serum albumin (mg/ml) in sham-operated 
(S) (n = 9), in sham-operated injected with LPS (LPS) (n = 
10), in cirrhotic (Ci) (n = 11) and in cirrhotic animals injected 
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nificantly decreased by cirrhosis (2-way ANOVA, P < 0.001).
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extent of maintained hepatocellular mass [13]. One of our
recent and not yet published studies has shown that the
BDL model does not seem associated with loss of hepatic
functional reserve in terms of reduced galactose elimina-
tion capacity (GEC). Therefore, the model is probably not
one of clinical end-stage liver disease.

Activation of the innate immune system by LPS is well
known and LPS treatment is one of the most commonly
used methods for inducing the acute phase response. Rats
with BDL are highly sensitive to LPS [10] – one study
reported increased mortality after down to 0.01 mg/kg
LPS. We chose to use a dose of 0.5 mg/kg LPS, which is
reported to markedly increase mortality [10]. The mortal-
ity of 25% in our animals with cirrhosis and no mortality
in the controls matches other reports [10,14].

The acute phase proteins are playing different roles in the
acute phase response. Some initiate or sustain the
response, others have tissue-protective or anti-inflamma-
tory actions [7]. The four proteins determined in this
study are among the best indicators of the acute phase
response in the rat [6,8]. The presented study includes an
estimate of their gene expression and also the serum con-
centration of α1AGP and haptoglobin. The serum concen-
trations of α2M and thiostatin were not obtained, as the
analyses for these proteins are not commercially available.
The role of α1AGP is not clear; but it seems to have anti-

inflammatory functions [15]. Haptoglobin conserves iron
released from haemoglobin [9]. Alpha-2M and thiostatin
are plasma proteinase inhibitors protecting against prote-
olytic auto-degradation [6,16].

The decrease of certain proteins during the acute phase
response is presumably caused by the need to divert avail-
able amino acids into the production of active acute phase
proteins. Albumin is one of these proteins. The lack of a
significant reduction of albumin by the dose LPS used in
this study corresponds to other reports [10] and indicates
induction of a mild acute phase response.

We found a close and linear relation between the relative
values of mRNAs and relative serum levels of α1AGP, hap-
toglobin and albumin in the three treatment groups. This
result suggests that the changes in serum of those proteins
by the acute phase response, by cirrhosis, and by both
together, were determined to a large extent by changes in
expression of their genes although we have no data on
posttranslational events. This is in line with earlier studies
on rats without cirrhosis [17].

The increase of α1AGP and haptoglobin in serum as well
as of the mRNA of the later by BDL shows that this cirrho-
sis model in itself induced an acute phase response, prob-
ably because of the active fibrogenesis acting as an
inflammatory process. Conversely, those proteins may
themselves have a modulating effect on the fibrotic proc-
ess [18,19]. There are several reports indicating increased
acute phase protein synthesis also in human cirrhosis
[5,20].

Our data show that during the acute phase response, the
cirrhotic liver still synthesized haptoglobin and α1AGP
and, probably, also α2M and thiostatin, as normal livers
do. This is line with our earlier findings, that the synthesis
of the acute phase proteins benefits from high metabolic
priority during decreased functional liver mass caused by
high dose LPS treatment [21] and by hepatectomy [22].

We found an interaction between the effects of LPS and
cirrhosis on the mRNAs of albumin that increased the
mRNA level. However, this trend was not present for the
serum concentration of the protein. Moreover, a decreas-
ing interaction was found between the two factors on the
serum concentration of both α1AGP and haptoglobin;
thus, both these two proteins increased less by LPS in the
cirrhotic than in the non-cirrhotic animals. Further infor-
mation on whether this just reflects that the synthesis of
those proteins already is increased by the BDL model itself
or reflects suppression of the acute phase response by cir-
rhosis is not provided in this study. The sufficiency of the
response seems, however, more likely to be reflected by
the concentrations of the acute phase proteins during the

Relation between relative mRNAs and relative serum con-centrations of acute phase proteinsFigure 4
Relation between relative mRNAs and relative 
serum concentrations of acute phase proteins. Corre-
lation between the mean values of the relative mRNA levels 
and the mean values of the relative serum levels of α1AGP 
(yellow circles), haptoglobin (red circles) and albumin (blue 
triangles) in the sham-operated animals injected with LPS 
(serum levels: n = 10, mRNA levels n = 12), in the cirrhotic 
(serum levels: n = 11, mRNA levels n = 12) and in the cir-
rhotic animals injected with LPS (n = 9).
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response, rather than their exact increase. If so, our study
rejects the idea that the markedly increased mortality of
patients with cirrhosis exposed to infection is rooted in a
decreased liver function in the form of a decreased synthe-
sis of acute phase proteins. In addition, that the function
of the phylogenetically old, innate immune system is
robust during cirrhosis, and that alternative explanations
to the clinical immune deficiency should be sought for.

The synthesis of the acute phase proteins, during the
response, is considered to constitute a high part of total
body protein synthesis and to be highly demanding in
metabolic terms [23-25]. We speculate that the mainte-
nance of this protein synthesis by the cirrhotic liver may
happen at the expense of other metabolic processes. One
of our recent not yet published studies indicates that this
is the case regarding the capacity of urea synthesis. With
the reservation that the presented data were obtained
from the group of survivors, we furthermore speculate
that the high mortality of the LPS-exposed cirrhotic rats
was related to the metabolic demanding synthesis of the
acute phase proteins.

Limitations in the interpretation of the presented data are
that the animals with cirrhosis already exhibited increased
production of α1AGP and haptoglobin and that the data
were obtained only from the group of survivors. In addi-
tion, defining the acute phase response by the indicated
proteins is a narrowly defined approach, as the response
includes many physiological reactions.

Conclusion
Low dose LPS caused markedly increased mortality in rats
with experimental cirrhosis. In the survivors, the synthesis
of the acute phase proteins remained intact, indicating a
normal hepatic contribution to this part of the acute
phase response. We speculate that the increased sensitivity
to LPS in the cirrhotic animals may be related to the met-
abolically demanding acute phase protein synthesis. The
data should, however, be interpreted with caution and
further studies on other cirrhosis models are required.

Materials and methods
Animals
Female Wistar rats (body weight 200–210 g; Taconic,
Ejby, Denmark) were housed at 19 ± 3°C, with a 12-hours
(06:00 AM–06:00 PM) artificial light cycle, with two or
three animals from the same treatment group per cage.
They had access to tap water and standard food (Altromin,
Lage, Germany) ad libitum, during the whole experiment.
The study was undertaken in accordance with prevailing
local and national guidelines for animal welfare and
approved by the Experimental Animal Inspectorate.

Design
We studied four groups: two groups of sham-operated
animals injected with NaCl or LPS, and two groups of BDL
animals, injected with NaCl or with LPS 24 hours before
experimental examination: 1) Sham-operated animals
injected with NaCl (S); 2) Sham-operated animals
injected with LPS (LPS); 3) BDL-operated animals
injected with NaCl (Ci); 4) BDL-operated animals
injected with LPS (Ci + LPS).

Bilirubin, ASAT, α1AGP, haptoglobin and albumin were
determined in the sham-operated (n = 9), in the sham-
operated injected with LPS (n = 10), in the BDL-operated
(cirrhotic) (n = 11) and in the BDL-operated (cirrhotic)
animals injected with LPS (n = 9). The mRNAs and the
liver and spleen weights were determined in the sham-
operated (n = 10), in the sham-operated injected with LPS
(n = 12), in the BDL-operated (cirrhotic) (n = 12) and in
the BDL-operated (cirrhotic) animals injected with LPS (n
= 9).

BDL, sham-operation and acute phase response induction
BDL and sham-operation was performed under anaesthe-
sia with 0.5 ml/kg Hypnorm s.c. (fentanyl/fluanisone;
Jansen Pharma, Birkeroed, Denmark) and 0.5 ml/kg Dor-
micum (5 mg/ml) s.c. (midazolam; La Roche, Basel, Sch-
witzerland). Following a midline abdominal incision, the
common bile duct was isolated, triple ligated with 3-0
monofil polyamid and sectioned between the ligatures.
The sham operation consisted of isolation and gentle
manipulation of the common bile duct.

Twenty-five to 30 days after operation, the animals were
injected intraperitoneally with either 0.5 mg/kg LPS (from
Ecsherichia coli obtained from Sigma (0111:B4) (catalogue
no. L2630) Vallensbaek, Denmark) dissolved in 0.5 ml
isotonic NaCl or the vehicle.

Cirrhosis determination
After sacrifice, the spleen and liver were weighed. Liver tis-
sue from all BDL-operated animals was fixed overnight in
formalin, embedded in paraffin and stained with hema-
toxylin-eosin and Masson's trichrome, for histological
examination. Classification as cirrhotic required macro-
scopic cirrhosis (micro-nodular surface) and microscopic
diffuse architectural changes, with proliferation of bile
duct-like structures with fibrosis and solid porto-portal
septa formation. These criteria were satisfied in all BDL-
operated animals.

Serum acute phase proteins, bilirubin and aspartate 
aminotransferase
Alfa-1AGP, haptoglobin and albumin concentrations in
serum were determined using an ELISA kit specific for the
rat proteins (Alpha Diagnostic, San Antonio, Texas and
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Life Diagnostics, West Chester, UK) based on the manu-
facturer's instructions. Samples were assayed in duplicate.
The lower limit of detection was 1.56 ng/ml for α1AGP,
0.98 ng/ml for haptoglobin and 50 ng/ml for albumin.
Analyses for α2M and thiostatin are not commercially
available. Serum albumin and haptoglobin were also
measured by clinical routine analytical methods (Brom-
cresol Green and Immune Turbidimetric analysis) and
results correlated closely with those obtained by the ELISA
kits. Bilirubin and aspartate aminotransferase (ASAT)
were determined by routine analytical methods.

mRNAs
Following anaesthesia as used for BDL and sham opera-
tion (cf. above), about 200 mg of liver tissue from the left
lobe was snap-frozen in liquid N and stored at -80°C. The
mRNA levels of the rat acute phase proteins α1AGP, α2M,
thiostatin, haptoglobin and albumin were semi-quanti-
fied.

Total RNA was isolated with RNeasy® Midi Kit (Quiagen,
Hilden, Germany) and mRNA levels were measured by
slot blot hybridisation as previously described in detail
[26]. Hybridization was performed with QuickHyb®

hybridisation solution (Stratagene, La Jolla, California) at
68°C for 1 hour, followed by stringent wash. The intensi-
ties of the hybridisation signals were quantified by phos-
phorimaging with a Fujix Bioimaging Analyzer System
BAS2000 (Fuji Photo Film, Tokyo, Japan). After visualisa-
tion of the radioactive signal, the blots were analysed with
Tina Version 2.09c software (Ray Test, Fuji Photo Film,
Tokyo, Japan) and the results were expressed as photo-
stimulated luminescence (PSL) units corrected for back-
ground per unit area (PSL/S, i.e., [PSL-background]/
mm2). Values were expressed as percentage of the mean
value of the control animals. No pools were made and
each animal was a unique value.

The cDNA probes were built according to published data,
as follows: α1AGP [27]; α2M [28]; thiostatin [29]; hap-
toglobin [30]; albumin [31]. The DNA fragments were
separated by agar gel electrophoresis and eluted on Spin
Bind DNA Extraction Units (FMC).

Statistical methods
Statistical analyses were performed with the SPSS (version
11.0; SPSS Inc., Chicago, IL). All data are presented as
means (SD). Data was tested for normal distribution by
Q-Q plot in each study group and homogeneity of vari-
ance assumption by Bartlett's test. In order to establish
homogeneity of variances, the results of serum α1AGP
and haptoglobin, the mRNA of α2M, the ASAT, the
bilirubin and the liver and spleen weights were logarith-
mic transformed. Data were analysed with two-way (2-
way) ANOVA. In case of interaction between the factors,

the data were analysed with one-way (1-way) ANOVA.
Correction for multiple testing was performed with Bon-
ferroni. Mortality was analysed with Fisher's exact test and
associations with Pearsons's correlation.
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