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Sleep disorders in Alzheimer’s disease: the predictive 
roles and potential mechanisms
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Abstract  
Sleep disorders are common in patients with Alzheimer’s disease, and can even occur 
in patients with amnestic mild cognitive impairment, which appears before Alzheimer’s 
disease. Sleep disorders further impair cognitive function and accelerate the accumulation 
of amyloid-β and tau in patients with Alzheimer’s disease. At present, sleep disorders 
are considered as a risk factor for, and may be a predictor of, Alzheimer’s disease 
development. Given that sleep disorders are encountered in other types of dementia and 
psychiatric conditions, sleep-related biomarkers to predict Alzheimer’s disease need to have 
high specificity and sensitivity. Here, we summarize the major Alzheimer’s disease-specific 
sleep changes, including abnormal non-rapid eye movement sleep, sleep fragmentation, 
and sleep-disordered breathing, and describe their ability to predict the onset of 
Alzheimer’s disease at its earliest stages. Understanding the mechanisms underlying these 
sleep changes is also crucial if we are to clarify the role of sleep in Alzheimer’s disease. 
This paper therefore explores some potential mechanisms that may contribute to sleep 
disorders, including dysregulation of the orexinergic, glutamatergic, and γ-aminobutyric 
acid systems and the circadian rhythm, together with amyloid-β accumulation. This review 
could provide a theoretical basis for the development of drugs to treat Alzheimer’s disease 
based on sleep disorders in future work.
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Introduction 
Sleep is beneficial to cognitive function and the central 
nervous system; in particular, sleep can enhance learning and 
memory in humans (Diekelmann and Born, 2010; Porter et al., 
2015). Sleep disorders are prevalent in healthy older people, 
and can include daytime sleepiness, napping, and nighttime 
sleep duration reduction. However, these disorders have been 
found to be more pronounced in patients with Huntington’s 
disease, epilepsy, and Alzheimer’s disease (AD) (Baker et al., 
2016; Shen et al., 2017; Fujisawa et al., 2019). Sleep disorders 
in AD mainly manifest as insomnia, an altered wake-sleep 
rhythm, sleep fragmentation, sleep-disordered breathing, 
restless legs syndrome, and rapid eye movement (REM) sleep 
behavior disorder (Cordone and De Gennaro, 2020). AD is 
the most widespread form of dementia; it is most prevalent 
in older people, and its primary clinical manifestations 
are memory and cognitive impairment. Given that the 
pathogenesis of AD has not been fully elucidated, the current 
research focus is on AD prevention. For this, finding predictors 
of AD and developing proper interventions will be essential.

Sleep disorders have been found to be effective in predicting 
the occurrence of AD (Most et al., 2012; Hahn et al., 2014). 
Additionally, sleep disorders promote the accumulation of 
amyloid-β (Aβ) and phosphorylated tau (Bubu et al., 2017; 

Spira et al., 2018); in turn, the levels of these two pathological 
biomarkers of AD can be reduced by improving sleep quality. 
Although sleep disorders can occur at any stage of AD, 
they most frequently occur in the pre-clinical phase of AD, 
such as during mild cognitive impairment (MCI), especially 
the amnestic MCI (aMCI) type. aMCI is a transitional stage 
between healthy aging and AD, and patients with aMCI 
are approximately 10 times more likely to develop AD than 
healthy individuals (Petersen et al., 2001). 

Sleep electroencephalography (EEG) is an essential tool for 
detecting and evaluating sleep disorders. It reveals specific 
sleep changes in patients with AD with aMCI, which can be 
used to predict the progression of AD (Zhang et al., 2019). 
Abnormal sleep EEG mainly occurs during non-rapid eye 
movement (NREM). NREM sleep is mainly characterized by 
slow-wave sleep (SWS), sleep spindles, K-complexes, and 
slow-wave activity, which are altered in both aMCI and AD 
(Ju et al., 2017; Kam et al., 2019). Levels of Aβ and tau are 
usually abnormal in NREM sleep (Kam et al., 2019). Sleep 
fragmentation can occur in cognitively unimpaired older 
adults but is more pronounced in those with AD (Mander et 
al., 2017). Indeed, increased sleep fragmentation has been 
associated with cognitive impairment and a high risk of AD 
(Lim et al., 2013; Minakawa et al., 2017). Sleep-disordered 
breathing (SDB) is closely related to AD, and patients with 
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aMCI with SDB are more likely to develop AD (Sanderlin et 
al., 2017). Moreover, obstructive sleep apnea (OSA) occurs in 
the majority of patients with SDB, accompanied by increased 
levels of Aβ and tau (Bubu et al., 2019). Continuous positive 
airway pressure has been reported to improve OSA and 
prevent AD development, thereby improving memory and 
cognitive impairment in patients with AD (Richards et al., 
2019). This implies that targeting SDB may be a potential 
approach to prevent AD.

To better identify which strategies could prevent AD, it is 
important to explore the mechanisms underlying sleep 
disorders. Many studies have reported that changes in the 
characteristics of brain neurons, which occur in AD, are related 
to sleep function and multiple factors that contribute to sleep 
disorders. Dysregulation of the orexinergic, glutamatergic, 
and γ-aminobutyric acid systems and the circadian rhythm, 
together with Aβ accumulation, have been reported to be 
involved in sleep disorders during AD. These factors are not 
independent, and their interactions are thought to lead to 
sleep disorders in AD.

This article summarizes what is known about the relationships 
between sleep disorders and AD according to recent 
studies. Specifically, we focus on the roles of sleep disorders 
in predicting the occurrence of AD. Several potential 
mechanisms of sleep disorders in AD are described in this 
paper; these mechanisms provide a theoretical basis for 
the clinical prevention of AD, which is associated with sleep 
disorders.

Search Strategy and Selection Criteria
The studies reviewed in this manuscript were retrieved by 
an electronic search of the PubMed database (https://www.
ncbi.nlm.nih.gov/pubmed/) for literature focused on sleep 
disorders in AD, between January 2015 and March 2020. The 
search terms used were “sleep”, “sleep disorders”, “Alzheimer’s 
disease”, “circadian rhythm”, and “non-rapid eye movement 
sleep”.

Potential Predictive Roles of Sleep Disorders in 
Alzheimer’s Disease 
Abnormal NREM sleep 
Compelling evidence has indicated that abnormal sleep 
architecture changes, such as changes in NREM sleep, occur 
in AD. Abnormal NREM sleep is characterized by several EEG 
changes, including decreased SWS activity, decreased sleep 
spindle activity, disrupted slow-wave activity, and K-complex 
density. Changes in specific components of NREM sleep have 
been related to the preclinical stage of AD (Cordone and De 
Gennaro, 2020). 

EEG can be used to monitor and explore electrophysiological 
activity of the brain during sleep. The EEG spectrum can 
be divided into the following three frequency bands: 0–4 
Hz, which comprises the delta band, 4–7 Hz (the theta 
band), and 8–13 Hz (the alpha band) (Bell, 2002; Ang et 
al., 2014). In recent years, EEG has been widely applied to 
study neurological diseases, such as epilepsy (Horvath et 
al., 2017). Although there is not yet any direct evidence 
of a causal relationship between sleep disorders and AD, 
the observed association between EEG changes and AD 
pathology has highlighted the various components of NREM 
sleep as possible targets for future innovative treatments 
(Cordone and De Gennaro, 2020). Changes in sleep EEG have 
been proposed as markers for the early prediction of AD 
development because they precede the occurrence of AD and 
may differ in various stages of AD (Horvath et al., 2018; Zhang 
et al., 2019). For example, amyloid precursor protein (APP)
swe/PS1ΔE9 transgenic AD mice at 4 months of age (without 
any accumulation of Aβ or tau in brain) have been found to 

exhibit a 9.1% decrease in wakefulness and a 73.1% increase 
in NREM sleep in a 12-hour dark session, and a 22.5% increase 
in wakefulness and an 18.2% decrease in NREM sleep in a 
12-hour light session when compared with wild-type mice. 
Furthermore, the sleep EEG changes observed were different 
to those of 6-month-old AD mice (Aβ depositions and obvious 
tau phosphorylation in the cortex and hippocampus were 
found) (Zhang et al., 2019). To be specific, 6-month-old AD 
mice exhibited an 8.1% decrease in wakefulness and a 46.7% 
increase in NREM sleep in a 12-hour dark session, and a 
21.2% increase in wakefulness and 18.2% decrease in NREM 
sleep in a 12-hour light session. Moreover, the study found 
that AD mice had an overall lower theta and delta rhythm 
power during NREM sleep than the wild-type mice. In other 
work, both AD mice at 8–10 months and the Tg2576 mice 
at 12 months of age exhibited stage-dependent decreased 
in theta and delta power, and shifted in the power spectra 
toward higher frequencies, with a significant reduction in 
the slow-wave delta power in NREM sleep compared with 
wild-type mice (Kent et al., 2018; Kent et al., 2019). Reduced 
delta power during NREM sleep represents a sensitive and 
modifiable measure to evaluate disrupted sleep in AD. Further 
research is required to clarify the significance and molecular 
mechanisms of these early sleep EEG alterations in the 
development of AD. 

It has been reported that patients with AD have decreased 
SWS, and that SWS duration was positively correlated with 
memory consolidation and negatively correlated with cognitive 
decline (Rauchs et al., 2013; Colby-Milley et al., 2015; Maestri 
et al., 2015; Cavuoto et al., 2019). SWS enhancers, such as 
trazodone, have been administered to improve NREM sleep 
and delay cognitive deterioration in patients with aMCI and 
AD, which has been found to stabilize the circadian rhythm in 
patients with AD (Grippe et al., 2015; La et al., 2019). Thus, 
a decrease in SWS could be considered as a potential marker 
of AD and a therapeutic target for AD prevention. However, a 
decrease in SWS is also a characteristic of healthy aging (Pace-
Schott and Spencer, 2015), and so this alone may not be an 
independent predictor of AD; better predictive results could 
perhaps be achieved by combining this feature with other AD-
specific NREM components. Regarding sleep EEG, patients 
with AD have been found to have faster mean theta frequency 
during SWS than age-matched controls, and correlation 
analysis revealed that this change was associated with better 
delayed episodic recall (Hot et al., 2011). Notably, the authors 
found that abnormal NREM sleep was associated with AD 
pathological features, Aβ and tau. During SWS, the clearance 
of neuronal metabolites was high, and its dysregulation could 
therefore lead to metabolic dysfunction. Thus, targeting SWS 
could be an ideal method to regulate the levels of Aβ and tau. 
In cognitively normal older people, reduced SWS has been 
associated with increased cerebrospinal fluid Aβ (Varga et al., 
2016; Ju et al., 2017), which suggests that the reduction of SWS 
leads to the conversion of soluble brain Aβ levels prior to Aβ 
accumulation (Varga et al., 2016). Furthermore, the disruption 
of slow-wave activity (0.6–1 Hz) during NREM sleep also 
significantly increased the levels of Aβ and tau. Another recent 
study found that, in healthy subjects, the reduction of slow-
wave activity was associated with increased Aβ accumulation 
and hippocampal-neocortical memory transformation (Mander 
et al., 2015). Cortical sleep spindles display 11–16 Hz bursts of 
activity generated within the thalamocortical network during 
NREM sleep (N2-3) (Luthi, 2014). Both patients with aMCI 
and AD have been found to show significant spindle density 
reduction (Gorgoni et al., 2016). A decreased spindle activity 
has been associated with tau level and could represent early 
tau-related dysfunction in AD, reflecting axonal damage or 
altered tau secretion, and could thus hold potential as a new 
biomarker for the early detection of neuronal dysfunction in 
AD (Kam et al., 2019). A reduction in sleep spindles has also 
been associated with the decline in sleep-dependent memory 
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and learning ability, with a specific decline in fast spindles 
in aMCI and AD (Lustenberger et al., 2015; Laventure et al., 
2016). Furthermore, the K-complex – one of the hallmarks of 
NREM sleep – is regarded as a foundation of SWS (De Gennaro 
et al., 2000). A significant decrease in K-complex density 
during NREM sleep (N2) has been found in AD, and K-complex 
density has also been found to be positively correlated with 
cognitive decline (De Gennaro et al., 2017; Reda et al., 2017). 
Moreover, patients with AD have been reported to exhibit a 
significant decrease in K-complex density in the frontal lobe 
compared with patients with aMCI and healthy controls, while 
no differences were observed between patients with aMCI 
and healthy controls (Lucey, 2017; Reda et al., 2017). This 
indicates that while the decrease in K-complex density cannot 
discriminate MCI from healthy aging, it can distinguish patients 
with AD from healthy people. 

Sleep fragmentation
Objective changes of sleep architecture in polysomnography 
manifest as a decreased total sleep time and sleep efficiency. 
The number of sleep phase transitions has been reported 
to be increased in those with sleep disorders, with sleep 
fragmentation (Peter-Derex et al., 2015). Sleep fragmentation 
refers to the phenomenon of repeated awakenings during 
sleep, whereby the duration between each awakening 
becomes shorter (Guzman-Marin et al., 2007). Sleep 
fragmentation is a hallmark of several sleep disorders, and 
often indicates a decline in sleep quality. Increased sleep 
fragmentation due to intermittent nocturnal arousal can 
result in a reduction of total sleep time and sleep efficiency, 
which is common among individuals with normal cognitive 
function (Li et al., 2018). However, this symptom is more 
prevalent in patients with aMCI and AD (Sethi et al., 2015; 
Mander et al., 2017; Palmer et al., 2018). Sleep fragmentation 
has been found to be correlated with cognitive and memory 
decline, whereby more sleep fragmentation was associated 
with a greater memory decline (Shin et al., 2014; Sethi et al., 
2015; Manousakis et al., 2018). Furthermore, epidemiological 
data have shown an association between high levels of sleep 
fragmentation and the risk of AD. For example, a prospective 
cohort study based on 737 community-dwelling older people 
without dementia revealed that individuals with more sleep 
fragmentation had a 1.5-fold risk of developing AD compared 
with subjects with less sleep fragmentation, and that increased 
sleep fragmentation was positively associated with cognitive 
decline (Lim et al., 2013). Notably, sleep fragmentation was 
associated with increased Aβ accumulation in that study. 
Altered proteostasis caused by increased sleep fragmentation 
may lead to high levels of Aβ in the brain; moreover, the 
severity of Aβ deposition has been found to be significantly 
positively correlated with the degree of sleep fragmentation 
(Minakawa et al., 2017). Nevertheless, the mechanism 
underlying the exacerbation of Aβ deposition during sleep 
fragmentation has yet to be elucidated. In cognitively 
normal older subjects, sleep fragmentation was found to 
mediate the relationship between fronto-hippocampal 
hypometabolism and lower executive functioning (Andre et 
al., 2019). Furthermore, increased sleep fragmentation was 
associated with thalamic atrophy and ventromedial prefrontal 
Aβ burden; the thalamus and ventromedial prefrontal cortex 
are particularly sensitive to aging and are affected in the early 
stages of AD. However, in participants with cognitive decline, 
sleep fragmentation did not contribute to their cognitive 
deficits. These findings suggest that sleep fragmentation 
may directly contribute to a lower cognitive performance in 
cognitively normal older subjects. Therefore, treating sleep 
disorders in healthy older people by improving sleep quality 
before the onset of cognitive deficits may help to lower the 
risk of developing AD and maintain cognitive function.

Sleep-disordered breathing
SDB is characterized by abnormal breathing patterns or 
insufficient ventilation during sleep. It is a common sleep 
disorder that is associated with numerous adverse health 
consequences, such as cardiovascular risk (Stadler et al., 
2018), diabetes (Lee et al., 2019a), hypertension (Lombardi 
et al., 2018), and cognitive impairment (Osorio et al., 2015). 
In recent years, epidemiological studies have shown a 
relationship between SDB and AD, and reported that SDB may 
predict the risk of AD (Lutsey et al., 2018; Shi et al., 2018). 
Indeed, patients with SDB (and MCI) reportedly have a higher 
susceptibility to AD (Sanderlin et al., 2017), and to be almost 
1.58-fold more likely to develop AD than those without SDB 
(Lee et al., 2019b). OSA accounts for the majority of SDB cases 
and is estimated to affect 3–7% of men and 2–5% of women 
in the general population. OSA is characterized by intermittent 
hypoxemia during nocturnal sleep, which is repetitive partial 
or complete airway collapse, resulting in sleep fragmentation 
and poor sleep quality (Lam et al., 2010). Several factors can 
cause OSA and increase the risk of AD development, such as 
abnormal sleep architecture (Menon et al., 2019), the APOE 
ε4 genotype (Ding et al., 2016; Elias et al., 2018), oxidative 
stress (Andrade et al., 2018), intermittent hypoxia (Sharma 
et al., 2018), cardiovascular comorbidities (Berger et al., 
2019), and neuroinflammation resulting from the aberrant 
proliferation of astrocytes (Macheda et al., 2019). Notably, 
patients with AD have a 5-fold higher incidence of developing 
OSA than cognitively normal subjects of a similar age (Emamian 
et al., 2016). More importantly, OSA may accelerate the 
progression of AD-induced cognitive impairment. Accordingly, 
continuous positive airway pressure treatment of OSA has 
been reported to significantly reduce and delay cognitive 
decline in patients with aMCI and AD (Troussiere et al., 2014; 
Richards et al., 2019). Furthermore, OSA has been associated 
with the accumulation of pathological biomarkers of AD such 
as Aβ. For example, it has been reported that patients with 
OSA exhibit significantly higher serum levels of Aβ40, Aβ42, 
and total Aβ levels than patients without OSA, and all three 
biomarkers were positively correlated with the severity of OSA 
(Bu et al., 2015). However, cerebrospinal fluid Aβ40 and Aβ42 
levels were lower, while the cerebrospinal fluid tau level was 
higher in patients with OSA than in controls (Bubu et al., 2019; 
Liguori et al., 2019). OSA has also been found to accelerate Aβ 
accumulation and contribute to the development of AD (Yun 
et al., 2017). Given the high incidence of SDB in patients with 
MCI and AD, more clinical attention should be paid to this 
condition.

Potential Mechanisms of Sleep Disorders in 
Alzheimer’s Disease 
Orexinergic system dysregulation  
The orexinergic system is involved in the regulation of 
the sleep-wake cycle, and is mainly located in the lateral 
hypothalamus (Ma et al., 2016; Wang et al., 2018). Orexin, also 
known as hypocretin, is a hypothalamic neurotransmitter that 
plays a central and critical role in this system (Roohbakhsh et 
al., 2018). The concentration of cerebrospinal fluid orexin has 
been found to be abnormally elevated in patients with aMCI, 
and this elevation has been associated with hypothalamic 
dysfunction (Liguori et al., 2016, 2017b). Dysregulation of the 
orexinergic system has also been implicated in sleep disruption 
and AD pathology; this dysregulation has been found to be 
involved in even the earliest stages of AD, during which it 
causes an increased sleep latency, sleep fragmentation, and 
REM sleep disruption (Liguori et al., 2016, 2018). Additionally, 
dysregulation of the orexinergic system was reported to be 
closely associated with increased Aβ, and the interaction had 
a significant impact on sleep disorders (Gabelle et al., 2017). 
In other work, the administration of Aβ25–35 was found to 
significantly decrease NREM sleep duration, while it increased 
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wakefulness in mice; the levels of tau, p-tau, orexin, and 
orexin neurons expressing the adenosine A1 receptor were 
markedly up-regulated in the brain tissue of AD mice, and the 
adenosine A1 receptor or orexin knockdown inhibited the 
increase of tau expression levels induced by Aβ25–35 in AD mice 
(Liu et al., 2019). Furthermore, injection of orexin into the 
lateral ventricle increased wakefulness and interstitial fluid Aβ 
levels (Liao et al., 2015). These experimental results suggest 
that sleep disorders are regulated by the interaction between 
Aβ and orexin.

One newly proposed mechanism connecting AD and sleep 
disorders is that orexin might hinder Aβ degradation by 
suppressing phagocytosis and autophagic flux in microglia 
(An et al., 2017), which suggests that subdued microglial 
function induced by sleep disturbance may increase Aβ 
accumulation in the brain. Moreover, the modulation of 
orexin and its effects on sleep appear to regulate Aβ levels. 
For example, in one study, APP/PS1 transgenic mice whose 
orexin gene was knocked out showed a significant decrease 
in the expression of Aβ and an increase in sleep duration; 
however, sleep deprivation or increasing wakefulness by 
rescue of orexinergic neurons increased Aβ levels in the brain 
(Roh et al., 2014). Interestingly, poor sleep quality, such as 
intermittent short sleep, which triggers sustained interruption 
of sleep-wake activity, can adversely affect the orexinergic 
system function in patients with AD (Zhu et al., 2016; Liguori 
et al., 2017a). The reduction of intermittent short sleep-
induced orexinergic neuron projections may stimulate the 
release of orexin, which strengthens the interconnection 
between the orexinergic system and its outputs (Liguori et al., 
2017a). On the basis of the above results, we can speculate 
that there is a bi-directional relationship between sleep 
disorders and orexinergic system dysregulation, which should 
be investigated further in future work.

Glutamatergic and GABAergic system dysregulation  
Glutamatergic and GABAergic system dysregulation is closely 
related to the development of AD. Glutamate and GABA 
are the main excitatory and inhibitory neurotransmitters in 
glutamatergic and GABAergic systems, respectively. Data 
from prior studies have indicated that GABAergic neurons 
in the ventrolateral preoptic nucleus and the parabrachial 
nucleus (PBN) activate and maintain sleep. Glutamatergic 
neurons in the PBN are also thought to play a significant role 
in wakefulness (Torterolo et al., 2011; Scammell et al., 2017). 
Glutamatergic neurons in the PBN receive the inhibitory 
inputs from GABAergic neurons via the ventrolateral preoptic 
nucleus to promote the consolidation of NREM sleep, while 
GABAergic neurons in the PBN are active during NREM 
sleep and control the NREM sleep state (Qiu et al., 2016). 
GABAergic neurons are also vital to the NREM-REM transition 
and REM sleep maintenance (Lu et al., 2018). One study found 
that AD mice exhibited sleep disorders in which wakefulness 
was increased and NREM and REM sleep were decreased. 
Activity of GABAergic neurons was suppressed in the 
ventrolateral preoptic nucleus; in the PBN, GABAergic activity 
was suppressed, while glutamatergic activity was elevated. A 
neurotransmitter analysis also revealed a reduction of GABA in 
the ventrolateral preoptic nucleus and PBN, and an elevation 
of glutamate in the PBN; furthermore, micro-injection of 
GABA into the PBN improved sleep disorders (Cui et al., 2018). 
GABAergic neurons in the parafacial zone also reportedly 
participate in the initiation and maintenance of SWS and 
cortical slow-wave activity during NREM sleep (Anaclet 
et al., 2014; Saper and Fuller, 2017). However, GABAergic 
neurons in the parafacial zone have been found to obviously 
decrease 7 days after the establishment of AD rats induced 
via intracerebroventricular injection of streptozotocin, which 
was accompanied by increased wakefulness and decreased 
REM and NREM sleep from 14 days (Song et al., 2018). Slow-
wave oscillations are a prominent feature during NREM sleep, 

and play an important role in memory consolidation, but this 
feature is abnormal in AD. Its dysfunction can be rescued by 
application of GABA, which strengthens the inhibitory effect 
of the GABAergic system (Busche et al., 2015; Kastanenka 
et al., 2017). This finding indicates that neurotransmitter 
replacement therapy (such as replacement of GABA) could 
help to treat sleep disorders and prevent AD, but this 
possibility requires further investigation. Moreover, inhibition 
of metabotropic glutamate receptors (mGluR5) have been 
found to consolidate deep sleep and elicit functional activity in 
slow-wave oscillations, while activation of mGluR5 increased 
wakefulness and decreased deep sleep (Ahnaou et al., 2015). 

Although few studies have examined the role of the 
glutamatergic and GABAergic systems in AD-associated sleep 
disorders, this does not obscure their evidently important roles 
in sleep disorders and AD. Future work should be conducted 
to better understand the impact of the balance between 
glutamate and GABA on normal sleep, as well as the role of 
neurons that contain them. It seems likely that treating sleep 
disorders with these two transmitters may help to delay AD.

Circadian rhythm dysregulation 
AD is often accompanied with sleep-wake cycle disruption. 
It has been reported that the circadian rhythm changes 
before AD development (Oyegbami et al., 2017). The sleep-
wake cycle is controlled by mechanisms underlying the 
regulation of the circadian rhythm (Weissova et al., 2016). The 
circadian rhythm is modulated by the endogenous circadian 
clock system, which is housed within the suprachiasmatic 
nucleus (SCN) of the hypothalamus (Coogan et al., 2013). 
The mammalian circadian clock and its related clock genes 
play a significant role in regulating the sleep-wake cycle. A 
dysregulated circadian rhythm has been reported in aMCI 
and AD (Oyegbami et al., 2017; Brown et al., 2018; Petrasek 
et al., 2018). Circadian rhythm changes in AD have been 
associated with sleep disorders, such as sleep fragmentation 
at night, increased sleep, and decreased activity in the 
daytime (Manousakis et al., 2018; Kaladchibachi et al., 2019). 
Specific sleep changes caused by circadian disruption include 
an imbalance between NREM and REM sleep (Moreira et al., 
2017; Venner et al., 2019). Recent data have indicated that 
clock gene expression levels are abnormally altered in AD. 
For example, one study found that the expression of Per1, 
Per2, Cry1, and Cry2 in the medulla/pons was increased at 
night in 2-month-old APP/PS1 transgenic mice compared with 
wild-type mice (Oyegbami et al., 2017). Moreover, another 
study reported that the expression of clock gene Bmal1 was 
increased in the parietal cortex and cerebellum, while Prok2 
was increased in the parietal cortex and the hippocampus 
of the AD mice (Petrasek et al., 2018). The expression of 
clock genes in the SCN has also been found to be disrupted 
in AD mice (Bellanti et al., 2017). Although the AD mice had 
no noticeable pathological alterations, this study revealed 
aberrant Per gene expression in the SCN. Accordingly, the 
AD mice showed a phase delay in the expression of Per1 and 
Per2 mRNA in the SCN, whereby Per1 and Per2 mRNA levels 
were significantly decreased (Wu et al., 2018). Disruption 
of the circadian rhythm impairs sleep and contributes to 
AD pathology by regulating brain regions that control the 
circadian rhythm. The circadian rhythm also plays a critical role 
in AD development by increasing the cleavage of APP, which 
produces Aβ, thereby severely disrupting the circadian rhythm 
and reducing the expression of clock protein PER in the SCN 
(Blake et al., 2015). Additionally, there was a significant Aβ 
toxicity that triggered morphological and functional signaling 
deficits in central clock neurons in a Drosophila model of AD 
(Chen et al., 2014). Tau lesions can also disrupt the circadian 
rhythm. Indeed, the presence of tauopathy in the SCN has 
been reported, and the expression of PER2 and BMAL1 was 
disrupted in the hypothalamus of AD mice (Stevanovic et al., 
2017). 
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Melatonin is considered to be the most effective regulator 
of the circadian rhythm, and its secretion is regulated by 
light signals (Lok et al., 2019). Melatonin exerts biological 
effects by regulating SCN activity (Pevet et al., 2017). 
Previous work has confirmed that the levels of melatonin 
are decreased in patients with AD, and this has been related 
to the dysregulation of the circadian rhythm (Zhang et al., 
2016). Clinical trials and meta-analysis have also shown 
that treatment with melatonin effectively improved sleep 
disorders in patients with AD, including prolonging total sleep 
time, improving REM sleep behavior disorder symptoms, and 
reducing sleep fragmentation (Kwon et al., 2015; Zhang et al., 
2016; Wang et al., 2017; Cruz-Aguilar et al., 2018). Genetic 
susceptibility is also thought to be involved in circadian rhythm 
dysregulation. The APOE ε4 allele is an ordinary genetic risk 
factor for AD, and its gene dosage has been found to have an 
effect on AD. For instance, heterozygotes (one copy) carrying 
the ε4 allele has been estimated to increase the risk of AD 
by 3-fold, while homozygotes (two copies) has been found 
to increase the risk by 8–15 times (Corder et al., 1993; Farrer 
et al., 1997; Burke et al., 2016). However, in AD mice, APOE 
ε4 deficiency has been found to cause the degeneration and 
disturbance of SCN neurons (Zhou et al., 2016). 

To summarize, circadian rhythm dysregulation leads to 
sleep disorders and is involved in various factors associated 
with AD, including the disrupted expression of circadian 
clock gene (especially in the SCN), AD pathology (Aβ and 
tau), genetic susceptibility (APOE ε4), and the disrupted 
expression of melatonin. However, there also seem to be 
correlations between these factors. Future research is 
needed to determine which factors initiate circadian rhythm 
dysregulation.

Aβ accumulation  
Does sleep disturbance drive Aβ, or does Aβ drive sleep 
disturbance? Clinical studies have confirmed that there is a 
bi-directional relationship between sleep disorders and Aβ; 
sleep disorders promote the production and accumulation 
of Aβ (Chen et al., 2017, 2018; Ju et al., 2017; Shokri-Kojori 
et al., 2018; Zhao et al., 2019), and the accumulation of Aβ 
may trigger sleep disorders (Brown et al., 2016; Kincheski 
et al., 2017), which may create a positive feedback loop 
for AD development. This article describes the molecular 
mechanisms of Aβ-induced sleep disorders at the cellular 

level. Aβ42-mediated c-Jun N-terminal kinase (JNK) activation 
has been found to induce aberrant axonal arborization of 
wake-promoting pigment-dispersing factor (PDF) neurons, 
and may thus be a possible mechanism underlying sleep 
disorders (Song et al., 2017). The authors found that Aβ42 
significantly reduced sleep in a Drosophila model of AD, and 
this was accompanied by the post-developmental axonal 
arborization of PDF neurons associated with JNK activation, 
which can regulate sleep arousal activity. PDF neurons 
over-released PDF, which caused sleep impairment, while 
inhibition of JNK activation restored nighttime sleep loss and 
decreased Aβ42 accumulation (Song et al., 2017). Additionally, 
a transgenic Drosophila model expressing Aβ42 in neurons 
displayed significantly low levels of consolidated sleep, an 
effect that was associated with the expression of fatty acid-
binding proteins (Fabp). In other work, it was found that Fabp 
ameliorated Aβ42-induced sleep disruption in a Drosophila 
model of AD (Gerstner et al., 2017). However, this study did 
not investigate whether Fabp expression was associated with 
Aβ. Therefore, future work should examine whether the loss 
of Fabp expression mediates Aβ-induced sleep disorders, and 
the use of hFabp7 transgenic Drosophila may help to explore 
this relationship. 

Moreover, increased neuronal excitability is thought to 
be associated with sleep disorders in AD. However, recent 
research has demonstrated that neuronal hyperexcitability 
may simply be a mediator of Aβ toxicity. Aβ expression has 
been found to enhance neuronal excitability in a Drosophila 
model of AD, and this was caused by defects of specific K+ 
currents (Tabuchi et al., 2015). APP has also been reported 
to affect the regulation of the sleep-wake cycle in AD. In one 
study, the overexpression of APP in glial cells led to reduced 
nighttime sleep and prolonged sleep duration, which was 
associated with the up-regulation of glutamine synthase 
and innexin2 expression; furthermore, down-regulating the 
expression of glutamine synthase or increasing the expression 
of dEaat1 (the glutamate transporter protein) reversed the 
sleep disorders caused by APP (Farca Luna et al., 2017). These 
results suggest that APP regulates sleep by affecting glutamine 
recycling. In conclusion, Aβ, one of the pathological markers 
of AD, is closely related to sleep disorders. Moreover, Aβ could 
also affect sleep by interacting with other sleep regulation 
mechanisms, such as the orexinergic system and the SCN 
(Figure 1). 

Figure 1 ｜ Candidate mechanisms of sleep 
disorders in AD.
There are several potential mechanisms of 
sleep disorders in AD, including dysregulation 
of the orexinergic, glutamatergic, and 
γ-aminobutyric acid systems and the 
circadian rhythm, together with Aβ 
accumulation. Notably, Aβ accumulation 
and sleep disorders appear to constitute 
a vicious feedback loop that promotes 
AD. A1R: Adenosine A1 receptor; AD: 
Alzheimer’s disease; APOE: apolipoprotein 
E; APP: amyloid precursor protein; Aβ: 
amyloid-β; Fabp: fatty acid-binding protein; 
GABA: γ-aminobutyric acid; JNK: c-Jun 
N-terminal kinase; mGluR5: metabotropic 
glutamate receptors; NREM: non-rapid 
eye movement; PDF: pigment-dispersing 
factor; REM: rapid eye movement; SCN: 
suprachiasmatic nucleus. 
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Conclusions and Future Directions
Sleep disorders are pervasive in AD, and can seriously affect 
the quality of life of patients with AD. Many epidemiological 
and experimental results have indicated that sleep disorders 
may promote the accumulation of Aβ and tau, leading to a 
decline in memory and cognitive function, thus accelerating 
and worsening the course of AD. In the current review, we 
present evidence on the roles of sleep in AD from two aspects: 
the predictive effects of sleep disorders in AD, and candidate 
underlying mechanisms. There are various forms of sleep 
disorders, and a single altered indicator has a low sensitivity 
and specificity for predicting AD. Thus, it may be necessary 
to establish a large-sample, multivariable, longitudinal cohort 
study in the future to evaluate the effectiveness of the 
combination of multiple sleep disorder predictors in the early 
prediction of AD. Furthermore, randomized controlled clinical 
trials on interventions for sleep disorders during the pre-
clinical stage of AD could help to determine whether sleep 
disorders are reliable biomarkers for AD prediction. We have 
also reviewed the potential underlying mechanisms of sleep 
disorders, the understanding of which could help to establish 
drug treatment targets for AD prevention. To be specific, 
apart from melatonin mentioned above, trazodone (sedating 
antidepressant) has been shown to have a good efficacy in 
improving sleep disorders for the treatment of AD (Camargos 
et al., 2014). Regarding other pharmacological treatments, 
such as melatonin receptor agonists, hypocretin receptor 
antagonists, and circadian clock modification, relevant drugs 
are under development (Urrestarazu and Iriarte, 2016). 
Future studies should try to identify upstream targets of sleep 
disorders from various perspectives, such as the circadian 
rhythm and orexinergic system.
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