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Abstract

Background

Evidence from multiple studies suggests metabolic abnormalities play an important role in

lung cancer. Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer.

The present study aimed to explore differences in the global metabolic response between

male and female patients in LUAD and to identify the metabolic genes associated with lung

cancer susceptibility.

Methods

Transcriptome and clinical LUAD data were acquired from The Cancer Genome Atlas

(TCGA) database. Information on metabolic genes and metabolic subsystems were col-

lected from the Recon3D human metabolic model. Two validation datasets (GSE68465 and

GSE72094) were downloaded from the Gene Expression Omnibus (GEO) database. Differ-

ential expression analysis, gene set enrichment analysis and protein-protein interaction net-

works were used to identified key metabolic pathways and genes. Functional experiments

were used to verify the effects of genes on proliferation, migration, and invasion in lung can-

cer cells in vitro.

Results

Samples of tumors and adjacent non-tumor tissue from both male and female patients

exhibited distinct global patterns of gene expression. In addition, we found large differences

in methionine and cysteine metabolism, pyruvate metabolism, cholesterol metabolism, nico-

tinamide adenine dinucleotide (NAD) metabolism, and nuclear transport between male and

female LUAD patients. We identified 34 metabolic genes associated with lung cancer
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susceptibility in males and 15 in females. Most of the metabolic cancer-susceptibility genes

had high prediction accuracy for lung cancer (AUC > 0.9). Furthermore, both bioinformatics

analysis and experimental results showed that TAOK2 was down-regulated and ASAH1

was up-regulated in male tumor tissue and female tumor tissue in LUAD. Functional experi-

ments showed that inhibiting ASAH1 suppressed the proliferation, migration, and invasion

of lung cancer cells.

Conclusions

Metabolic cancer-susceptibility genes may be used alone or in combination as diagnostic

markers for LUAD. Further studies are required to elucidate the functions of these genes in

LUAD.

Introduction

Lung cancer is one of the most common malignancies worldwide, and in China, the incidence

of lung cancer is highest among all cancers [1, 2]. Non-small cell lung cancer (NSCLC)

accounts for ~80% of all lung cancer cases and lung adenocarcinoma (LUAD) is the most com-

mon subtype. Altered metabolic processes are now widely recognized hallmarks of cancer

cells, and involve the complex rearrangement of metabolic and energy producing networks to

support the high proliferation rates of tumor cells and their unique metabolic demands [3].

Multiple studies have correlated cellular metabolic characteristics with degree of malignancy,

which could potentially be used to predict of the prognosis of patients with NSCLC based on

positron emission tomography/computed tomography (PET/CT) scans [4–6].

To date, a number of hub genes and metabolic pathways have been associated with lung

cancer, and this valuable information may eventually reveal the mechanisms involved in the

pathogenesis of lung cancer, leading to improved clinical treatments. Evidence shows abnor-

mal glucose metabolism and fatty acid metabolism are directly related to LUAD [7, 8]. The gly-

colytic enzyme pyruvate kinase M (PKM) has two isoforms: PKM1 and PKM2. Several studies

reported that high PKM1 expression intrinsically activates glucose metabolism and boosts

tumor cell growth [7]. Another recent study found that higher expression of nuclear factor ery-

throid 2-related factor 2 (NRF2)-regulated metabolic gene signature (NRMGS) predicted poor

overall survival in eight independent NSCLC cohorts [9]. Furthermore, over-expression of

bone morphogenetic protein 4 (BMP4) has been correlated with acquired drug resistance and

fatty acid metabolism in NSCLC cells with EGFR mutations [10]. Another study suggested

altered glucose transporter 1 (GLUT1)-mediated glucose metabolism as a potential approach

for treating NSCLCs resistant to EGFR inhibitors [11]. In recent years, the incidence of lung

cancer has decreased among men but increased in women, mainly owing to changes in smok-

ing patterns among the sexes. However, studies have shown that lung cancer is caused not

only by cigarette smoke, but that other genetic and environmental factors may be at play [12].

Therefore, studies on the mechanisms involved in the development of lung cancer, as well as

potential new treatments, should consider gender.

The establishment of human metabolic models has provided a considerable amount of data

as well as systematic analytical methods for research on human metabolic disease [13, 14].

However, the role of metabolism in LUAD has not been extensively studied. To the best of our

knowledge, no previous study has compared the expression profiles of metabolic genes in

males and females with LUAD. In the present study, we obtained information from the

Recon3D human metabolic model on all human metabolic genes and metabolic subsystems
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[14]. In addition, we acquired the LUAD transcriptome and clinical data from publicly avail-

able databases (Genomic Data Commons Data Portal, https://portal.gdc.cancer.gov/) with the

aim of exploring similarities and differences in metabolic gene expression and metabolic sub-

systems between male and female LUAD patients. Finally, we screened the hub metabolic

genes to further understand the link between metabolic genes and patient prognoses.

Materials & methods

Lung adenocarcinoma data collection

The LUAD transcriptomes and clinical data were downloaded from the Genomic Data Com-

mons (GDC) Data Portal (https://portal.gdc.cancer.gov/). The complete transcriptome and

clinical data for 513 tumor samples and 57 adjacent non-tumor samples were obtained, includ-

ing 237 tumor samples and 23 adjacent non-tumor samples in males and 276 tumor samples

and 34 adjacent non-tumor samples in females. We generated RNA sequencing (RNA-seq)

data from all samples using the Illumina HiSeq 2000 platform (version 2) and gene expression

based on the RNA-seq data were normalized by the fragments per kilobase of exon per million

reads mapped (FPKM) method. To reduce background noise and ensure reliable detection, we

selected only genes with a 90% log2 (FPKM) value greater than 0.1 and obtained 13782 unique

genes. To evaluate the results our analysis, we downloaded two lung cancer microarray data-

sets from the Gene Expression Omnibus (GEO) at the National Center for Biotechnology

Information (NCBI; http://ncbi.nlm.nih.gov/geo) as a comparison: the GSE68465 dataset con-

taining 223 male patients, 220 female patients, and 19 controls without gender information

and the GSE72094 dataset containing 202 male patients, 240 female patients, but no controls.

Differential metabolic genes analysis

Human metabolic genes were extracted from the Recon 3D human metabolism model [14].

The model contains 3288 unique genes that belong to 110 metabolic subsystems. We mapped

2194 metabolic genes and 104 metabolic subsystems from our LUAD data. Differential meta-

bolic gene analyses was performed using R Statistical Software (version 3.4.1; Foundation for

Statistical Computing, Vienna, Austria, https://www.r-project.org/). The empirical Bayes algo-

rithm of the limma package (version 3.30.13) [15] in R was used to detect genes differentially

expressed between samples of tumor tissue and adjacent non-tumor tissue. Logarithmic trans-

formation (log2) of all gene expression values was performed for each gene and fold change

(log2(FC)) was calculated as the mean expression value in tumor samples minus the mean

expression value in adjacent non-tumor samples. Genes were considered upregulated if log2

(FC)� 1 and false discovery rate (FDR) adjusted P value� 0.05. Genes were considered

downregulated if log2(FC)� -1 and FDR-P value� 0.05. Finally, we performed a differential

expression analysis between tumors from male and female patients.

Metabolic subsystem enrichment analysis

We used the javaGSEA desktop application in R (version 3.0; http://software.broadinstitute.

org/gsea/) [16] to perform gene set enrichment analysis (GSEA) of the mapped metabolic sub-

systems in male tumor vs. male adjacent, female tumor vs. female adjacent, and male tumor vs.

female tumor. Gene sets with less than 15 genes or more than 500 genes were excluded. The t-

statistic mean of genes in each metabolic subsystem were then computed using a permutation

test with 1000 replications. Subsystems with normalized enrichment scores (NESs) > 0 were

considered upregulated and subsystems with NESs < 0 were considered down-regulated. Sta-

tistical significance was identified as P� 0.05.
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Comparison of clinical variables and prognosis analysis of deregulated

metabolic genes

In the clinical data analysis, continuous variables (e.g., age) were presented as mean ± one

standard deviation (SD) and categorical variables (e.g., race, smoking history, tumor status

and stage) were expressed as numbers (percentages). We used Student’s t-tests to compare the

differences in continuous variables between male and female patients and χ2 tests to compare

the prevalence of categorical variables within each of the two groups. Survival analyses of

deregulated metabolic genes in male and female patients were conducted using the survival

package (version 2.41–3; https://CRAN.R-project.org/package=survival) in R. Each gene was

divided into two groups (high and low) according to median expression values. Kaplan-Meier

survival curves were used to express differences between high and low expression levels of

each metabolic gene among groups in relation to the prognosis of the patient. The Cox propor-

tional hazards model was used to explore the association between metabolic genes and the

prognosis of patients and P� 0.05 was considered statistically significant. Metabolic cancer

susceptibility genes were defined as being either: (1) upregulated in tumor samples and high

expression was associated with reduced prognosis or (2) downregulated in tumor samples and

low expression was associated with reduced prognosis. Robust likelihood-base survival analysis

in "rbsurv" package in R was used to construct the combination model of metabolic cancer sus-

ceptibility genes on patients prognosis in male and female. The method was chose as "efron"

and the maximum number of genes considered was set as 10.

Protein-protein interaction networks and ROC curves of risk metabolic

genes

We used STRING web server (https://string-db.org/cgi/input.pl) [17] to construct protein-

protein interaction (PPI) networks of metabolic cancer susceptibility genes and other related

genes in male and female patients. The parameters were set as follows: (1) the network edges

were set as the molecular action (line shape indicates the predicted mode of action); (2) all

types of active interaction sources were chosen, including text mining, experiments, databases,

co-expression, neighborhood, gene fusion, and co-occurrence; (3) the minimum required

interaction score was set at the medium confidence of 0.4; (4) the maximum number of inter-

actors in the first shell was the total number of query proteins only and the maximum number

of interactors in second shell was set to no more than 20. Then the biological functions of the

selected metabolic cancer susceptibility genes were automatically exported from the web

server. We used the pROC package (version 1.12.1) in R [18] to display and analyze the

receiver operating characteristic (ROC) curves of the metabolic cancer susceptibility genes in

male and female patients. The expected power of the test (probability of type II error) was cal-

culated for each gene.

Patients and tissue samples

The study was approved by the Medical Ethics Committee of the First Affiliated Hospital of

Kunming Medical University. All patients voluntarily joined this study and each provided an

informed consent form. Eight patients(four males and four females were age matched, with a

maximum age of 71 years, a minimum age of 55 years, and a median age of 65 years) diagnosed

with non-small cell lung adenocarcinoma cancers (NSCLCs) at the first affiliated hospital of

Kunming Medical University were enlisted(tumor histology was estimated by at least 2 pathol-

ogists). The 8 paired samples collected were used to verify analysis. The patients enrolled met

the following criteria: (1) The patient was diagnosed as lung adenocarcinoma by pathology; (2)
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the patients had not received radiotherapy or chemotherapy; (3) tumor and adjacent normal

lung tissues (> 5 cm away from carcinoma tissues) were obtained. The tissue samples were col-

lected at the time of surgery and then quickly frozen in liquid nitrogen until further use. The

tumor samples contained a tumor cellularity greater than 80% and the matched control sam-

ples had no cancer cells.

RNA isolation and quantitative real-time PCR (qRT-PCR)

RNA was extracted from 8 paired lung adenocarcinoma samples (4 pairs of males and 4 pairs

of females) using the AllPrep DNA/RNA Mini Kit (Qiagen, Germany), and cDNA was gener-

ated using PrimeScript Reverse Transcriptase (Fermentas K1622, USA). qPCR was performed

using the SYBR Green master mix (KAPA KK4601, USA) and the Applied Biosystems 7300

RealTime PCR System (Applied Biosystems, USA) was used for the analysis. The real-time

PCR utilized the following primers: 50- CAC CTC AAC ACA ATT CAG -30 (forward) and

50- TTC TCT TCG CTT ATT ATA TTC C-30 (reverse) for TAOK1, 50- AAT AGC ACA
AGT TAT GAA G-30 (forward) and 50- TAT ACA TCC AAT GAT TCC T-30 (reverse)

for ASAH1, 50-AAA GGG TCA TCA TCT CTG -30 (forward) and 50-GCT GTT GTC
ATA CTT CTC -30 (reverse) for GAPDH. PCR was performed under the following condi-

tions: 50˚C 2 min, 95˚C for 10 minutes, 95˚C for 15 seconds and 60˚C for 30 seconds for 45

cycles. Relative expression of TAOK1 and ASAH1 mRNA level was calculated by the compara-

tive CT method.

Western blotting

The cell lysate was prepared from 8 paired lung adenocarcinoma tumor and adjacent tissues

using RIPA lysis buffer (Solarbio, China) containing protease inhibitor (Millipore, USA). The

protein concentration was measured using a BCA protein assay (Solarbio, China). Approxi-

mately 60 μg protein samples were isolated in 10% acrylamide gel and transferred to PVDF

membranes. The membranes were blocked for 1 hours at room temperature with 5% BSA.

Membranes then were incubated with rabbit anti-TAOK1 and rabbit anti-ASAH1 at 1:2000

dilution (Abcam, USA) for overnight at 4˚C. Mouse anti-β-actin (Abcam, USA) was used to

normalize the amount of sample loaded. Next, the nonspecific binding of primary antibody

was washed out and secondary antibody (goat-anti-rabbit HRP and goat-anti-mouse HRP)

was added and incubated for 1 hour at room temperature. Later the signals are visualized with

a chemiluminescent substrate reagent kit (Thermo Fisher Scientific, USA). The band intensity

was measured by Image J software(v1.8.0).

Constructs and cell culture

The sequence of TAOK2 and ASAH1 was obtained from Genbank. For TAOK2,due to its low

expression, Pez-lv105 expression vector was used to construct the overexpressed plasmid(ex-

TAOK2),blank vector (exCtrl); For ASAH1, due to its high expression, according to Oligoen-

gine online software analysis results, the two optimal siRNA target sequences without homol-

ogy to genes of other mammals was screened out and pSi-LVRU6P expression vector was used

to construct the knockdown lasmid(siASAH1#1 and siASAH1#2), blank vector (siCtrl). These

plasmids were provided by the Guangzhou FulenGen (Guangzhou,China).Lentiviruses were

generated according to the manufacturer’s protocol; cells were infected by viruses twice for 48

and 72 h with viral supernatants containing 4μg/ml polybrene.HEK-293T cells were obtained

from ATCC and cultured following standard protocol. A549 and XWLC-05 lung adenocarci-

noma cancer cell lines were gifts from the Institute of Clinical Cancer, Kunming Medicine

University, A549 and XWLC-05 cells were all cultured in RPMI-1640 medium (Hyclone,
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USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. All

cells were cultured at 37˚C in a 5% CO2 humidified environment.

Cell proliferation

Stable transfection A549 and XWLC-05 cells were seeded in 96-well culture plates, About

2,000 cells were inoculated per well. CCK-8 (Beyotime, Beijing, China) was used to perform

the cell proliferation analysis according to the manufacturer’s instructions. Repeat each experi-

ment three times.

Cell migration and invasion assay

To conduct a wound-healing migration assay, the stable transfection cells were seeded onto 35

mm dishes coated with fibronectin. Once the cells had reached 100% confluence, a scratch was

created on the confluent monolayer using a sterile 200ul pipette tip. The cell debris was then

removed by replacing the medium with fresh serum-free medium. During the subsequent 24

hours culture of the cells, the width of the wound was measured at 0 hours and 24 hours time

points. Three to four different locations were visualized and photographed under a phase-con-

trast inverted microscope.

Stable transfection A549 and XWLC-05 cells were inoculated in the upper transwell cham-

bers (Corning, USA) with serum free media. The density of the cells was 3×104/ml,and each

well had three parallels (200μl/well). 500μl culture media containing 10% FBS was placed in

lower chambers at 37˚C (5% CO2). After the culture for 48 h, the cells in upper chambers were

removed with swab, the cells on the bottom side of the upper chambers were exposed to 400μl.

crystal violet (0.1%) dye for 10 min. The cells of 5 random horizons were observed and photo-

graphed under a microscope.

Statistical analysis

All quantitative data were presented as mean ± SD. Paired-sample t-test was applied to com-

pare mRNA expression level between tumor tissue and matched adjacent non-tumor tissue.

Wilcoxon rank sum test was used for comparisons of protein level in two independent groups.

Statistical analysis was performed by using the Statistical Package for Social Sciences (SPSS)

software (version 22.0). Statistical significance was accepted at P< 0.05.

Results

Overall differences in metabolic gene expression and clinical features

grouped by gender

No differences in the distribution of age, race, tumor status, or stage of caner between male

and female patients were observed (Table 1). However, more male patients were smokers com-

pared to female patients (P < 0.001). Through hierarchical clustering, we found large differ-

ences in metabolic gene expression profiles between tumor samples and adjacent normal

samples for both male and female patients (Fig 1A and 1B). Moreover, a higher proportion of

metabolic genes were upregulated or downregulated in male patients compared to females

(Fig 1C). Furthermore, Venn diagrams were used to depict 73 commonly upregulated and 123

downregulated metabolic genes between male and female patients (Fig 1D and 1E). Further-

more, we observed that most of the absolute value of the log2(FC) were higher in male (tumor

vs. adjacent) than female (tumor vs. adjacent), suggested that the deregulation level of meta-

bolic genes in male were greater than in females (S1 and S2 Tables).
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Metabolic subsystem changes in male versus female tumors

The enriched metabolic subsystems within male tumor vs. male adjacent, female tumor vs.

female adjacent, and male tumor vs. female tumor are presented in Fig 2. The results show that

tryptophan metabolism as well as starch and sucrose metabolism were upregulated in both

male and female tissues, and vitamin A metabolism was downregulated. Furthermore, tyrosine

metabolism was downregulated in female but not in male tumor tissues, whereas chondroitin

synthesis was downregulated in male but not in female tissues. A comparison of male tumor

vs. female tumor samples suggests three metabolic subsystems (methionine and cysteine

metabolism, pyruvate metabolism, cholesterol metabolism) are downregulated and two meta-

bolic subsystems (NAD metabolism and transport, nuclear) are upregulated. However, these

metabolic subsystems were no statistical significance after FDR correction (S1 Fig).

Prognosis-correlated metabolic genes and risk metabolic genes screen

We performed survival analyses using deregulated metabolic genes in male and female

patients. The results show that 37 deregulated metabolic genes affect the prognosis of male

patients and 17 affect the prognosis of female patients (Fig 3 and S3 and S4 Tables). We further

analyzed the effect of menopause on differential expression. Based on the previous report,

female> 50 years were defined as menopause group [19]. The results showed a consistent dif-

ference between premenopausal and menopause group (S5 Table). High expression of

ASAH1, NEK11, and SLC9A3 and low expression of EXT1 were also linked to reduced prog-

nosis in both male and female patients (S2 Fig). Other genes were also shown to influence the

prognosis of male and female patients differently (S3 Fig). Based on the definition of metabolic

cancer susceptibility genes, we screened 34 genes in male patients and 15 genes in female

patients. The multi-gene combination model suggested that the combination of NEK11,

HS3ST2, ACLY, HARS and SLC35B4 is the best model for male prognosis prediction, and the

Table 1. Descriptive statistics of the clinical characteristics of LUAD patients stratified by gender.

Variables Male Female P

Age 65.5 ± 9.8 65.1 ± 10.3 0.700

Race

White 172 (86.4) 215 (86.7) 0.739

Asian 4 (2.0) 3 (1.2)

Black or African American 23 (11.6) 29 (11.7)

American Indian or Alaska Native 0 (0.0) 1 (0.4)

Smoking history

Non-smoker 20 (8.7) 54 (20.1) < 0.001

Former smoker 142 (61.7) 163 (60.6)

Current smoker 68 (29.6) 52 (19.3)

Tumor status

Tumor free 158 (75.6) 182 (73.1) 0.615

With tumor 51 (24.4) 67 (26.9)

Stage

Stage I 113 (48.7) 161 (59.0) 0.059

Stage II 67 (28.9) 54 (19.8)

Stage III 38 (16.4) 46 (16.8)

Stage IV 14 (6.0) 12 (4.4)

https://doi.org/10.1371/journal.pone.0230796.t001
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combination of TP53RK, TPP1, ST3GAL4, LYZL1, ITPK1, ASAH1 and CYP3A43 is the best

model for female prognosis prediction (S6 Table).

Biological functions and ROC curves of risk metabolic genes

Protein-protein interaction networks of metabolic cancer susceptibility genes and related

genes in males and females are presented in Fig 4. The results suggest these genes are mainly

Fig 1. Overall metabolic gene expression profiles. (A) Heatmap of metabolic genes in males. (B) Heatmap of metabolic genes in females. (C)

Number of upregulated and downregulated genes in males and females. (D) Venn diagram of upregulated genes in males and females. (E) Venn

diagram of downregulated genes in males and females. All expression values were converted to z-scores.

https://doi.org/10.1371/journal.pone.0230796.g001
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involved in nucleotide metabolism and energy metabolism in male patients, whereas they are

mainly involved in the metabolism of lipids and lipid derivatives in female patients. We per-

formed ROC curve analyses for all metabolic cancer susceptibility genes in male and female

Fig 2. Gene set enrichment analysis results of enriched metabolic subsystems. Metabolic subsystems with more

than 15 genes are shown (represented by different colors) based on three comparisons (male tumor vs male adjacent,

female tumor vs female adjacent, male tumor vs female tumor). The red box represents the metabolic subsystem that is

upregulated, and the blue box represents the metabolic subsystem that is downregulated. The yellow circle indicates

that the metabolic subsystem is significantly enriched.

https://doi.org/10.1371/journal.pone.0230796.g002
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tumor tissues. The area under the curve (AUC) values of these genes in male and female tissues

are listed in S7 and S8 Tables. Among these genes, TAOK2 showed the highest diagnostic

accuracy in male and ASAH1 showed the highest diagnostic accuracy in female both in whole

cohort and in early stage (stage I and II) patients. Interestingly, TAOK2 was downregulated in

males whereas ASAH1 was upregulated in females (Fig 5).

Fig 3. Prognosis-correlated metabolic genes in males (A) and females (B). Personalized fold changes (log2(FC)) were calculated as the gene

expression values for each patient/mean expression of the gene in controls. All upregulated (yellow) and downregulated (blue) genes were

deregulated. Metabolic cancer susceptibility genes are labeled with a red asterisk.

https://doi.org/10.1371/journal.pone.0230796.g003
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Verification of metabolic cancer susceptibility genes using microarray

datasets

We performed further analyses to verify the expression of metabolic cancer susceptibility

genes and their effects on the prognosis of patients. Considering the large heterogeneity

between microarray data and sequencing data, we mainly focused on the differential expres-

sion trends (expression of metabolic cancer susceptibility genes in cases vs. controls) and

Fig 4. Protein-protein interaction (PPI) networks of risk metabolic genes and related genes. (A) PPI network of 34 risk metabolic genes and related

genes in male patients. (B) Top 20 enriched biological functions of risk metabolic genes and related genes in male patients. (C) PPI network of 15

metabolic cancer susceptibility genes and related genes in female patients. (D) Top 20 enriched biological functions of metabolic cancer susceptibility

genes and related genes in female patients. The k-means clustering method was used and up to 3 specified groups were clustered.

https://doi.org/10.1371/journal.pone.0230796.g004
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prognosis trends (effect of risk metabolic genes on the overall survival of patients) in two inde-

pendent datasets. There were 33 and 14 overlapping metabolic cancer susceptibility genes

between GSE72094 dataset and TCGA data for male and female groups, respectively. More-

over, there were 31 and 12 overlapping risk metabolic genes between GSE68465 dataset and

TCGA data for the male and female groups, respectively. We found the same prognosis trends

(high expression of the gene increase/decrease patient survival both in TCGA data and

Fig 5. Expression and ROC curves of TAOK2 and ASAH1. (A) Differences in expression (left panel) and ROC curves and AUC (right panel) of

TAOK2 in male patients. (B) Differences in expression (left panel) and ROC curves and AUC (right panel) of ASAH1 in female patients.

https://doi.org/10.1371/journal.pone.0230796.g005
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validation set) in male and female patients for 61% and 43% of metabolic cancer susceptibility

genes based on the GSE72094 dataset (S9 Table). Furthermore, 48% and 67% of the metabolic

cancer susceptibility genes in the GSE68465 dataset exhibited similar expression trends in

male vs. female groups, and 55% and 42% of genes showed similar trends in the prognosis of

male and female patients (S10 Table). There were 4 genes in male (LSS, PPP2R2B, PRKACA

and TAOK2) and 2 genes in female (CARM1 and SLCO1B3) were both expression and prog-

nosis validated in the two microarray datasets. Furthermore, we also performed GSEA of

enriched metabolic subsystems in GSE68465 dataset. However, the results showed that there

was a opposite trend in the GSE68465 dataset compared with the TCGA dataset (S4 Fig). The

validation of multi-gene combination model suggested that the combination of ASAH1 and

other genes can accurately predict patients prognosis both in male and female patients (S11

Table).

Expression of TAOK2 and ASAH1 in human lung tissues

To identify TAOK2 and ASAH1 expression difference in male and female tumor tissue in lung

adenocarcinoma, we collected 8 pairs of tissues (tumor tissue and matched adjacent non-

tumor tissue, 4 males and 4 females) by quantitative reverse transcription polymerase chain

reaction (qRT-PCR). Results revealed that TAOK2 mRNA was down-regulated and ASAH1

mRNA was up-regulated in lung adenocarcinoma in male tumor tissue and female tumor tis-

sue. However, TAOK2 and ASAH1 mRNA expression were higher in men than in women

(P< 0.05, Fig 6). Next, we further examined the protein expression of TAOK2 and ASAH1 in

8 pairs of tissues by Western blotting. As expected, in general, TAOK2 protein was suppressed

and ASAH1 protein was increased in lung adenocarcinoma in male tumor tissue and female

tumor tissue. However, TAOK2 and ASAH1 protein expression were higher in men than in

women, the difference remained statistically significant (P < 0.05, Fig 7).

Functional analysis of ASAH1 and TAOK2 in lung adenocarcinoma cells

The functional significance of ASAH1 and TAOK2 in lung cancer cells was evaluated. Briefly,

A549 and XWLC-05 cells with high ASAH1 expression or low TAOK2 expression were trans-

fected with knockdown plasmid (siASAH1#1 and siASAH1#2) and overexpression plasmid

(ex-TAOK2) or blank vector (siCtrl or exCtrl), respectively. CCK-8 assay and invasion assay

were performed to investigate the effect of ASAH1 and TAOK2 on cell proliferation and cell

invasion, respectively. Wound-healing assay was used to examine cell migration ability. The

results showed that the proliferation ability of A549 and XWLC-05 cells transfected with

knockdown plasmid (siASAH1#1 and siASAH1#2) was lower than that of the control group

(Fig 8A), and the invasion ability of A549 and XWLC-05 cells transfected with knockdown

plasmid was lower than that of the control group (Fig 8B). Furthermore, the downregulation

of ASAH1 in A549 and XWLC-05 significantly inhibited cell migration compared to the con-

trol group (Fig 8C). Collectively, these results suggest that ASAH1 could be an oncogene, and

thus inhibiting ASAH1 can suppress the proliferation, migration, and invasion of lung cancer

cells. However, overexpression of TAOK2 had no significant effect on cell proliferation, migra-

tion and invasion ability both in A549 and XWLC-05 cells (S5 Fig).

Discussion

A large-scale cancer transcriptome study recently revealed multiple abnormalities in the meta-

bolic function of various cancer cells using a personalized genome-scale metabolic modeling

approach [20]. The same study found that genes associated with metabolic damage may also

affect the prognosis of patients. Our previous research suggests key metabolic genes play
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crucial roles in kidney cancer [21] and liver cancer [22]. In the present study, we revealed gen-

der-specific metabolic changes in LUAD patients. By integrating the LUAD transcriptome,

clinical data, and metabolic information, we were able to identify 34 metabolic cancer suscepti-

bility genes in male patients and 15 in female patients. The expression profiles of these risk

metabolic genes in patients predicted poor overall survival.

Dysregulation of cellular metabolism promotes tumor aggressiveness by sustaining the

activity of key growth, invasion, and survival pathways. Previous studies have identified several

key metabolic pathways (glycolysis, glutamine metabolism, oxidative phosphorylation, et al.)

and the metabolic genes involved in these pathways as potential therapeutic targets [23–25].

Cancer cells are reprogrammed to consume large amounts of glucose to support anabolic bio-

synthetic pathways. A recent study reported that silencing of phosphoenolpyruvate carboxyki-

nase mitochondrial (PEPCK-M) isoforms can suppress cancer growth in a lung cancer cell

xenograft model [26].

A high aerobic glycolysis rate is another characteristic of tumor metabolism. Evidence from

multiple studies suggests that lactate dehydrogenase activity in serum may reflect the glycolytic

activity of tumor cells and thus acidity within the tumor microenvironment [27]. Furthermore,

systemic oxidative stress is associated with the pathogenesis of lung cancer and many other

site-specific cancers. Clinical research suggests circulating glucose or non-enzymatic glycation

are correlated with oxidative stress, whereas metabolites such as β-hydroxybutyrate and non-

esterified fatty acids are linked to total antioxidant status in lung cancer patients [28]. In this

study, we found that multiple pathways of amino acid and carbohydrate metabolism were

deregulated both in male and female patients. Some major metabolic pathways showed large

Fig 6. Identification of down-regulated TAOK2 and up-regulated ASAH1 in lung adenocarcinoma. (A) TAOK2 mRNA expression decreased in

tumor tissue. (B) The expression of TAOK2 in male tumor tissue and female tumor tissue. (C) ASAH1 mRNA expression decreased in tumor tissue.

(D) The expression of ASAH1 in male tumor tissue and female tumor tissue. (� P< 0.05).

https://doi.org/10.1371/journal.pone.0230796.g006
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heterogeneity in male vs. female patients. Therefore, we speculate that the regulation of major

metabolic systems such as amino acid metabolism, glucose metabolism, and lipid metabolism

may be gender-specific in LUAD patients.

Fig 7. Identification of down-regulated the protein expression of TAOK2 and up-regulated ASAH1 in lung adenocarcinoma by Western blotting (n = 8).

(A) The TAOK2 protein expression decreased in male tumor tissue. (B) The TAOK2 protein expression decreased in female tumor tissue. (C) TAOK2 protein

expression decreased in tumor tissue compare to adjacent tissue in male and female. (D) TAOK2 protein expression increased in male tumor tissue compare to

female tumor tissue. (E) The ASAH1 protein expression increased in male tumor tissue. (F) The ASAH1 protein expression increased in female tumor tissue.

(G) ASAH1 protein expression increased in tumor tissue compare to adjacent tissue in male and female. (H) ASAH1 protein expression increased in male

tumor tissue compare to female tumor tissue. M-C—Male lung adenocarcinoma tissue, M-P—Male matched adjacent non-tumor tissue, F-C—Female lung

adenocarcinoma tissue, F-P—Female matched adjacent non-tumor tissue. (� P< 0.05).

https://doi.org/10.1371/journal.pone.0230796.g007
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The present study identified several metabolic cancer susceptibility genes involved in differ-

ent biological functions in male and female lung cancer patients. Through ROC curve analysis,

we found that TAOK2 is crucial for male patients’ prognosis and ASAH1 play an important

role in female patients. TAOK2 is a serine/threonine protein kinase that has been implicated

in neurodevelopmental disorders. Studies show that TAOK2 heterozygous and KO mice have

dosage-dependent abnormalities in brain size and neural connectivity in multiple regions [29].

TAOK1 and TAOK2 are catalytically activated during mitosis and can contribute to mitotic

cell rounding and spindle positioning. A recent study showed that TAOK inhibition prolongs

the duration of mitosis in breast cancer cells, increases mitotic cell death, and reduces the per-

centage of cells exiting mitosis [30]. Furthermore, genetic analyses identified a rare TAOK2

homozygous missense variant that causes a novel form of primary immunodeficiency [31].

High-throughput screening has identified TAOK2 as a potential cancer therapeutic target

and three specific small molecule compounds were found to inhibit TAOK2 [32]. ASAH1

encodes a member of the acid ceramidase family of proteins and catalyzes the hydrolysis of

ceramide into sphingosine. In turn, a substrate of sphingosine kinases catalyzes the conversion

of sphingosine into mitogenic sphingosine-1-phosphate [33]. The ASAH1 enzyme is overex-

pressed in multiple human cancers and may promote cancer progression [33–36]. Stable

knockdown of ASAH1 in a prostate cancer cell line (PC-3/Mc) caused accumulation of cer-

amides, an increased requirement for growth factors, and inhibition of tumor cell proliferation

and migration [33]. In breast cancer, over-expressed ASAH1 was found in estrogen receptor

Fig 8. Effect of downregulation of ASAH1 on the proliferation, migration, and invasion of lung adenocarcinoma

cancer cells in vitro. (A) The CCK-8 assay results showing the proliferation ability of A549 and XWLC-05 cells. Cells

were transfected with knockdown plasmid (siASAH1#1 and siASAH1#2), blank vector (siCtrl). (B) The invasion assay

results showing the invasion ability of A549 and XWLC-05 cells. The results were from three independent experiments.

The cell number in each group was normalized to the control. Cells were transfected with knockdown plasmid

(siASAH1#1 and siASAH1#2), blank vector (siCtrl). (C) The wound-healing assay results showing the migration ability

of A549 and XWLC-05 cells. Cells were transfected with knockdown plasmid (siASAH1#1 and siASAH1#2), blank

vector (siCtrl) and photos were taken in 40x field of vision. Images were taken in 40x field of vision. (�P< 0.05,��

P< 0.01,���P< 0.001, Student’s t-test).

https://doi.org/10.1371/journal.pone.0230796.g008
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(ER)-positive patients compared to ER-negative patients. However, high expression of ASAH1

was associated with improved prognosis in invasive breast cancer [34]. High expression of

ASAH1 was also found in human colon cancer cells and colorectal adenocarcinoma tissues

and was shown to be negatively correlated with p53 functional activity in tumor cells [35]. Fur-

thermore, low ASAH1 expression was associated with invasive behavior of melanoma cells

and therefore, may present a new therapeutic target [37]. Further, through function experi-

ments in lung adenocarcinoma cell lines in vitro, we found that ASAH1 could be an oncogene,

and thus inhibiting ASAH1 can suppress the proliferation, migration, and invasion of lung

cancer cells.

This study has some limitations. First, the causal relationship between metabolic cancer sus-

ceptibility genes and lung cancer progression remains unclear. The current results can only

prove a correlation between these genes and lung cancer. Second, lung cancer metabolism

may be affected by a variety of environmental factors and lifestyle habits; however, owing to a

lack of data, we were unable to conduct further analysis in this area. Third, the validation data

set can only explain about half of the findings. Further experiments are still needed to fully ver-

ify our analysis.

Conclusions

In conclusion, this study has revealed the overall metabolic differences between male and

female tissues in LUAD. We identified 34 metabolic cancer susceptibility genes in males and

15 in females, which all have high AUC values, suggesting that these genes, alone or in combi-

nation, may be potential diagnostic markers for LUAD. This study provides valuable informa-

tion for the molecular diagnostics in LUAD and future research studies.
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