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The potential metabolism and ecological roles of many microbial taxa remain
unknown because insufficient genomic data are available to assess their functional
potential. Two such microbial “dark matter” taxa are the Candidatus bacterial phyla
Cloacimonadota and Omnitrophota, both of which have been identified in global
anoxic environments, including (but not limited to) organic-carbon-rich lakes. Using
24 metagenome-assembled genomes (MAGs) obtained from an Antarctic lake (Ace
Lake, Vestfold Hills), novel lineages and novel metabolic traits were identified for both
phyla. The Cloacimonadota MAGs exhibited a capacity for carbon fixation using the
reverse tricarboxylic acid cycle driven by oxidation of hydrogen and sulfur. Certain
Cloacimonadota MAGs encoded proteins that possess dockerin and cohesin domains,
which is consistent with the assembly of extracellular cellulosome-like structures that are
used for degradation of polypeptides and polysaccharides. The Omnitrophota MAGs
represented phylogenetically diverse taxa that were predicted to possess a strong
biosynthetic capacity for amino acids, nucleosides, fatty acids, and essential cofactors.
All of the Omnitrophota were inferred to be obligate fermentative heterotrophs that utilize
a relatively narrow range of organic compounds, have an incomplete tricarboxylic acid
cycle, and possess a single hydrogenase gene important for achieving redox balance
in the cell. We reason that both Cloacimonadota and Omnitrophota form metabolic
interactions with hydrogen-consuming partners (methanogens and Desulfobacterota,
respectively) and, therefore, occupy specific niches in Ace Lake.

Keywords: Cloacimonadota, Omnitrophota, cellulosome, autotrophy, metagenome, Antarctic bacteria

INTRODUCTION

Microorganisms make up the majority of the biomass of the planet, yet the genomic potential
of many microbial species remains elusive. The existence of many hitherto unknown taxa has
only been revealed through cultivation-independent approaches, particularly from 16S rRNA gene
libraries, and metagenome data and the analysis of metagenome-assembled genomes (MAGs)
(Hugenholtz et al., 1998; Rinke et al., 2013; Momper et al., 2017; Parks et al., 2017, 2020;
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Nayfach et al., 2020; Zamkovaya et al., 2021). Uncultivated
clades, referred to as “microbial dark matter,” include lineages
that are inferred to play key roles in ecosystem formation and
nutrient cycling (Rinke et al., 2013; Parks et al., 2017, 2020;
Nayfach et al., 2020; Zamkovaya et al., 2021), including in
Antarctica (Cavicchioli, 2015; Panwar et al., 2020). The phyla
Candidatus Cloacimonadota and Candidatus Omnitrophota
(hereafter Cloacimonadota and Omnitrophota, respectively)
are inferred to contribute to anaerobic recycling of organic
matter, although their ecophysiological traits remain largely
undetermined (Baricz et al., 2020; Suominen et al., 2021).

Phylum Cloacimonadota [originally WWE1 (“Waste Water of
Evry 1”); Chouari et al., 2005a,b] belongs to the “Fibrobacteres-
Chlorobia-Bacteroidetes” (FCB) superphylum of bacteria (Rinke
et al., 2013). Cloacimonadota can be a major component
of anaerobic digestors and especially important in lipid-rich
waste (Toth and Gieg, 2018; Saha et al., 2019; Shakeri Yekta
et al., 2019). The first named member of this phylum, Ca.
Cloacimonas acidaminovorans, is based on a MAG from an
anaerobic digester of a municipal wastewater treatment plant
(Chouari et al., 2005a,b; Pelletier et al., 2008). Based on
single-cell amplified genome (SAG) and metatranscriptomic
analyses, syntrophic propionate oxidation was inferred for a
novel Ca. Cloacimonas species from a terephthalate-degrading
bioreactor (Nobu et al., 2015) and for Ca. Syntrophosphaera
thermopropionivorans based on a MAG from a thermophilic
biogas reactor (Dyksma and Gallert, 2019). As well as being
recovered from anaerobic digesters, abundant Cloacimonadota
have also been detected in natural environments, including in
anoxic and sulfidic water layers of the Black Sea (Suominen
et al., 2021; Villanueva et al., 2021), Ursu Lake, Romania
(Baricz et al., 2020), and from the Thuwal cold seep brine
pool of the Red Sea (Zhang et al., 2016). Based on incubations
with complex carbon substrates and analysis of MAGs, the
Black Sea Cloacimonadota were inferred to be fermentative
heterotrophic generalists capable of assimilating diverse carbon
sources, including proteins (Suominen et al., 2021).

Phylum Omnitrophota [originally candidate division OP3
(Obsidian Pool 3)] was first discovered in 16S rRNA gene libraries
generated from a hot spring sediment at the Yellowstone National
Park (Hugenholtz et al., 1998). Further Omnitrophota sequences
were detected in anoxic environments such as terrestrial
subsurface fluids, flooded paddy soils, marine sediments,
lagoon sediments, hypersaline deep sea waters, freshwater lakes,
aquifers, methanogenic bioreactors, and acidic peatland soils
(Derakshani et al., 2001; Glöckner et al., 2010; Rinke et al., 2013;
Dombrowski et al., 2017; Momper et al., 2017; Lin et al., 2020;
Santos et al., 2020). Phylogenetically, Omnitrophota has been
assigned to the “Planctomycetes-Verrucomicrobia-Chlamydiae”
superphylum based on 16S rRNA analysis (Wagner and Horn,
2006; Pilhofer et al., 2008; Glöckner et al., 2010), which was
confirmed using metagenome-based analysis (Rinke et al., 2013).
The nominative species Candidatus Omnitrophus fodinae SCGC
AAA011-A17 is based on a SAG from groundwater (Homestake
Mine, South Dakota); genome analysis of this SAG, and
other MAGs from the same deep subsurface locality, indicated
capacities for carbon fixation by the Wood–Ljungdahl (WL)

pathway (reductive acetyl-CoA pathway) (Rinke et al., 2013;
Momper et al., 2017). The latter MAGs also possessed genes for
hydrogen (H2) oxidation, methane oxidation, and dissimilatory
nitrate reduction (Momper et al., 2017). Single-cell analysis of
Ca. Omnitrophus magneticus SKK-01 isolated from the suboxic
layer of lake sediments (Lake Chiemsee, Bavaria) revealed ovoid,
flagellated cells that harbored intracellular sulfur inclusions
and chains of magnetite (Kolinko et al., 2012); analysis of
genome sequences identified genes associated with magnetosome
biosynthesis, sulfur oxidation, and carbon fixation (Kolinko et al.,
2016). Genomic analysis of an Omnitrophota MAG (“bin146”)
from the Black Sea inferred a fermentative heterotroph that
scavenged low-molecular-weight organic substrates and was
capable of glycolysis to acetate as well as H2 production
(Suominen et al., 2021).

Both Cloacimonadota and Omnitrophota were detected in
Ace Lake (Panwar et al., 2020), a marine-derived, meromictic
(stratified) system in the Vestfold Hills of Antarctica (Rankin
et al., 1999; Lauro et al., 2011). The interface of the lake (12–
15 m) is defined by a strong halocline and oxycline, dominated
in the austral summer months by a species of the green sulfur
bacterium Chlorobium (Ng et al., 2010; Lauro et al., 2011;
Panwar et al., 2020). The oxic–anoxic interface and lower
anoxic zone (16–24 m) support anaerobes, including members
of Cloacimonadota and Omnitrophota, which were among the
most abundant taxa, with peak relative abundances of 16 and 5%,
respectively (Panwar et al., 2020). Preliminary analysis of the Ace
Lake Cloacimonadota MAGs inferred a chemolithoautotrophic
carbon fixation capacity driven by H2 oxidation, while the
functional potential of the Ace Lake Omnitrophota MAGs was
not examined (Panwar et al., 2020). The Ace Lake data represents
120 metagenomes generated from size-fractionated samples
representing a depth profile and a 10-year sampling period
(Panwar et al., 2020). The large metagenome dataset provided
a unique opportunity to reconstruct the metabolisms of these
two “dark matter” candidate phyla, infer their ecophysiology, and
consider the potential ecological niches they occupy in Ace Lake.

MATERIALS AND METHODS

Microbial biomass was sampled from Ace Lake in austral
summers of 2006/2007 and 2008/2009, and a full Antarctic
seasonal cycle of summer 2013/2014 to summer 2014/2015.
Biomass was collected by sequential size fractionation through
a 20 µm prefilter onto 3.0, 0.8-, and 0.1-µm pore-sized, large
format (293-mm polyethersulfone membrane) filters, and DNA
was extracted from the biomass as described previously (Ng
et al., 2010). Six depths were sampled (surface, 5, 11.5–13,
12.7–14.5, 14–16, 18–19, and 23–24 m) with the precise depths
varying depending on the water level in the lake (Panwar et al.,
2020). In winter 2014, samples were not taken below the oxic–
anoxic interface (Panwar et al., 2020). DNA was sequenced
and the sequences uploaded to Integrated Microbial Genomes
(IMG) (Huntemann et al., 2015) generating 120 individual
metagenomes, as described previously (Panwar et al., 2020).
High- and medium-quality MAGs were auto-generated from
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individual metagenomes during the IMG pipeline process. QC-
filtered raw reads from the individual Ace Lake metagenomes
were co-assembled using Megahit v1.1.1 (Li et al., 2016) with
a setting of meta-large, and MAGs were generated from the
co-assembly using MetaBAT v2.12.1 with minContig length
2,500 bp (Kang et al., 2019). MAGs from the co-assembly
(available in IMG as Metagenome ID 3300035698) were assessed
for completeness and contamination using CheckM v1.0.7 (Parks
et al., 2015), for taxonomic identity using RefineM v 0.0.23 (Parks
et al., 2017), and for phylogenetic placement using Genome
Taxonomy Database Toolkit (GTDB-Tk) v.1.4.0 with GTDB
release R95 (Chaumeil et al., 2019; Parks et al., 2020). The GTDB-
Tk dependencies were pplacer (Matsen et al., 2010), FastANI (Jain
et al., 2019), Prodigal (Hyatt et al., 2010), FastTree 2 (Price et al.,
2010), HMM (Eddy, 2011), and Mash (Ondov et al., 2016).

Metagenome-assembled genomes from the individual Ace
Lake metagenomes and from the co-assembly that belonged to
the phyla Cloacimonadota (one high- and 21 medium-quality
MAGs) and Omnitrophota (9 high- and 72 medium-quality
MAGs) were grouped based on average nucleotide identity
(FastANI v 1.32; Jain et al., 2019), and average amino acid identity
(CompareM v 0.1.11) to identify representative MAGs for further
examination (Supplementary Table S1).

Phylogenetic trees showing all Cloacimonadota and
Omitrophota MAGs were generated by GTDB-Tk, based on
a ∼5,000 amino acid-long concatenated multiple sequence
alignment of 120 bacterial reference genes, and viewed
with Dendroscope 3.5.7 (Huson and Scornavacca, 2012).
Maximum likelihood phylogenies of selected novel and reference
Cloacimonadota and Omnitrophota taxa were generated from
the same GTDB-Tk concatenated multiple sequence alignments
using W-IQ-Tree (Nguyen et al., 2015; Trifinopoulos et al.,
2016) with autoselection of the best-fit model and 1,000 ultrafast
bootstraps (Minh et al., 2013).

Of the total of 22 Cloacimonadota and 81 Omnitrophota
MAGs identified in Ace Lake, certain MAGs were chosen for
in-depth genomic examination, based on the aim of sampling
the total known phylogenetic diversity of the respective phyla, as
well as completeness of the MAGs (Supplementary Table S1).
On this basis, 10 Cloacimonadota MAGs and 14 Omnitrophota
MAGs were chosen. The genomic functional potential of the
MAGs was assessed by considering cellular and metabolic traits
based upon manual examination of proteins and pathways that
was performed in a similar way to previous assessments of
the veracity of gene functional assignments (Allen et al., 2009;
Panwar et al., 2020; Williams et al., 2021). This method included
the vetting via manual curation of the IMG protein annotations
used in this study. All protein sequences were submitted to
ExPASy BLAST (using the “UniProtKB/Swiss-Prot only” option)
(Gasteiger et al., 2003); proteins needed to show ≥ 35%
sequence identity to an experimentally verified protein in the
ExPASy BLAST database for the functional annotation to be
considered valid. If this threshold was not reached, protein
sequences were submitted to InterProScan (Blum et al., 2020) to
identify functional domains (e.g., catalytic domains; dockerin and

1https://github.com/dparks1134/CompareM

cohesin domains) and potential subcellular locations (e.g., using
signal peptides for an extracytoplasmic location; transmembrane
helices for a membrane location). IMG annotations that could
not be verified using this process were discarded. All of our
protein identifications are considered putative. GH families
were identified according to the CAZy (Carbohydrate-Active
enZymes) classification (Lombard et al., 2014). Protein sequences
that were identified as hydrogenases based on catalytic domains
were classified further using the hydrogenase classifier HydDB
(Søndergaard et al., 2016). Only those MAGs that were subjected
to in-depth examination are named here; these were named
according to recommendations for describing novel Candidatus
species (Konstantinidis et al., 2017; Chuvochina et al., 2019;
Murray et al., 2020).

RESULTS AND DISCUSSION

Genomic Assemblies and Phylogenetic
Analysis
The genomes of 10 Cloacimonadota MAGs were interrogated
(58–97% completeness; 0–4.4% contamination), which represent
four novel genus-level and eight novel species-level taxa
(Table 1 and Supplementary Table S2). Based on phylogenetic
analysis and GTDB taxonomy, the four novel genera are
deeply nested within the phylum Cloacimonadota, within the
class Candidatus Cloacimonadia. None of the four genera
were found to be closely related to Ca. Cloacimonas or Ca.
Syntrophosphaera, both of which belong to the familyCandidatus
Cloacimonadaceae (Dyksma and Gallert, 2019; Figure 1 and
Supplementary Figure S1).

The genomes of 14 Omnitrophota MAGs were interrogated
(61–93% completeness; 0–9.1% contamination) that represent
11 novel genus-level and 13 novel species-level taxa (Table 2
and Supplementary Table S2). Phylogenetic analysis and GTDB
taxonomy revealed that the 11 genera represent two class-level
and eight order-level clades. None of the Ace Lake MAGs
were closely related to Ca. Omnitrophus (class Candidatus
Omnitrophia, order Candidatus Omnitrophales), which the
phylogenetic analysis recovered in a relatively basal position
within the phylum (Figure 2 and Supplementary Figure S2).

For both Cloacimonadota and Omnitrophota, individual
genera and species are provided along with etymologies of all
proposed names (Tables 1, 2 and Supplementary Table S2).
Proteins and pathways discussed for all MAGs assigned to each
genus are provided for Cloacimonadota (Supplementary Tables
S3, S4) and Omnitrophota (Supplementary Tables S5, S6).

Cloacimonadota: Biopolymer
Degradation and the Cell Envelope
Cloacimonadota are here inferred to be capable of degrading
recalcitrant organic matter under anoxic conditions in Ace
Lake. The MAGs of the four Ace Lake genera encode multiple
glycoside hydrolase (GH) enzymes with signal peptides
(indicating an extracytoplasmic location) and include enzymes
that degrade polysaccharides and certain glycoconjugates,
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TABLE 1 | Metabolic capacity of the Ace Lake Cloacimonadota inferred from metagenome-assembled genomes (MAGs).

Cloacimonadota Metabolic capacity

All genera and species Anaerobic heterotroph
secreted glycoside hydrolases and peptidases
F-type ATP synthase

Candidatus Genus Candidatus
Species

MAGs
(% completeness)

Extracellular
features + secreted
GHs

Fermentation
substrates

Carbon fixation Sulfur
metabolism

Other
bioenergetic
complexes/enzymes

Hydrogenases

Tenebribacter burtoniiT

davisii
mawsonii

3300035698_1346
(97%)

3300035698_1468
(97%)

3300035698_1174
(91%)

Poly-γ-glutamate
synthesis;
β-glucanase,
β-glucosidase,
glucosylceramidase,
chitinase

Sugars, amino
acids, 2-oxoacids,
aldehydes,
alcohols, glycerol,
formate

Reverse
tricarboxylic acid
cycle

Oxidation of sulfur
compounds
(including
thiosulfate), linked
to Hdr reduction

Rnf, Nqr, Sud,
HppA

Membrane-bound,
H2-evolving NiFe
hydrogenase
(Group 4g) linked to
Mrp; FeFe
hydrogenase
(Group C1) for
redox balance

Stygibacter australisT

frigidus
3300025642_13 (88%),

3300035698_2003
(69%)

3300035698_198
(58%)

Poly-γ-glutamate
synthesis;
halomucin-like
protein;
cellulosome-like;
β-glucanase,
β-glucosidase,
α-amylase,
glucosylceramidase,
chitinase

Sugars, amino
acids, 2-oxoacids,
aldehydes,
alcohols, glycerol,
formate

Reverse
tricarboxylic acid
cycle

Oxidation of sulfur
compounds
(including
thiosulfate), linked
to Hdr reduction

Rnf, Nqr, Sud,
HppA

Membrane-bound,
H2-evolving NiFe
hydrogenase
(Group 4g) linked to
Mrp;
FeFe hydrogenases
(Groups A3 and C1)
for redox balance

Zophobacter franzmannii T 3300035698_360
(80%)

Poly-γ-glutamate
synthesis;
β-glucanase,
β-glucosidase,
chitinase

Sugars, amino
acids, 2-oxoacids,
aldehydes, glycerol,
formate

– – Rnf, Nqr, Sud,
HppA

–

Celaenobacter antarcticus T

polaris
3300025698_8 (92%),

3300035698_1683
(65%)

3300035698_1703
(91%)

β-glucosidase,
β-galactosidase

Sugars, amino
acids, 2-oxoacids,
aldehydes, formate

Reverse
tricarboxylic acid
cycle

Assimilatory sulfate
reduction

Rnf, Nqr, Sud,
HppA

Membrane-bound,
NiFe H2-evolving
hydrogenase
(Group 4g) linked to
Mrp;
H2-oxidizing,
Hdr-linked
cytoplasmic NiFe
hydrogenase
(Group 3c)

GH, glycoside hydrolase; Hdr, heterodisulfide reductase; HppA, pyrophosphate-energized sodium pump; Mrp, multicomponent Na+:H+ antiporter; Nqr, sodium-translocating NADH:quinone oxidoreductase; Rnf,
ferredoxin:NAD+-oxidoreductase complex; Sud, bifunctional sulfide dehydrogenase/ferredoxin:NADP oxidoreductase. T Indicates type species.
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FIGURE 1 | Phylogeny of phylum Candidatus Cloacimonadota. Maximum likelihood tree constructed in IQ-Tree with autoselection of the best-fit model
(LG + F + I + G4) and 1,000 ultra-fast bootstraps. UFBootstraps ≥ 95% (black dot); Metagenome-assembled genomes (MAGs) featured in this study (green) with
their IMG MAG ID and proposed Candidatus genus and species name. Reference Cloacimonadota MAGs are shown with their Genome Taxonomy Database
(GTDB) accession and GTDB taxonomy, except for Candidatus Cloacimonas acidaminovorans and Candidatus Syntrophosphaera thermopropionivorans, which
already have names. The tree is rooted using a representative of the Patescibacteria.

which would release oligosaccharides and simple sugars
such as glucose (Table 1). These hydrolytic enzymes belong
to various GH families, indicating a range of potential
substrates, such as starch, β-glucans, β-glucosides, chitin,
and glucosylceramides (Table 1 and Supplementary Tables S3,
S4). The Ace Lake Cloacimonadota also encode diverse proteases
and peptidases, including both secreted and cytoplasmic,
indicating that polypeptides could be used as amino acid
sources (Supplementary Tables S3, S4). Histidine degradation

pathways are encoded in MAGs of all four genera, and Ca.
Celaenobacter gen. nov. encodes proteins for tryptophan
degradation (Supplementary Table S3). The abilities of
Cloacimonadota to use complex sugars and proteins as organic
substrates have been previously reported for this clade in both
anaerobic digestors and lakes (Pelletier et al., 2008; Limam et al.,
2014; Suominen et al., 2021).

However, in MAGs of the Ace Lake genus Ca. Stygibacter
gen. nov. we identified genes for components of a putative
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TABLE 2 | Metabolic capacity of the Ace Lake Omnitrophota inferred from metagenome-assembled genomes (MAGs).

Omnitrophota Metabolic capacity

All genera and species Anaerobic heterotroph
incomplete TCA cycle, terminating at fumarate (reductive branch) and 2-oxoglutarate (oxidative branch)
secreted glycoside hydrolases and peptidases
V-type ATP synthase

Candidatus Genus Candidatus Species MAGs (%
completeness)

Fermentation
substrates

Other carbon
metabolism

Other bioenergetic
complexes/enzymes

Hydrogenase

Aceula lacicolaT 3300035698_1100
(92%)

Sugars, glycerol Glycogen synthesis Rnf, Sud, HppA NiFe hydrogenase
(Group 3d)

meridiana 3300035698_985
(92%)

Zapsychrus exiliT 3300035698_1555
(89%)

Sugars, glycerol Glycogen synthesis Rnf, Nqr, Sud, HppA NiFe hydrogenase
(Group 3d)

Gygaella obscuraT 3300035698_1934
(85%)

Sugars, 2-oxoacids Glycogen synthesis Rnf, Sud, HppA FeFe hydrogenase
(Group A3)

Susulua stagnicolaT 3300035698_1005
(82%)

Sugars, 2-oxoacids Glycogen synthesis Rnf, Sud, HppA FeFe hydrogenase
(Group A3)

Saelkia tenebricolaT 3300035698_749
(91%)

Sugars, alcohols Glycogen synthesis Rnf, Mrp, Sud, HppA NiFe hydrogenase
(Group 4g), Mrp-linked

Kaelpia aquaticaT 3300035698_2000
(93%)

Sugars,
2-oxoacids, alcohols

Glycogen synthesis Rnf, Sud, HppA FeFe hydrogenase
(Group A3)

imicola 3300035698_1655
(92%)

Kappaea frigidicolaT 3300035698_1500
(76%)

Sugars Trehalose synthesis Rnf, HppA FeFe hydrogenase
(Group A3)

Tantalella remotaT 3300035698_1097
(93%)

Sugars, glycerol,
2-oxoacids, alcohols

Glycogen synthesis,
trehalose synthesis

Rnf, Sud, HppA NiFe hydrogenase
(Group
3b)/sulfhydrogenase

Aadella gelidaT 3300035698_848
(91%)

Sugars, glycerol,
2-oxoacids

Trehalose synthesis Rnf, Sud NiFe hydrogenase
(Group
3b)/sulfhydrogenase

Gorgyraea atricolaT 3300035698_32 (93%) Sugars, 2-oxoacids Wood–Ljungdahl
pathway, glycogen
synthesis, trehalose
synthesis

Rnf, Mrp, Sud, HppA NiFe hydrogenase
(Group 4g), Mrp-linked

Orphnella occultaT 3300025586_21 (85%),
3300035698_104

(61%)

Sugars, 2-oxoacids Trehalose synthesis Rnf, Sud, HppA NiFe hydrogenase
(Group
3b)/sulfhydrogenase

HppA, pyrophosphate-energized sodium pump; Mrp, multicomponent Na+:H+ antiporter; Nqr, sodium-translocating NADH:quinone oxidoreductase; Rnf, ferredoxin:NAD+-oxidoreductase complex; Sud, bifunctional
sulfide dehydrogenase/ferredoxin:NADP oxidoreductase. T Indicates type species.
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extracellular, multienzyme complex for the binding and
degradation of biopolymers (Table 1 and Figure 3A),
not previously reported for Cloacimonadota. In Ca.
Stygibacter, certain signal-peptide-bearing enzymes contain
C-terminal dockerin domains: chitinase homolog (GH18),
α-amylase/α-mannosidase homolog (GH57), serine peptidase
(Peptidase S8/S53 domain), and gingipain-like peptidase
(Peptidase C25). Ca. Stygibacter also encodes a large (3,755
amino acids) non-catalytic scaffoldin-like protein (Artzi
et al., 2017) that contains tandemly repeated cohesin and
carbohydrate-binding (CBM2/CBM3) domains. We infer
that these dockerin- and cohesin-domain proteins combine
to produce a cellulosome-like structure, with biopolymer-
degrading enzymes integrated into this scaffoldin-like
protein via complementary cohesin–dockerin interactions
(Artzi et al., 2017).

Canonical cellulosomes are extracellular complexes equipped
with cellulose-, hemicellulose-, and polypeptide-targeting
enzymes that are used by cellulolytic Clostridia (Firmicutes) to
bind and degrade plant cell walls (Schwarz and Zverlov, 2006;
Peer et al., 2009; Fontes and Gilbert, 2010). As in clostridial
cellulosomes, the Ca. Stygibacter complex has a scaffoldin-like
protein with tandem cohesin domains for integration of multiple
dockerin-containing enzymes, and a conserved C-terminal
domain (CTD) for direct attachment to its own cell surface
(Lasica et al., 2017). In common with the clostridial cellulosome,
we infer that the cellulosome-like structure in Ca. Stygibacter
can mediate attachment of cells to insoluble substrates and
promote degradation to soluble products that are taken up by the
cell (Lamed et al., 1983). Unlike cellulosomes, we propose that,
based on the annotated GHs and peptidases, this complex in
Ca. Stygibacter is utilized for the attachment to and degradation
of starch (via endohydrolysis) and chitinous and proteinaceous
material rather than cellulose-rich plant-derived material.
A non-canonical cellulosome-like structure (“planctosome”)
has also been reported in certain freshwater Planctomycetes
(Nemodlikiaceae) for polypeptide degradation (Andrei et al.,
2019), also distinct from the Ca. Stygibacter structure described
here; our finding for the Ace Lake Ca. Stygibacter therefore
adds to the repertoire of cellulosome-like complexes represented
across the domain Bacteria.

The Ace Lake Cloacimonadota MAGs also encode other
putative extracellular structures not previously reported for
this phylum, all of which indicate an elaborate cell envelope
(Figure 3A). Three genera (Ca. Stygibacter, Ca. Tenebribacter
gen. nov., Ca. Zophobacter gen. nov.) encode poly-γ-glutamate
synthetase (CapBC) and other proteins required for synthesis
and transport of poly-γ-glutamate (PGA), a biopolymer involved
in capsule formation or released extracellularly as a water-
binding component of a biofilm matrix (Rehm, 2010). The
water-binding properties of PGA allow it to locally decrease
high salt concentrations, allowing survival of the cell in high-salt
environments (Kandler et al., 1983; Rehm, 2010). Additionally,
the Ca. Stygibacter MAGs encode a glycine-rich protein (944
amino acids), with the N-terminal half containing a ∼440
amino acid region that has 27–30% identity to a ∼400–
500 amino acid repeat sequence in halomucin (a very large

FIGURE 2 | Phylogeny of phylum Candidatus Omnitrophota. Maximum
likelihood tree constructed in IQ-Tree with autoselection of the best-fit model
(LG + F + I + G4) and 1,000 ultra-fast bootstraps. UFBootstraps ≥ 95%
(black dot); Metagenome-assembled genomes (MAGs) featured in this study
(blue) with their IMG MAG ID and proposed Candidatus genus and species
names. Reference Omnitrophota MAGs are shown with their Genome
Taxonomy Database (GTDB) accession and GTDB taxonomy, except for
Candidatus Omnitrophus fodinae and Candidatus Omnitrophus magneticus,
which already have names. The tree was rooted with a basal representative of
the “Planctomycetes-Verrucomicrobia-Chlamydiae” (PVC) superphylum.

protein in the halophilic archaeon Haloquadratum walsbyi)
(Bolhuis et al., 2006), and the C-terminal half includes a
dockerin domain. As proposed for H. walsbyi, it is possible
that both PGA and the halomucin-like protein form a water-
enriched capsule around the cell that facilitates growth in high
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FIGURE 3 | Metabolic capacity of Cloacimonadota. Metabolic capacities inferred from MAGs for (A) Candidatus Stygibacter and (B) Candidatus Celaenobacter.
AAT, amino acid transporter; ABC, ATP-binding cassette transport system; BCAA, branched-chain amino acids; CoB-SH, coenzyme B; CoM-SH, coenzyme M;
CoM-S-S-CoB, heterodisulfide; Dfr, desulfoferrodoxin; Feo, ferrous iron transporter; Fhu iron ABC transporter; Foc, formate transporter; GH, glycoside hydrolase;
Hdr, heterodisulfide reductase; HppA, pyrophosphate-energized sodium pump; Mal, maltooligosaccharide transport system (permease + solute-binding protein);
Kat, catalase; Liv, branched-chain amino acid ABC transporter; Mbh, membrane-bound [NiFe] hydrogenase; Mrp, multicomponent Na+:H+ antiporter; Msm,
multiple sugar ABC transporter; Mvh, cytoplasmic [NiFe] hydrogenase; Nqr, sodium-translocating NADH:quinone oxidoreductase; PEP, phosphoenolpyruvate; PGA,
poly-γ-glutamate; Pgs, poly-γ-glutamate synthase; Phn, phosphonate ABC transporter; PiT, inorganic phosphate transporter; PKD, Polycystic Kidney Disease
domain (implicated in adhesion); Rnf, ferredoxin:NAD+-oxidoreductase complex; rTCA cycle, reverse tricarboxylic acid cycle; S*, unknown sulfur species; TST,
thiosulfate:sulfurtransferase (rhodanese-like) (periplasmic); Znu, zinc ABC transporter; ZupT, zinc transporter. Note that the precise sulfur oxidation pathway for (B) is
speculative; thiosulfate is shown here as the source of reductant, but the identity of the sulfur species is unclear.

concentrations of salt (Bolhuis et al., 2006). These cell envelope
features combined with Na+-translocating homeostasis abilities
(see section “Cloacimonadota: Fermentation”) may assist growth
of Cloacimonadota at the bottom of the Ace Lake water column
where salinity is at its highest (43 g L−1) (Rankin et al., 1999;
Lauro et al., 2011).

Cloacimonadota: Fermentation
A fermentative metabolism is inferred for the Ace Lake
Cloacimonadota, by which energy is derived from the oxidation
of organic substrates (sugars, amino acids, 2-oxoacids, aldehydes,
alcohols, and formate), and protons are used as the electron
acceptor (Calusinska et al., 2010; Table 1 and Figures 3A,B).
Simple sugars and amino acids, including those generated by
extracellular degradation of biopolymers, appear to be principally
imported by secondary transport, although a complete primary
transporter for branched-chain amino acids (BCAAs) was
identified in Ca. Celaenobacter MAGs. For simple sugars,
the Embden–Meyerhof–Parnas (EMP) pathway for glycolysis
generates NADH and reduced ferredoxin, as well as anabolic
precursors (such as for the pentose phosphate pathway). There
is no evidence in any of the 10 Ace Lake Cloacimonadota MAGs
of a capacity for propionate oxidation, unlike members of Ca.

Cloacimonadaceae (Pelletier et al., 2008; Dyksma and Gallert,
2019).

Ca. Tenebribacter, Ca. Stygibacter, and Ca. Zophobacter
MAGs encode a membrane-bound [NiFe] hydrogenase (Mbh)
(Group 4g) (Søndergaard et al., 2016). It has been proposed
that Mbh transfers electrons from reduced ferredoxin to
protons, thereby producing H2 gas; this would generate a Na+
gradient across the cell membrane via a Mrp-type Na+/H+
antiporter module (Mayer and Müller, 2014; Søndergaard
et al., 2016; Yu et al., 2018). All four genera encode the
Rnf complex, which couples electron transfer from reduced
ferredoxin to NAD+ to generate NADH, with concomitant
translocation of Na+ ions across the membrane (Biegel et al.,
2011). The Na+ gradient drives ATP synthesis via a Na+-
dependent F-type ATP synthase (Meier et al., 2009). This
Na+ gradient can also be used for other purposes, such as
phosphate uptake via a Na+/phosphate cotransporter (NptA-
like). NADH can also be used for anabolic purposes. Additionally,
Ca. Tenebribacter, Ca. Stygibacter, and Ca. Zophobacter
encode a Na+-translocating NADH:quinone oxidoreductase
complex (NQR), which couples NADH re-oxidation to Na+-
extrusion, as well as maintaining ionic balance inside the cell
(Verkhovsky and Bogachev, 2010).

Frontiers in Microbiology | www.frontiersin.org 8 October 2021 | Volume 12 | Article 741077

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-741077 October 5, 2021 Time: 17:51 # 9

Williams et al. Antarctic Cloacimonadota and Omnitrophota

All 10 Ace Lake Cloacimonadota MAGs lack genes for two
essential enzymes of the oxidative tricarboxylic acid (TCA) cycle:
citrate synthase and succinate dehydrogenase. Thus, we infer that
they cannot operate a complete oxidative TCA cycle. All four
genera encode phosphoenolpyruvate (PEP) carboxykinase, which
converts oxaloacetate to PEP. The Ace Lake Cloacimonadota
MAGs encode a pyrophosphate-dependent phosphofructokinase
(PPi-PFK) as well as the more widely distributed ATP-dependent
6-phosphofructokinase (ATP-PFK), the former of which can
reversibly function in both glycolysis and gluconeogenesis
(Mertens, 1991; Kemp and Tripathi, 1993). Because PPi is a
byproduct of biosynthetic reactions, the use of PPi-PFK rather
than ATP-PFK increases the energetic efficiency of glycolysis,
especially during fermentation (Mertens, 1991; Reshetnikov
et al., 2008). The presence of the reversible enzyme PPi-
PFK is consistent with the absence of the gluconeogenesis-
specific enzyme fructose-1,6-bisphosphatase from the Ace Lake
Cloacimonadota MAGs. Having dual enzymes for the conversion
of fructose-6-phosphate to fructose 1,6-bisphosphate might allow
the Ace Lake Cloacimonadota to respond to the flux of high-
energy phosphoryl donors in the cell (ATP vs. PPi). Furthermore,
PPi may also be diverted directly to energy conservation using a
PPi-dependent Na+ pump (HppA) that utilizes the energy of PPi
hydrolysis as the driving force for Na+ translocation.

In addition to the abilities to ferment sugars, the
Ace Lake Cloacimonadota MAGs encode multiple
ferredoxin oxidoreductases that oxidize 2-oxoacids
(including products of amino acid degradation), as
inferred for Ca. Cloacimonas (Pelletier et al., 2008).
These include pyruvate:ferredoxin oxidoreductase (POR);
2-oxoglutarate:ferredoxin oxidoreductase (OGOR); branched-
chain 2-oxoacid (2-oxoisovalerate):ferredoxin oxidoreductase
(VOR); indolepyruvate:ferredoxin oxidoreductase; and
aldehyde:ferredoxin oxidoreductase (Supplementary Tables
S3, S4). In addition to VOR, the Ace Lake Cloacimonadota
encode phosphate butyryltransferase and butyrate kinase,
suggesting the potential for further catabolism of branched-chain
2-oxoacids derived from degradation of BCAAs.

Ca. Stygibacter andCa.Zophobacter MAGs encode phosphate
acetyltransferase and acetate kinase for the conversion of
acetyl-CoA to acetate via acetyl phosphate with concomitant
production of ATP via substrate-level phosphorylation (Sapra
et al., 2003), also inferred for Cloacimonadota MAG TCS47
(Zhang et al., 2016). In addition to Mbh, two reversible [FeFe]
cytoplasmic hydrogenases were identified in certain Ace Lake
Cloacimonadota: a tetrameric Group A3 hydrogenase (Ca.
Stygibacter) and a monomeric Group C1 hydrogenase (Ca.
Tenebribacter and Ca. Stygibacter) (Søndergaard et al., 2016).
As a bidirectional hydrogenase, the Group A3 hydrogenase
could use H2 as an energy source through the bifurcation of
electrons from H2 to ferredoxin and NAD+ (Poudel et al., 2016;
Søndergaard et al., 2016; Kpebe et al., 2018), or it could serve as
a confurcating hydrogenase to dissipate surplus reductant (from
both NADH and reduced ferredoxin) that is generated during
fermentation (Schut and Adams, 2009; Poudel et al., 2016). For
the latter, substrate-level phosphorylation in the conversion of
glucose to acetate would be facilitated by the dissipation of both

reducing equivalents (NADH and reduced ferredoxin) as H2
(Herrmann et al., 2008). These findings indicate that the Ace Lake
Cloacimonadota would generate H2 and acetate as byproducts of
carbohydrate fermentation.

In both the Ca. Tenebribacter and Ca. Stygibacter MAGs, the
Group C1 [FeFe] hydrogenase gene is immediately downstream
of a gene for a histidine kinase domain protein, providing support
for a putative sensory function (Greening et al., 2016). However,
in one Ca. Tenebribacter MAG (3300035698_1346) the same
gene cluster also encodes homologs of hydrogenase subunits
associated with electron bifurcation (Poudel et al., 2016), which
raises the possibility of a metabolic role for the Group C1
[FeFe] hydrogenase.

Cloacimonadota: Carbon Fixation Using
a Reverse Tricarboxylic Acid Cycle
The gene inventories of certain Ace Lake Cloacimonadota suggest
that they are capable of operating the reverse tricarboxylic acid
(rTCA) cycle for carbon fixation, driven by sulfur oxidation
(Ca. Tenebribacter and Ca. Stygibacter) (Figure 3A) or H2
oxidation (Ca. Celaenobacter) (Figure 3B). The MAGs of these
three genera encode ATP citrate lyase (ACL), thiol:fumarate
reductase (TFR), and OGOR; these three enzymes allow the
TCA cycle to proceed in the reductive direction (Rubin-Blum
et al., 2019). PEP carboxykinase would connect the rTCA
cycle to gluconeogenesis (Marietou et al., 2020) (see section
“Cloacimonadota: Fermentation”). In the Ca. Celaenobacter
MAGs, the genes for TFR and OGOR are part of a gene cluster
that also includes fumarate hydratase, succinyl-CoA synthetase,
[NiFe] hydrogenase (Mvh) (Group 3c), and heterodisulfide
reductase (Hdr), which is consistent with a functional link
between all these proteins. ACL is encoded elsewhere in the
Ca. Celaenobacter genome, in a gene cluster that also includes
the TCA cycle enzymes aconitase and isocitrate dehydrogenase.
In general, the cytoplasmic Mvh hydrogenase forms a complex
with Hdr, and bifurcates electrons from H2 to heterodisulfide
(CoM-S-S-CoB) and ferredoxin; the Mvh–Hdr complex couples
the exergonic reduction of heterodisulfide with the endergonic
reduction of ferredoxin with H2 (Heim et al., 1998; Kaster
et al., 2011; Greening et al., 2016). Thus, in Ca. Celaenobacter,
carbon fixation using the rTCA cycle would be driven by H2
oxidation (Figure 3B), as in Aquifex aeolicus (Brugna-Guiral
et al., 2003; Guiral et al., 2005), although the latter have
been inferred to use a Group 2d cytoplasmic hydrogenase for
carbon fixation (Greening et al., 2016). ACL, OGOR, TFR,
and Hdr genes were also identified in MAGs assigned to
Ca. Tenebribacter and Ca. Stygibacter. Hdr genes in one Ca.
Stygibacter MAG (3300025642_13) are within a gene cluster
that also contains genes implicated in sulfur metabolism,
including thiosulfate:sulfurtransferase (TST) (with a predicted
signal peptide), a cytoplasmic sulfur relay protein TusA, and
a sulfur compound transporter (Gristwood et al., 2011; Tanaka
et al., 2020). Homologs of these four proteins are also encoded
in MAGs assigned to Ca. Tenebribacter. Thus, energy required
for carbon fixation in Ca. Tenebribacter and Ca. Stygibacter
may be derived from sulfur oxidation catalyzed by TST and
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Hdr, as in certain other autotrophic bacteria (Boughanemi et al.,
2016; Koch and Dahl, 2018; Wang et al., 2019). Based on the
presence of a TST homolog in these Ace Lake Cloacimonadota
MAGs, the electron donor may be thiosulfate, with the initial
reaction occurring in the periplasm (Figure 3A); however,
elemental sulfur might also be utilized, as in A. aeolicus
(Boughanemi et al., 2016).

Omnitrophota Ecophysiology
Based on interrogation of 14 Ace Lake Omnitrophota MAGs, this
candidate phylum possesses a heterotrophic and fermentative
metabolism. None of the MAGs possess any genes necessary for
motility or magnetotaxis. We infer the Ace Lake Omnitrophota
to be heterotrophs that are capable of fermenting a narrow range
of substrates for energy conservation. All MAGs encode proteases
and peptidases (some with signal peptides) to degrade proteins to
amino acids. However, there are very few enzymes encoded for
the catabolism of amino acids, and there is no evidence in any
of the 14 MAGs of genes required for amino acid fermentation,
unlike Clostridium spp. (Herrmann et al., 2008; Perret et al.,
2011). Thus, we posit that these Ace Lake Omnitrophota
use amino acids derived from peptide hydrolysis as nitrogen
sources (especially by deamination or transamination) or for
protein synthesis.

The Ace Lake Omnitrophota MAGs encode ABC transporter
systems for sugars (disaccharides and/or oligosaccharides)
and a number of GHs (including β-glucosidases and sugar
phosphorolytic enzymes) to break down di- and oligosaccharides
into simpler sugars such as glucose and/or glucose-1-phosphate
(Table 2 and Supplementary Tables S5, S6). Enzymes necessary
for the initial depolymerization of polysaccharides are absent
from all MAGs, which suggests that the Ace Lake Omnitrophota
are dependent on other microorganisms for initial degradation
of biopolymers, as inferred for the Black Sea Omnitrophota
(Suominen et al., 2021). Simple sugars imported into the cell
could also be utilized by the Ace Lake Omnitrophota for the
synthesis of the compatible solute trehalose, or for the synthesis
of glycogen for carbon and energy storage; enzymes for both
processes were encoded across the Omnitrophota MAGs (Table 2
and Supplementary Table S5).

The Ace Lake Omnitrophota MAGs also encode the capacity
for fermentation of glucose to acetyl-CoA via the EMP pathway.
The Rnf complex is predicted to couple the reduction of NAD+ to
the oxidation of reduced ferredoxin and translocation of protons
across the cell membrane, allowing ATP generation via a V-type
ATP synthase. The majority of MAGs also encode the enzymes
phosphate acetyltransferase and acetate kinase for the subsequent
conversion of acetyl-CoA to acetate with concomitant production
of ATP via substrate-level phosphorylation (Sapra et al., 2003).

Excess reductant generated during fermentation could be
dissipated as H2 using a cytoplasmic hydrogenase (Dombrowski
et al., 2017; Suominen et al., 2021). The Ace Lake Omnitrophota
MAGs encode various hydrogenases, although it is noteworthy
that each MAG has only one identifiable hydrogenase: Group 3d
[NiFe] hydrogenase (Ca. Aceula gen. nov. and Ca. Zapsychrus
gen. nov.); Group 3b [NiFe] hydrogenase (Ca. Tantalella gen. nov.,
Ca. Aadella gen. nov., and Ca. Orphnella gen. nov.); Group 4g

[NiFe] hydrogenase (Ca. Saelkia gen. nov., and Ca. Gorgyraea
gen. nov.), and Group A3 [FeFe] hydrogenase (Ca. Gygaella.
gen. nov, Ca. Susulua gen. nov., Ca. Kaelpia gen. nov., and Ca.
Kappaea gen. nov.). We infer that these hydrogenases are used
for redox balance, associated with the need to dispose of surplus
reductant. MAGs of both genera that encode Group 4g Mbh also
encode Mrp (Ca. Saelkia and Ca. Gorgyraea) (Figure 4A); this
hydrogenase may therefore function in a complex with the Mrp
antiporter to generate an ionic gradient across the cell membrane,
as in the other Mbh (Mayer and Müller, 2014; Søndergaard
et al., 2016; Yu et al., 2018). The Group 3b hydrogenases of
Ca. Tantalella, Ca. Aadella, and Ca. Orphnella were annotated
as a bifunctional sulfhydrogenase (Shy) with dual hydrogenase
and sulfur reductase activity (Figure 4B), meaning that excess
reductant generated during fermentation can be disposed of as
H2 and sulfide, respectively (Ma et al., 1993; Silva et al., 1999; Ma
et al., 2000).

None of the 14 Ace Lake Omnitrophota MAGs encode a
complete TCA cycle (Figures 4A,B), either in the oxidative
or reverse directions, with OGOR, succinyl-CoA synthetase,
succinate dehydrogenase, ACL, and fumarate reductase absent
from all MAGs (Table 2). We infer that the Ace Lake
Omnitrophota possess an incomplete, “horse-shoe”-type TCA
cycle as found in certain other anaerobic bacteria (e.g.,
Herlemann et al., 2009; Marco-Urrea et al., 2011). The type
of citrate synthase varies, with either (but never both) citrate
(Si)-synthase or citrate (Re)-synthase (Li et al., 2007; Marco-
Urrea et al., 2011) encoded in individual MAGs, with the
distribution of the functional analogs mostly conforming to
separate Omnitrophota clades (Supplementary Table S6). The
right branch of the incomplete TCA pathway of Omnitrophota
is inferred to occur in the oxidative direction and commence
at citrate synthase and terminate at 2-oxoglutarate. The left
branch allows the interconversion of oxaloacetate, malate, and
fumarate (Herlemann et al., 2009). This could proceed in the
oxidative direction, with fumarate (such as generated as a
byproduct of arginine synthesis) converted to oxaloacetate and
used for gluconeogenesis (van Vugt-Lussenburg et al., 2009).
Alternatively, this left branch may operate in the reductive
direction, and be initiated by PEP carboxykinase (Herlemann
et al., 2009); the subsequent reduction of oxaloacetate to fumarate
would provide redox balance to the oxidative branch (Meléndez-
Hevia et al., 1996). The “horseshoe-type” TCA cycle has no energy
conservation function but serves solely for biosynthesis (Wood
et al., 2004). The carbon skeleton 2-oxoglutarate is required
for ammonia assimilation, and all 14 MAGs encode enzymes
for this process (Supplementary Tables S5, S6). However,
the fate of fumarate in Omnitrophota is unclear; there is
no identifiable fumarate reductase (for anaerobic respiration),
fumarate-adding enzymes (for hydrocarbon degradation), or
aspartase (for synthesis of aspartate directly from fumarate) in
any of the 14 Omnitrophota MAGs.

Although autotrophic pathways have been inferred in other
Omnitrophota (Rinke et al., 2013; Kolinko et al., 2016)
(see section “Cloacimonadota and Omnitrophota in the Ace
Lake Ecosystem”), the Ace Lake Omnitrophota appear to be
obligate heterotrophs. Ca. Gorgyraea encodes WL pathway genes
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FIGURE 4 | Metabolic capacity of Omnitrophota. Metabolic capacities inferred from MAGs for (A) Candidatus Gorgyraea and (B) Candidatus Tantalella. ABC,
ATP-binding cassette transport system; Dfr, desulfoferrodoxin; Feo, ferrous iron transporter; Foc, formate transporter; GH, glycoside hydrolase; HppA,
pyrophosphate-energized sodium pump; Mbh, membrane-bound [NiFe] hydrogenase; Mrp, multicomponent Na+:H+ antiporter; Msm, multiple sugar ABC
transporter; Opp, oligopeptide ABC transporter; PEP, phosphoenolpyruvate; Rnf, ferredoxin:NAD+-oxidoreductase complex; Shy, sulfhydrogenase.

(Table 2, Figure 4A, and Supplementary Table S5), but in the
absence of rTCA cycle genes that link acetyl-CoA to central
biosynthetic pathways (Youssef et al., 2019), we infer that the WL
pathway does not function in autotrophic CO2 fixation. Instead,
we propose that the WL pathway, in combination with the Rnf
complex, functions in the reductive direction as an electron sink
during homoacetogenic glucose fermentation, to maintain redox
balance (Schuchmann and Müller, 2016; Youssef et al., 2019).

Overall, we infer only minor differences in the metabolic
strategies among the 14 Ace Lake Omnitrophota MAGs
(e.g., ability to catabolize glycerol, alcohol, or certain sugars;
mechanisms for redox balance) (Table 2). Thus, all 11
Omnitrophota genera described here appear to conform to the
same metabolic template: fermentative heterotrophs capable of
degradation of a narrow range of organic compounds (especially
simple sugars), with a hydrogenase for redox balance. The
biosynthetic potential of the Ace Lake Omnitrophota MAGs are
impressive, with the genomic capacity to synthesize nucleosides,
fatty acids, the majority of proteinogenic amino acids, and
essential cofactors (Supplementary Table S5).

Cloacimonadota and Omnitrophota in
the Ace Lake Ecosystem
Although the ecophysiology of Ace Lake Cloacimonadota
broadly agree with the fermentative, heterotrophic generalists
inferred for members of this phylum from the Black Sea

(Suominen et al., 2021), we infer a number of traits in
certain Ace Lake Cloacimonadota that have not been previously
reported for this candidate phylum. These include the presence
of an extracellular cellulosome-like structure for the binding
and degradation of biopolymers, PGA synthesis, a halomucin-
like protein, and a chemolithoautotrophic pathway for carbon
fixation via the rTCA cycle, fueled by oxidation of H2 or sulfur
compounds. These abilities attest to the physical and metabolic
diversity of the Cloacimonadota, and emphasize the potential
importance of this group in cycling of carbon, hydrogen, and
sulfur in Ace Lake.

Chlorobium, which is the dominant organism in Ace Lake, also
employs the rTCA cycle; this anaerobic photoautotroph grows at
the limits of the penetration of photosynthetically active radiation
at the oxic–anoxic interface (Panwar et al., 2020; Figure 5). As a
consequence, the abundance of Chlorobium in this lake system is
dictated by the polar light cycle, with a peak relative abundance
of 83% at the interface in summer, and a marked decline in
winter (6%) to spring (1%) (Panwar et al., 2020). Chlorobium is
not metabolically active in the perennially dark anoxic zone of
Ace Lake, and sinks to the bottom as particulate matter (Rankin
et al., 1999; Lauro et al., 2011; Panwar et al., 2020). By contrast,
light-independent, facultative chemolithoautotrophs, including
the Ace Lake Cloacimonadota, would not be directly impacted
by the marked seasonal variation in light availability. Although
Cloacimonadota were most abundant in the deepest part of the
anoxic zone of Ace Lake, they were detected throughout the
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FIGURE 5 | Depiction of the most abundant bacteria and archaea in Ace Lake in the austral summer. Sulfur and hydrogen cycles are emphasized. Sizes of the
ellipses that represent individual clades are approximately proportional to their peak relative abundance in the lake (Panwar et al., 2020), with Chlorobium (Chlorobia)
the most abundant and Synechococcus (Cyanobacteria) the second most abundant. Chlorobium marks the oxic–anoxic interface of the lake. The candidate phyla
Cloacimonadota and Omnitrophota are highlighted. Different taxa within candidate phylum Cloacimonadota are inferred to be capable of hydrogen and sulfur
oxidation for chemolithoautotrophic growth; hydrogen is produced during heterotrophic growth. All taxa within the Omnitrophota candidate phylum are inferred to
generate hydrogen, but only some are inferred to generate sulfide. Animal and plant silhouettes are courtesy of PhyloPic (http://phylopic.org/).

anoxic zone, as well as at the interface (Panwar et al., 2020).
For those Cloacimonadota that we infer to use H2 oxidation for
carbon fixation (Ca. Celaenobacter), Chlorobium is potentially
a major source of H2, as a byproduct of nitrogen fixation by

a membrane-bound nitrogenase (Lauro et al., 2011; Panwar
et al., 2020). There are other bacteria present throughout the
anoxic zone of Ace Lake that have been inferred to be H2-
evolving obligate anaerobes; aside from Omnitrophota, these
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include members of Bacteroidia, Firmicutes, and Atribacterota
(Panwar et al., 2020). The cyanobacterium Synechococcus, the
most abundant phototrophic bacterium in the oxic zone of
Ace Lake, was also abundant in the interface and anoxic zone,
and previously inferred to be capable of fermentation coupled
to H2 production (Panwar et al., 2020); thus, Synechococcus is
also a potential source of H2 for H2-oxidizing Cloacimonadota.
For those Ace Lake Cloacimonadota that we infer to rely on
sulfur oxidation for carbon fixation (Ca. Tenebribacter and Ca.
Stygibacter), Chlorobium cells could be a source of elemental
sulfur and polysulfide, as intermediates in sulfide oxidation
(Marnocha et al., 2016), whereas thiosulfate is likely generated
from the chemical reaction of sulfide (such as those generated
by sulfate-reducing Desulfobacterota) with dissolved oxygen
(Kondo et al., 2000). However, unlike sulfate-reducing and sulfur-
disproportionating Desulfobacterota in Ace Lake, which were
previously inferred to be metabolically linked to Chlorobium via
sulfur cycling (Lauro et al., 2011; Panwar et al., 2020; Figure 5),
no seasonal variation was observed for Cloacimonadota in Ace
Lake. Although Cloacimonadota and Omnitrophota in Ace Lake
are inferred to be obligate anaerobes, both are found in the
oxic–anoxic interface; the MAGs encode mechanisms to help
protect against oxidative stress (e.g., desulfoferrodoxin in both
phyla, catalase in Cloacimonadota), allowing survival at minimal
oxygen concentrations (Pelletier et al., 2008). Thus, we infer
that these anaerobes are aerotolerant, as previously inferred for
Chlorobium in Ace Lake (Ng et al., 2010).

During heterotrophic growth, the anaerobic degradation of
hexoses to acetate, CO2, and H2 does not yield sufficient energy
to support growth unless H2 levels are sufficiently low (Thauer
et al., 1977; Schink, 1997; Morris et al., 2013). Acetate and
H2 would be beneficial to hydrogenotrophic and acetoclastic
methanogens (Euryarchaeota), which, like Cloacimonadota, are
most abundant in the deepest waters of Ace Lake (Panwar
et al., 2020; Figure 5); as such, we posit that Cloacimonadota
and methanogens may be metabolically linked. The extracellular
GHs and peptidases, including the extracellular cellulosome-like
structure inferred for the Cloacimonadota genus Ca. Stygibacter,
suggest that Cloacimonadota are among the “first responders” in
deconstructing and assimilating recalcitrant particulate organic
matter, including microbial aggregates that sink to the bottom
from higher in the water column (Rankin et al., 1999; Lauro et al.,
2011).

All the Ace Lake Omnitrophota MAGs appear to be
obligate heterotrophs, with no evidence of autotrophic capacity.
Furthermore, these anaerobes appear to be dependent on
hydrogenotrophic microbes to consume H2 released via
anaerobic glucose fermentation. In Ace Lake, Omnitrophota
were most abundant at the oxic–anoxic interface and the water
column immediately below the interface, the depths at which
sulfate-reducing and sulfur-disproportionating Desulfobacterota
were also most abundant (Panwar et al., 2020; Figure 5). These
Desulfobacterota encode H2-uptake hydrogenases (Panwar et al.,
2020), and would therefore be capable of consuming H2.

The ability to infer the ecophysiology of the members of
Cloacimonadota and Omnitrophota emphasizes the importance
of having metagenome data and accompanying analyses detailing

the metabolisms of numerous other members of the microbial
community (Ng et al., 2010; Lauro et al., 2011; Panwar et al.,
2020). Here, we added to the understanding of the system by
analyzing a total of 24 MAGs for these “microbial dark matter”
lineages. Both of these candidate phyla are predicted to engage
in metabolic associations with other Ace Lake microorganisms.
The specific involvement of hydrogen is noteworthy in view
of hydrogen cycling being previously identified as pivotal to
multiple nutrient cycles in Ace Lake (Panwar et al., 2020),
as well as being increasingly recognized as important to
ecosystem function in global anoxic and oxic environments
(Greening et al., 2016).
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