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PLATE-Seq for genome-wide regulatory network
analysis of high-throughput screens
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Andrea Califano1,2,4,5 & Peter A. Sims 1,2,4

Pharmacological and functional genomic screens play an essential role in the discovery and

characterization of therapeutic targets and associated pharmacological inhibitors. Although

these screens affect thousands of gene products, the typical readout is based on low

complexity rather than genome-wide assays. To address this limitation, we introduce pooled

library amplification for transcriptome expression (PLATE-Seq), a low-cost, genome-wide

mRNA profiling methodology specifically designed to complement high-throughput screening

assays. Introduction of sample-specific barcodes during reverse transcription supports pooled

library construction and low-depth sequencing that is 10- to 20-fold less expensive than

conventional RNA-Seq. The use of network-based algorithms to infer protein activity from

PLATE-Seq data results in comparable reproducibility to 30M read sequencing. Indeed,

PLATE-Seq reproducibility compares favorably to other large-scale perturbational profiling

studies such as the connectivity map and library of integrated network-based cellular

signatures.
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H igh-throughput screening (HTS) represents a key com-
ponent of drug discovery and a critical technology used
throughout biomedical research1, 2. Due to cost and

complexity, however, most screens are still performed using
low-complexity reporters, such as cell viability, inhibition of
specific enzymes, binding affinity, protein-protein interactions,
mitochondrial respiration, and cell growth. In contrast, there is
increasing interest in coupling HTS with genome-wide reporters,
which may provide a more comprehensive portrait of drug
activity2–4.

Indeed, a key advantage of genome-wide reporters is their
more universal nature; specifically, the ability to test hypotheses
that may not have been considered at the time of assay devel-
opment. For instance, the same data from gene expression
profiling of cellular perturbations have been used effectively to
predict compound mechanism-of-action (MoA)5–7 and sensitiv-
ity in specific cellular contexts8, as well as to identify synergistic
drug combinations9, 10, compounds with similar MoA11, and
candidates for drug repositioning7. Indeed, when incorporated in
an HTS setting, genome-wide profiles can report on virtually any
genes or pathways of interest, without requiring an a priori
commitment.

Unfortunately, due to their relatively high cost and labor-
intensive nature, genome-wide expression profiles have not been
incorporated as primary reporters in HTS campaigns. A few
exceptions, such as connectivity map (CMap)2, represent proof-
of-concept studies rather than scalable approaches and have
either been restricted to a handful of cell lines or replaced
by methodologies that report on a limited number of genes
(e.g., Luminex L1000 reporters)3.

To address this challenge, we introduce a new approach that
combines a highly scalable and multiplexed RNA-Seq protocol
(PLATE-Seq) with regulatory network analysis. Collectively, this
integrative and fully automated pipeline allows accurate, repro-
ducible characterization of the proteins, whose activity is affected
by a library of bioactive compounds. The proposed approach
involves two key concepts: (a) a strategy for barcoding and
pooling cDNA libraries to substantially reduce the cost and
complexity of multi-sample RNA-Seq and (b) the use of network-
based algorithms for the highly reproducible inference of protein
activity from low-depth RNA-Seq profiles (0.5–2M reads). Taken
together, this combination supports a >tenfold cost reduction
with virtually no reduction in assay accuracy and reproducibility,
compared to standard depth (30M read) sequencing. This
translates into a dramatic increase in gene reporter dimension-
ality for HTS applications—from a few observables to a genome-
wide repertoire—at a total reagent cost of ~$15 per sample.

Results
PLATE-Seq technology. Recent advances in multiplexed and
single-cell RNA-Seq have led to significant increases in cost
effectiveness and scalability of gene expression profiling12–17.
These methodologies introduce sample-specific sequence bar-
codes into cDNA prior to library construction, allowing early
pooling of cDNA from many samples and a proportional
decrease in reagent and labor costs. They are also optimally suited
to automation, allowing straightforward integration into HTS
pipelines for analysis of RNAi or small molecule perturbations in
a multi-well format. Here we use automated liquid handling to
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Fig. 1 Schematic illustration of PLATE-Seq workflow. a After conducting a screen in multi-well plates, we lyse the cells and capture mRNA from the cell
lysate using an oligo(dT)-coated capture plate. The purified mRNA is then reverse transcribed with barcoded, adapter-linked olig(dT) primers and the
resulting cDNA is pooled. All of these steps are automated. The remaining steps, which take place on a single pooled sample, are conducted manually and
include cDNA purification, second-strand synthesis, and PCR enrichment. b Molecular-level schematic for constructing 3′-end PLATE-Seq libraries. After
reverse transcription with oligo(dT), second-strand synthesis of the pooled cDNA is accomplished using random hexamer primers prior to PCR enrichment
of the barcoded pool
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introduce lysis buffer, capture polyadenylated mRNA with an
oligo(dT)-grafted plate, and deliver well-specific, barcoded oligo
(dT) primers to every sample in a multi-well plate (Fig. 1a). After
reverse transcription, the cDNA in each well contains a specific
barcode sequence on its 5′ end and a common adapter, such that
all samples can be combined into a single pool for purification

and concentration. We then use Klenow large fragment for
pooled second-strand synthesis from adapter-linked random
primers. Because this polymerase lacks strand displacement and
5′ to 3′ exonuclease activities, each cDNA molecule produces at
most, one second-strand synthesis product containing the sample
barcode (Fig. 1b). Finally, the pooled library is enriched in a single
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Fig. 2 PLATE-Seq performance. a Histogram of genes symbols detected per sample for a 96-well PLATE-Seq experiment in BT20 cells. b Histogram of
uniquely mapped reads per sample for the experiment in a. c We pooled half of the sample from every six wells for conventional RNA-Seq with 30M raw
reads (Illumina TruSeq). Here we show a histogram of gene symbols detected per sample for each six-well TruSeq pool and for the sum of the
corresponding six PLATE-Seq samples. d Same as c for uniquely mapped reads per sample. e Gene detection saturation curve for PLATE-Seq samples
based on random subsampling. The points represent the average over all 96 wells and the error bars are deviations s.e.m. f Same as e but for each six-well
TruSeq pool and for the sum of the corresponding six PLATE-Seq samples. g MDS clustering of PLATE-Seq and TruSeq samples based on differentially
expressed genes identifying using the PLATE-Seq replicates for each drug compared to vehicle control samples. The PLATE-Seq replicates for each drug
cluster together and also with the corresponding TruSeq samples. h Heat map showing the top 40 most differentially expressed genes based on PLATE-Seq
of mitoxantrone- and idarubicin-treated BT20 cells measured with both PLATE-Seq and TruSeq. The two drugs are both topoisomerase II inhibitors and
have similar gene expression signatures. i Same as h but with differentially active proteins as inferred using VIPER. Note that TOP2A, the gene that encodes
the target of the two drugs, is strongly deactivated. j Gene expression of differentially active proteins inferred using VIPER. Most of these genes are not
differentially expressed and some are difficult to detect with PLATE-Seq, yet VIPER can still infer their activities
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PCR prior to sequencing. The resulting libraries represent the
3′ ends of mRNAs and are sequenced to a depth of 0.5–2M raw
reads per sample.

PLATE-Seq performance. To characterize the performance of
PLATE-Seq, we conducted a fully automated, 96-well screen to
profile BT20 breast cancer cells following treatment with seven
well-characterized small-molecule perturbagens (plus DMSO
controls) and 12 replicates per condition. Figure 2a, b shows the
detected gene and uniquely mapped read distributions across the
96-well plate samples, respectively. On average, we detected
~10,200 genes per sample from ~670,000 uniquely mapped
reads from ~10,000 cells per well. To compare PLATE-Seq to
conventional RNA-Seq, we processed some of the replicates using
the Illumina TruSeq protocol, to a standard depth of ~30M reads
per sample. Critically, TruSeq required pooling six samples to
meet the minimum cDNA input requirements.

Figure 2c, d shows the detected gene and uniquely mapped
read distributions for both TruSeq and PLATE-Seq samples,
normalized to the same number of wells by pooling data from the
six PLATE-Seq replicates. Figure 2e, f shows the saturation
behaviors of individual PLATE-Seq wells, TruSeq samples, and
aggregate PLATE-Seq data pools equivalent to the TruSeq
replicate pools. Analysis of data pooled from six single-well
PLATE-Seq profiles detected >75% of the genes that had been
detected in the same number of replicates by TruSeq, albeit with
sixfold fewer reads. We also compared the relative efficiencies of
conventional column isolation and oligo(dT) bead-based pur-
ification of mRNA and the oligo(dT) plate-based purification
used here. Not only does the plate-based purification offer
significant advantages in terms of automation, the gene detection
efficiencies and saturation behaviors of the resulting libraries
from the two methods are essentially identical (Supplementary
Fig. 3).

We also investigated whether the gene expression signatures
associated with each drug were comparable between the two
methods. We used DESeq2 (ref. 18) to identify differentially
expressed genes (q< 0.05) between each set of drug-treated and
vehicle-control replicates measured by PLATE-Seq and projected
a matrix of fold changes computed from both PLATE-Seq and
TruSeq across these genes using multidimensional scaling
(Fig. 2g). As expected, replicates associated with distinct drug
treatments cluster together, consistent with their tissue-specific
activity and independent of profiling technology. For instance,
drugs such as aprepitant, gemcitabine, and albendazole, which
had minimal effects on BT20 cells, were clustered together. In
contrast, strongly bioactive drugs, such as crizotinib and
bortezomib, produced distinct but highly reproducible and
technology-independent clusters. Drugs with similar MoA, such
as the topoisomerase II inhibitors mitoxantrone and idarubicin,
clustered together. Finally, we performed gene set enrichment
analysis (GSEA) of significantly altered genes detected by PLATE-
Seq in the TruSeq differential expression analysis. For all gene
sets, we found highly significant enrichment of the PLATE-Seq
genes in the appropriate direction (Supplementary Fig. 1). Hence,
both PLATE-Seq and conventional RNA-Seq produce compar-
able gene expression signatures following drug perturbation.

In Alvarez et al.19, we showed that assessing protein activity
from gene expression profiles using VIPER is highly robust to
low-depth sequencing. Indeed, unlike gene expression profiles,
whose correlation degraded rapidly with decreasing sequencing
depth, Spearman’s correlation of VIPER-inferred activity profiles
was virtually unaffected between 0.1 and 30M reads19. This is
because VIPER infers protein activity from expression of its
tissue-specific transcriptional targets, as identified by the
ARACNe algorithm. Thus, VIPER integrates dozens to hundreds
of gene expression measurements to infer activity of a single
protein, effectively averaging out noise resulting from low-depth
sequencing19.
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Protein activity inference with PLATE-Seq. To demonstrate the
practical utility of this theoretical advantage when using
low-depth PLATE-Seq assays, we used VIPER to compute
differential activity of ~6000 regulatory proteins, including ~2000
transcription factors and ~4000 signaling proteins, following
treatment with the topoisomerase II inhibitors mitoxantrone and
idarubicin19. Figure 2h shows the gene expression signatures of
the top 40 genes most differentially expressed following pertur-
bation by either drug, based on PLATE-Seq. As expected from
Fig. 2g, there is excellent agreement between PLATE-Seq and
TruSeq. To identify key regulatory proteins responsible for the
pharmacological effects of these two drugs and thus comprising
their MoAs, we analyzed both the PLATE-Seq and the TruSeq
profiles with VIPER. We used our recently published breast
cancer-specific gene regulatory network19 generated by ARACNe
analysis20, 21 of gene expression profiles from the breast cancer
cohort collected by The Cancer Genome Atlas consortium22.
Figure 2i shows the top 40 most differentially activated proteins
following mitoxantrone or idarubicin treatment, based on
PLATE-Seq. Critically, VIPER-inferred protein activity was
highly reproducible across PLATE-Seq and TruSeq samples
(see Supplementary Fig. 2 for GSEA). Furthermore, TOP2A, the
gene that encodes the target of both drugs, was among the most
deactivated regulatory proteins by VIPER analysis, along with
several other key cell cycle control proteins (e.g., CEPNF,
FOXM1, CCNA2, BUB1B, and CENPK). Finally, Fig. 2j shows
the gene expression signatures associated with these top 40 dif-
ferentially active proteins. Consistent with previous studies19, 23, 24,
many of these proteins, including cell cycle regulators, that play
an important role in the MoA of these drugs, such as FOXM1,
CCNA2, and TOP2A, are not among the top 40 most differen-
tially expressed genes. This effectively demonstrates that the
combination of PLATE-Seq and VIPER analysis produces dif-
ferential protein activity profiles that are remarkably robust,
independent of the low-sequencing depth.

Comparison of PLATE-Seq to CMap and LINCS. Previous
efforts have attempted to elucidate MoA based on gene expres-
sion alterations in cell lines2, 7. CMap represents a first seminal
attempt at this approach based on microarray profiling of cell
lines treated with several hundred compounds2. To increase
scalability, library of integrated network-based cellular signatures
(LINCS) implemented the Luminex L1000, which reports on
~1000 representative markers from which broader expression
profiles could be computationally inferred3, 25. However, these
two data sets, which represent the current state-of-the-art, require
a trade-off between cost/efficiency and coverage. Therefore, we
reasoned that PLATE-Seq might provide a solution to this trade-
off by supporting a genome-wide reporter assay while leveraging
the broader dynamic range of RNA-Seq compared to microarrays
and the ability to profile >tenfold more genes than the L1000 at a
comparable cost.

To compare PLATE-Seq to these technologies, we conducted a
4 × 96-well screen with 184 clinically relevant compounds plus
vehicle controls (Supplementary Table 1) in U87 cells in
duplicate. We then systematically compared the gene-level noise
distribution we obtained to those of the CMap and LINCS/L1000
data sets. Figure 3a–c shows how the average coefficients of
variation across replicates vary with average expression level for
PLATE-Seq in comparison to CMap data obtained with the
GPL3921 microarray platform, CMap with the GPL96 platform,
and LINCS/L1000, respectively. Similarly, Fig. 3d–f shows the
overall distributions of average coefficients of variation for these
same comparisons. Despite the significantly lower costs asso-
ciated with PLATE-Seq, we obtain comparable noise distributions

to CMap. In addition, we point out that although the noise in the
LINCS data set is twofold lower than in the PLATE-Seq screen
(for duplicates taken from GSE70138), measurements are only
made for 978 genes (>tenfold fewer than in PLATE-Seq, which is
a genome-wide measurement). We also show that the dynamic
range for signal in PLATE-Seq is comparable to these alternative
methods by calculating the fold-change distribution across each
expression measurement and perturbation relative to vehicle
controls (Supplementary Fig. 4). Hence, PLATE-Seq compares
favorably to previous approaches and may offer an effective,
low-cost platform for assessing compound MoA similarity.

Discussion
Small molecule perturbations induce complex, cell-context-
specific alterations that ultimately affect thousands of genes.
This challenges the use of low-complexity reporter assays in HTS
to elucidate MoA. In contrast, RNA-Seq represents a high-
dimensional assay that is particularly well suited for compound
MoA elucidation19, 26, similarity analysis2, 7, and synergy analy-
sis9 especially when using network-based methods that may
pinpoint the key regulatory targets and effectors. However,
conventional RNA-Seq involves independent library construction
for each sample and deep sequencing, making its application to
HTS prohibitively expensive and poorly suited to automation. For
instance, at an average cost of $300 per profile, screening a library
of ~4000 compounds across two time points, concentrations, and
replicates would cost ~$10M in reagents. However, when com-
bined with automated, pooled library preparation and the tenfold
reduction in sequencing depth made possible by leveraging
VIPER, the reagent cost for the same 4000-compound campaign
would be less than $0.5 M, a 20-fold reduction.

A possible limitation of the approach is its dependence on
regulon quality for accurate inference of protein activity. Using
large-scale benchmarks, we have shown that differential activity is
accurately predicted for >70% of transcriptional regulators and
~60% of signaling proteins19. However, if specific proteins of
interest are poorly characterized in the assay, ad hoc regulons can
be generated by combining DNA-binding assays and expression
profiles following perturbation27. In addition, as computational
reverse engineering methods improve, accuracy of protein activity
inference will increase. In this case, data from previous screens
can simply be re-analyzed using the improved models to produce
more accurate and extensive protein-activity profile coverage,
thus avoiding obsolescence of PLATE-Seq data sets.

We expect PLATE-Seq to have broad pharmacological appli-
cations, including elucidation of compound MoA and synergy,
support for drug re-positioning, and precision medicine
approaches where MoA is matched to patient-specific disease
dependencies. Finally, while we focused mainly on drug screen-
ing, PLATE-Seq is equally amenable to RNAi, CRISPR-Cas9, and
cDNA screening assays. This highly scalable and economical
approach integrates HTS with high-dimensional analysis of RNA
expression and protein activity, revealing the connections
between cellular perturbations and genome-wide regulatory
interactions.

Methods
Cell culture and drug perturbation assays. BT20 epithelial breast carcinoma cells
were cultured in white 96-well tissue culture-treated plates (Greiner 655083) at a
starting density of 8000 cells per well in 100 μl of eagle’s minimum essential
medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin. After 24 h of incubation, the plates were treated with drugs. Each
drug was dosed at the concentration at which the cells were 80% viable after 48 h of
treatment. After 6 h of treatment, the medium was replaced with 100 ml of FBS
supplemented with 10% DMSO and the plates were frozen at −80 °C prior to
PLATE-Seq. After thawing for PLATE-Seq, cells were washed twice with
phosphate-buffered saline (PBS) prior to lysis.
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Automated PLATE-Seq. Cells are lysed for PLATE-Seq in Buffer TCL (Qiagen)
supplemented with 2-mercaptoethanol in 96-well plates. We transfer 30 μl of cell
lysate from each well to a 96-well plate with oligo(dT) grafted to the wells (mRNA
TurboCapture Plate, Qiagen) and added 1 μl of 1:100 dilution of ERCC Ex-Fold
Spike-Ins (ThermoFisher) to a subset of the sample wells. The plate is then
centrifuged at 295 × g for 1 min to eliminate air bubbles followed by incubation for
90 min at room temperature with shaking at 200 rpm. Lystate is then removed
from the oligo(dT) capture plate and wells are washed three times with Buffer
TCW (Qiagen) using the 96 CO-RE Head of a Hamilton Microlab STAR auto-
mated liquid handling system. After drying the plate, mRNA is then eluted by
adding 30 μl of elution buffer (nuclease-free water supplemented with 0.4 U μl−1
SUPERaseIN (ThermoFisher)), incubation at 65 °C for 5 min, and incubation at
room temperature for 5 min. mRNA samples are then transferred to a new PCR
plate (Hard-Shell PCR plate, 96-well, Bio-Rad) using sterile-filter 96-well, 50 μl tips
on the Hamilton STAR.

To anneal primers for reverse transcription, 3 μl of 100 μM adapter-linked oligo
(dT) primers are added to each well along with 10 μl of 5× ProtoScript RT Buffer
(New England BioLabs) with the Hamilton STAR CO-RE Head and 1000 μl
channel pipetting system (see Supplementary Table 2 for “PLATEseq_oligodTBC”
sequences). The plate is then heated to 94 °C for 2 min and placed immediately on
ice for 5 min. The remaining components of the reverse transcription master mix
including 0.5 mM of each dNTP, 10 mM DTT, 35.8 U of Protoscript II Reverse
Transcriptase (New England BioLabs), and water are then added to bring the final
reaction volume to 50 μl per well. The plate is then centrifuged at 295 × g for 1 min
and incubated at 42 °C for 2 h. At this point, the samples can optionally be frozen
at −80 °C.

To remove excess primer, 1 μl of a fourfold dilution of Exonuclease I
(New England BioLabs) is added to each sample. The Exonculease I reaction is
incubated at 25 °C for 1 h. To hydrolyze the RNA, we add 20 μl of a 1:1 mixture of
1M sodium hydroxide and 0.5 M EDTA to each well and incubate at 65 °C for
15 min. The wells are then pooled together into a single tube to which 80 μl of
12M hydrochloric acid are added to neutralize the sample. At this point, the
pooled sample can optionally be frozen at −80 °C.

The pooled, neutralized sample is purified and concentrated using a Qiagen
MinElute column using a vacuum apparatus according to the manufacturer’s
instructions, and pooled cDNA is eluted in 15 μl of nuclease-free water. For
second-strand synthesis, 1 μl of 10 mM dNTP mixture and 1 μl of 100 mM adapter-
linked random hexamer primers are added to the pooled cDNA sample (see
Supplementary Table 2 for “PLATEseq_second_strand” primer sequence). The
mixture is then heated to 70 °C for 2 min and immediately placed on ice for 5 min.
Next, 2 μl of NEB Buffer 2 (New England BioLabs) and 1 μl of Klenow large
fragment DNA polymerase (New England BioLabs) are added and the reaction is
incubated at room temperature for 30 min. The reaction is then stopped by
addition of EDTA to a final concentration of 50 μM the double-stranded cDNA is
purified with two rounds of bead clean-up using AMPure XP beads (Beckman
Counter) at a 1:1 bead-to-sample ratio. Finally, the double-stranded cDNA pool is
amplified by PCR using Phusion DNA Polymerase (New England BioLabs) with
0.5 μM Illumina RP1 primer and Illumina RPIx primer (where x is a number
indicating the Illumina index). The thermocycling protocol begins with 98 °C for
30 s followed by 10–12 cycles of 98 °C for 15 s, 62 °C for 15 s, and 72 °C for 60 s
followed by a 7-min incubation at 72 °C.

Samples are sequenced on an Illumina NextSeq 500 sequencer using 75 cycle
version 2 sequencing kits. Custom sequencing primers were used at a final
concentration of 300 nM. Read 1 comprises 26 cycles and read 2 comprises either
60 or 66 cycles depending upon whether or not an index read is included. In each
experiment, 20–30% PhiX library is added to the sample, which is clustered at a
final concentration of 1.6 pM.

Comparison of PLATE-Seq to conventional RNA-Seq. To compare PLATE-Seq
and conventional RNA-Seq, we conducted a small-scale screen in a single 96-well
plate. We treated each well containing cultured BT20 cells with one of seven
compounds or DMSO (vehicle), including mitoxantrone, crizotinib, albendazole,
idarubicin, aprepitant, gemcitabine, and bortezomib, with 12 replicate wells for
each condition. Half of the material in each well was allocated to PLATE-Seq, and
96 libraries were constructed using the automated, pooled procedure described
above. For the other half, we pooled two sets of six wells for each condition to
generate 16 samples in total (two replicates for each condition). We then extracted
total RNA from each pool using an RNeasy column (Qiagen) and subjected the
total RNA to Illumina TruSeq poly(A) + RNA-Seq library construction according
to the manufacturer’s instructions. The resulting 16 RNA-Seq libraries were then
sequenced to a depth of ~30M raw, 100-base single-end reads on an Illumina
HiSeq 2500 sequencer.

PLATE-Seq performance with conventional mRNA isolation. LnCAP human
prostate adenocarcinoma cells were plated on a 96-well tissue culture treated plate
(Greiner #655083) at a starting density of 10,000 cells per well in 100 μl of medium
(RPMI1640 supplemented with 10% FBS). After 24 h of incubation, the medium
was removed and cells were lysed in 30 μl of Buffer TCL (Qiagen) with 1%
β-mercaptoethanol. A measure of 15 μl of this lysate was transferred to a new plate
and used for automated PLATE-Seq; the remaining 15 μl of lysate in each well was

mixed with 135 μl of Buffer RLT (Qiagen). A measure of 150 μl of 70% ethanol was
added to each well in this plate and all 300 μl was transferred onto the RNeasy 96
filter plate (Qiagen) for total RNA extraction according to the manufacturer’s
instructions, including DNase digestion. The first elution from the columns was in
50 μl of RNase-free water, and the second elution was in 45 μl of RNase-free water.

RNA Purification Beads (Illumina) were used to isolate poly(A)-containing
mRNA molecules. Beads were warmed to room temperature and washed three
times with lysis/binding buffer (20 mM Tris-HCl, pH 7.5, 500 mM LiCl, 0.5% LiDS,
1 mM EDTA, 5 mM DTT) and re-suspended in the original starting volume with
lysis/binding buffer. We then added 50 μl of washed beads to each well of eluted
RNA from above and followed the manufacturer’s protocol (Illumina TruSeq
Stranded mRNA Sample Preparation Guide). Instead of using Illumina’s Fragment,
Prime, Finish Mix, we eluted mRNA from the beads with 16.5 μl of Elution
solution (20 mM Tris-HCl pH 7.5, 1 mM EDTA). A measure of 1 μl of 1:5000
diluted ERCC Ex-Fold Spike-Ins (ThermoFisher) was added to half of the sample
wells. We used this as input for the automated PLATE-Seq protocol, beginning
with the addition of 5× Protoscript RT Buffer and 1.5 μl of 100 μM adapter-linked,
barcoded oligo(dT) primers to each well.

PLATE-Seq data processing. PLATE-Seq data comprise sets of two paired-end
reads. The first read contains an eight-base barcode sequence that identifies the well
from which a given sample originates. The second read contains a sequence that
typically maps strand specifically to the 3′ end of an mRNA transcript. We first
record the barcode sequence associated with each read. The barcode sequences are
designed so that a single error can be corrected, and so we allow an edit distance of
one from the actual barcode sequences. Next, we use the bwa-mem aligner to map
the set of second reads to a pre-assembled human transcriptome (hg19, UCSC
known genes). We then demultiplex the resulting alignments and count the
number of uniquely mapped reads associated with each gene. We define a read as
uniquely mapped if the maximum alignment score among alignments that map to
the correct strand is associated with a single gene.

Gene expression analysis from PLATE-Seq. The differential expression analysis
shown in Fig. 2i was conducted using DESeq2 using a negative binomial model18.
Differentially expressed genes (q < 0.05) from all comparisons of drug-treated vs.
vehicle control samples were identified exclusively from the PLATE-Seq data. A
log-scale fold-change matrix was then generated for this set of differentially
expressed genes across all PLATE-Seq and TruSeq samples and clustered using
multidimensional scaling (MDS) with Euclidean distance as implemented in
MATLAB.

For all other analyses, gene expression signatures for drug perturbations were
obtained by first variance stabilizing the raw read counts with DESeq2 (ref. 18) and
then subtracting the mean vehicle control expression level from the perturbation
expression levels.

Regulatory network analysis from PLATE-Seq. Gene expression signatures were
computed for each individual sample by first variance stabilizing the gene
expression data with the DESeq package, and then subtracting the average of the
vehicle control samples from each drug treatment profile. Relative protein activity
was inferred from the single-sample gene expression signatures using the VIPER
algorithm19.

Large-scale PLATE-Seq screen in U87 cells. U87 cells were plated in a 384-well
plate at 200,000 cells ml−1 in 20 μl of media for a final count of 4000 cells per well.
After 24 h, the Labcyte Echo 550 Liquid Handling system was used to dispense
drugs at concentrations resulting in 20% growth inhibition (Supplementary
Table 1). After 24 h of drug treatment, media was removed and cells were washed
with PBS. Cells were then lysed in 20 μl of Buffer TCL (Qiagen) containing 1%
β-mercaptoethanol. Following the z-pattern of quadrants for a 384-well plate, 20 μl
of lysate from quadrant 1, and 20 μl of lysate from quadrant 3 were pooled into one
well of a 96-well TurboCapture plate (mRNA TurboCapture Plate, Qiagen) for a
total of 40 μl of lysate in each well during the mRNA capture step. Automated
PLATE-Seq was then followed as above. The resulting pooled libraries were
sequenced on an Illumina HiSeq 4000 using a 50-cycle SBS kit and a PE cluster kit.
Read 1 comprised 18 cycles and Read 2 comprised 50 cycles.

Comparison of PLATE-Seq screens to CMap and LINCS. In Fig. 3, we compare
the coefficient of variation (CV) between PLATE-Seq, CMap, and LINCS screening
data sets. For PLATE-Seq, we took our U87 screen (4 × 96 wells with 184 drugs
plus controls) data set and computed the CV and average expression for each gene
in each duplicate measurement. We then plotted the average CV vs. average
expression across all duplicates for each gene in Fig. 3a–c and distribution of these
same average CVs in Fig. 3d–f. For CMap, we took all duplicates from screens
conducted in MCF7 (processed average difference values available on the Gene
Expression Omnibus under accession GSE5258) and applied the same calculations
as we did for PLATE-Seq. We analyzed microarray data generated using the
GPL3921 and GPL96 platforms separately. Finally, we obtained the LINCS data set
from the Gene Expression Omnibus under accession GSE70138 (Level 2 data
corresponding to gene expression values for genes that were measured directly) for
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~26,000 randomly selected duplicates and applied the same calculation to the
~1000 genes measured directly on the L1000 platform. In Supplementary Fig. 4, we
compare PLATE-Seq, CMap, and LINCS in terms of the fold change in each gene
expression measurement across all perturbations relative to their respective vehicle
controls. We calculated these distributions using the same expression matrices that
we used for the CV comparisons.

Note on cells lines. We note that BT20 cells are on the ICLAC list of commonly
misidentified cell lines, but that the identity of a particular cell line is immaterial to
the conclusions of our technical assessment of PLATE-Seq. Nonetheless, the BT20,
U87, and LnCAP cell lines used these studies were all obtained from ATCC, which
authenticates the cell lines it provides by STR testing. Internally, we tested all of the
cell lines for mycoplasma prior to use.

Code availability. The VIPER algorithm is available at http://califano.c2b2.
columbia.edu/viper/.

Data availability. All of the raw and processed data associated with this study are
available at the Gene Expression Omnibus under accession GSE97460.

Received: 26 October 2016 Accepted: 5 June 2017
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