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Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of lung

cancer, including both non-small cell lung cancer and small cell lung cancer.

Despite the promising results of immunotherapies, ICI-related pneumonitis

(ICIP) is a potentially fatal adverse event. Therefore, early detection of patients at

risk for developing ICIP before the initiation of immunotherapy is critical for

alleviating future complications with early interventions and improving

treatment outcomes. In this study, we present the first reported work that

explores the potential of deep learning to predict patients who are at risk for

developing ICIP. To this end, we collected the pretreatment baseline CT images

and clinical information of 24 patients who developed ICIP after

immunotherapy and 24 control patients who did not. A multimodal deep

learning model was constructed based on 3D CT images and clinical data.

To enhance performance, we employed two-stage transfer learning by pre-

training the model sequentially on a large natural image dataset and a large CT

image dataset, as well as transfer learning. Extensive experiments were

conducted to verify the effectiveness of the key components used in our

method. Using five-fold cross-validation, our method accurately

distinguished ICIP patients from non-ICIP patients, with area under the

receiver operating characteristic curve of 0.918 and accuracy of 0.920. This

study demonstrates the promising potential of deep learning to identify patients

at risk for developing ICIP. The proposed deep learning model enables efficient

risk stratification, closemonitoring, and promptmanagement of ICIP, ultimately

leading to better treatment outcomes.
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1 Introduction

Since the first immune checkpoint inhibitor (ICI)

ipilimumab was approved by the Food and Drug

Administration for treating melanoma in 2011, ICIs have

become standard treatments for many cancers such as lung

cancer, renal cell carcinoma, Hodgkin lymphoma, and

hepatocellular carcinoma (Akinleye and Rasool, 2019; Xin Yu

et al., 2019; Robert, 2020; Vaddepally et al., 2020). Although ICIs

produce remarkable immune response by immune upregulation

and demonstrate improved cancer-related outcomes, they induce

a unique spectrum of toxicities, called immune-related adverse

events (irAEs) (Martins et al., 2019; Ramos-Casals et al., 2020).

These irAEs can occur in multiple organ systems, where

uncontrolled immune response is generated against healthy

tissue. Due to different organ systems affected, there are

various types of irAEs, including dermatitis, encephalitis,

uveitis, hepatitis, and pneumonitis. Among these, immune

checkpoint inhibitor-related pneumonitis (ICIP) is one of the

most concerned adverse events because it is potentially life-

threatening (Naidoo et al., 2017).

Lung cancer is the second most common cancer and the

leading cause of cancer death worldwide. ICIs have shown

significant clinical benefit in the treatment of advanced non-

small cell lung cancer (NSCLC) (Reck et al., 2016). The incidence

of ICIP in NSCLC is 4.1% as reported in a prospective study,

while some real-word studies outside of clinical trials report a

much higher incidence, ranging from 7% to 19% (Sears et al.,

2019; Atchley et al., 2021). The time to onset of ICIP can vary

from 9 days to 24.3 months after the initiation of

immunotherapy (Nishino et al., 2015; Naidoo et al., 2017),

with a median time of 52.5 days (Atchley et al., 2021). Most

patients with ICIP have high severity that requires

hospitalization, and about 27% of them die during the

treatment for ICIP (Atchley et al., 2021). Unfortunately, the

pathogenesis of ICIP has not been clearly elucidated. Possible risk

factors include prior thoracic radiotherapy, pulmonary

comorbidities, smoking status, and PD-1 inhibitors (Howell

et al., 2015; Delaunay et al., 2017; Khunger et al., 2017; Pillai

et al., 2018; Winer et al., 2018). However, it is challenging to

accurately predict ICIP based on these clinical risk factors. In

order to improve lung cancer treatment and outcomes, there is an

urgent need for early prediction of ICIP, which enables risk

stratification before starting immunotherapy and allows a close

monitoring of high-risk patients during treatment.

Radiomics is a rapidly evolving research area in personalized

precision medicine that aims to extract informative radiomic

features from medical images and relate these features to clinical

and biological endpoints. Computed tomography (CT) is

routinely used for diagnosing lung cancer and assessing

treatment response. CT-based quantitative radiomics

approaches have been successfully applied to various tasks,

such as lesion classification (Naidoo et al., 2017; Gitto et al.,

2021; Xu et al., 2021), prediction of prognosis and treatment

response (van Timmeren et al., 2017; Yang et al., 2019; Chetan

and Gleeson, 2021), and genotype-phenotype associations (Rios

Velazquez et al., 2017; Thawani et al., 2018; Zanfardino et al.,

2019; Wu et al., 2021). There are very few studies focusing on the

prediction of ICIP using radiomics. To the best of our knowledge,

we only found two closely related ones. The first study reported a

100% accuracy of classification based on baseline chest CT

images, but only two ICIP patients were enrolled (Colen et al.,

2018). Mu et al. (2020) performed a radiomics analysis of PET/

CT images to predict severe immune-related adverse events and

achieved an area under the receiver operating characteristic curve

(AUC) of 0.88 in a prospective validation cohort (Mu et al.,

2020).

Predicting ICIP by conventional radiomics methods has two

limitations regarding to the two steps in radiomics analysis

pipeline. Radiomics requires first the segmentation of region

of interest (ROI) and then the extraction of a fixed set of features

from ROI. The first limitation is that it is unclear what region in

pretreatment CT images should be used as ROI due to the lack of

guidance for regional predilection of pneumonitis. The second

limitation is that the predefined set of features may not be

optimal for the final prediction task. Recent studies have

demonstrated the excellent performance of deep learning

models in computer-aided diagnosis (Yu et al., 2020; Zheng

et al., 2020; Cheng et al., 2022b; Qian et al., 2022). Compared with

hand-crafted features, deep learning models can directly learn

discriminative features from images without prior segmentation

of ROI and thus may provide a better prediction of ICIP.

In this study, we aim to develop a deep learning model based

on clinical data and pretreatment chest CT images to predict the

risk of ICIP in lung cancer patients. To this end, we collect a

relatively large dataset consisting of ICIP and non-ICIP patients

and propose a deep learning model in which multimodal data,

two-stage transfer learning, and contrastive learning are used.

Extensive experiments are conducted to assess the performance

of different settings. The results demonstrate that the use of the

aforementioned three strategies is effective and achieves state-of-

the-art performance with an AUC of 0.918.

2 Materials and methods

2.1 Patients and data collection

This study was approved by the Ethics Committee of

Guangdong Provincial People’s Hospital, and the requirement

for informed consent was waived. Figure 1 shows the detailed

inclusion and exclusion criteria for preparing the patient cohort.

A total of 353 lung cancer patients were treated with ICIs between

January 2016 and December 2020 at our institute. We excluded

51 patients who received thoracic radiotherapy because

radiotherapy can induce radiation pneumonitis which is
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difficult to be distinguished from ICIP. Among the remaining

patients, 30 of them developed ICIP, resulting in an incidence of

8.50% which is comparable to the data reported in previous

studies (Sears et al., 2019; Atchley et al., 2021). We used the same

criteria in a previous study to define ICIP (Cheng et al., 2022a).

After excluding six patients who did not have CT scans before the

start of immunotherapy, we finally got 24 patients for the ICIP

dataset. To match the sample size of the ICIP dataset, we

randomly chose 24 patients who did not develop ICIP to

construct the control dataset, i.e., the non-ICIP dataset.

The collected chest CT images are within 6 months before

the start of immunotherapy, which were produced by two

different scanners, Philips iCT 256 and Philips ingenuity CT.

Thoracic CT scans containing the whole lung were analyzed

using a multi-slice helical technique at 120 kVp, mean

exposure of 205 mAs, axial resolution of 5 mm, and mean

in-plane resolution of 0.8174 mm.

2.2 Development of the deep learning
model

2.2.1 Data preprocessing
For 3D CT scans, cropping, padding, and resizing

techniques were used to convert the CT volume into a 192 ×

192 × 224 matrix as the network input. We used a suitable

window width for lung tissue from -500 to 1500 Hounsfield

units (Zhang et al., 2020) to linearly rescale the pixel value to (0,

1) by the min-max method. Common data augmentation

techniques including random flipping, noise, and affine

transformation were used. For clinical information, as shown in

Table 1, categorical variables were converted to distinct numbers

so as to be input to models.

2.2.2 Network architecture
The overall network architecture is shown in Figure 2. To

predict ICIP, we first built an image network and a clinical

network based on pretreatment CT images and clinical data,

respectively. Duo to the relatively small size of our dataset, a

lightweight network, 3D ResNet18, was chosen as the

backbone of the image network. Then, a multimodal fusion

network was constructed by combining the nine clinical

features (Table 1) and the image features learned from the

image network. The clinical features and image features were

fused by direct concatenation. Cross-entropy loss was used to

supervise the ICIP prediction task. To enhance the prediction

performance, two-stage transfer learning and contrastive

learning strategies were used, which are introduced in the

following sections.

2.2.3 Transfer learning
A two-stage transfer learning strategy inspired by (Altaf

et al., 2021) was used to train our image network. We first

downloaded the pre-trained model which was built using

two massive natural image datasets (Kay et al., 2017;

Monfort et al., 2020). The pre-trained weights may not be

appropriate for our ICIP prediction task due to

distributional shift between natural images and medical

images. Therefore, in the second stage we fine-tuned the

network using a large CT image dataset associated with

FIGURE 1
Flowchart for patient enrollment.
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pneumonia (CC-CCII dataset) (Zhang et al., 2020). After the

transfer of knowledge from a related task, the domain gap

between the source and target tasks was significantly

reduced. The two-stage transfer learning flowchart is

shown in Figure 3.

2.2.4 Contrastive learning
Besides transfer learning, contrastive learning was also

adopted to further boost the performance of the image

network. The key idea of contrastive learning is to learn an

embedding space in which positive sample pairs stay close to each

TABLE 1 Patient characteristics. p values less than 0.05 are highlighted with an asterisk.

Characteristic ICIP
dataset (n = 24)

Non-ICIP
dataset (n = 24)

p value

Sex 0.022*

Female 0 (0.0%) 6 (25.0%)

Male 24 (100.0%) 18 (75.0%)

Age 0.261

Median 60 59

Range 38–75 37–77

Lesion location 0.9999

Upper left 9 (37.5%) 10 (41.7%)

Upper right 9 (37.5%) 7 (29.2%)

Lower left 3 (12.5%) 2 (8.3%)

Lower right 3 (12.5%) 3 (12.5%)

Mediastinal 0 (0.0%) 1 (4.2%)

Middle right 0 (0.0%) 1 (4.2%)

Histologic type 0.337

Adenocarcinoma 16 (66.7%) 16 (66.7%)

Squamous cell carcinoma 7 (29.2%) 4 (16.7%)

Adenosquamous carcinoma 0 (0.0%) 1 (4.2%)

Small cell endocrine carcinoma 1 (4.2%) 0 (0.0%)

Large cell endocrine carcinoma 0 (0.0%) 1 (4.2%)

Lymphoepithelioma-like carcinoma 0 (0.0%) 2 (8.3%)

T stage 0.496

T0 1 (4.2%) 1 (4.2%)

T1 5 (20.8%) 2 (8.3%)

T2 6 (25.0%) 11 (45.8%)

T3 4 (16.7%) 2 (8.3%)

T4 8 (33.3%) 8 (33.3%)

N stage 0.233

N0 1 (4.2%) 2 (8.3%)

N1 0 (0.0%) 0 (0.0%)

N2 13 (54.2%) 7 (29.2%)

N3 10 (41.7%) 15 (62.5%)

M stage 0.461

M0 6 (25.0%) 3 (12.5%)

M1 18 (75.0%) 21 (87.5%)

Surgery before immunotherapy 0.666

Yes 4 (16.7%) 2 (8.3%)

No 20 (83.3%) 22 (91.7%)

Radiotherapy before immunotherapy 0.023*

Yes 8 (33.3%) 1 (4.2%)

No 16 (66.7%) 23 (95.8%)
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other while negative ones are far apart. In essence, contrastive

learning allows the model to learn high-level features about the

data. The contrastive learning can be broken into three basic

steps: sample pair construction, encoding, and loss minimization

of representations. In our study, positive sample pairs were

samples from the same class while negative sample pairs were

samples from different classes. We then used 3D ResNet18 to

encode the images as vector representations (Figure 2). Lastly, we

maximized the similarity of the two vector representations of the

positive sample pair and minimized that of the negative sample

pair by minimizing a contrastive loss function. We took the

cosine as the similarity metric. The contrastive loss function is

defined by the following equations:

sim(x1, x2) � x1 · x2

‖x1‖ · ‖x2‖, (1)

lossCL � ∑
x

sim(x, x−) −∑
x

sim(x, x+). (2)

Here, sim represents the cosine similarity metric (x, x_) and

(x, x+) respectively denote the negative sample pair and positive

sample pair. The overall loss function is defined by

lossall � lossCE + γlossCL, (3)

FIGURE 2
Overview of the network architecture for ICIP prediction. The top and bottom boxes show the image network and clinical network using CT
images and clinical data, respectively, as input. The middle box represents the multimodal fusion network that combines image features and clinical
features for ICIP prediction.

FIGURE 3
Flowchart of two-stage transfer learning.
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where lossCE is the typical cross entropy loss, and γ is a

hyper-parameter to control the weight of contrastive learning

loss.

2.3 Implementation details

The proposed method was implemented using PyTorch on

a workstation equipped with four NVIDIA RTX A6000 GPUs

(48 GB memory each). In all comparative studies, we

employed ResNet18 (He et al., 2016) as the backbone.

Adam optimizer with the learning rate of 1e-4, 1e-4, and

5e-5 was employed to train the baseline model (without

transfer learning), one-stage transfer learning model, and

two-stage transfer learning model, respectively. The batch

size and γ were set to 6 and 0.02, respectively, which were

selected by grid search. Specifically, a finite number of values

were tried, and the one with the best performance was

selected. In all experiments, five-fold cross-validation was

used, and the average performance was reported.

2.4 Statistical analysis

To compare the data distribution between the ICIP and non-

ICIP datasets, Fisher’s exact test was used for categorical

variables, and Mann-Whitney U test was used for continuous

variables. Two-tailed tests are used to determine significance at

the 5% level. All statistical analyses were conducted using

Statistical Product and Service Solutions (IBM SPSS,

version 20.0).

To evaluate the classification performance, several typical

metrics were used, including accuracy, sensitivity, specificity,

precision, and F1-score. We considered ICIP as the positive

class and non-ICIP as the negative class, so true positive (TP),

false positive (FP), true negative (TN), and false negative (FN)

can be accordingly defined. After getting the numbers of TP, FP,

TN, and FN, the abovementioned performance metrics can be

calculated using Eqs. 4–8. Since we used five-fold cross-

validation, the average of these metrics were reported. We

also used the area under the receiver operating characteristic

(ROC) curve to evaluate model performance. Since every patient

was tested for and only for once in five-fold cross-validation, we

gathered the results across all the five folds, then plotted ROC

curves, and calculated AUCs.

Accuracy � TP + TN

TP + FP + TN + FN
(4)

Sensitivity � TP

TP + FN
(5)

Specificity � TN

TN + FP
(6)

Precision � TP

TP + FP
(7)

F1 − score � 2Precision p Specificity

Precision + Specificity
(8)

3 Results

3.1 Patient characteristics

Among the 48 patients, there were 42 men and 6 women with

an overall mean age of 58.00 years ± 9.75 (standard deviation).

We collected nine clinical characteristics for the 48 patients.

Table 1 shows these characteristics separately for the ICIP and

non-ICIP datasets. Among the nine characteristics, there were

significant differences between the two datasets for sex (Fishers’

exact test p value = 0.022) and radiotherapy before

immunotherapy (Fishers’ exact test p value = 0.023), whereas

no significant differences were observed for the remaining

characteristics.

3.2 Performance of deep learning model
to predict Immune checkpoint inhibitors-
related pneumonitis

To explore and validate the effectiveness of the key

components used in our method, we conducted extensive

experiments. The comparison of quantitative performance is

presented in Table 2. The details of different methods are

provided as follows:

• Cli denotes the clinical network

• Im denotes the image network without using transfer

learning and contrastive learning

• CI denotes the multimodal network built on both clinical

data and CT images

• Im-1T denotes the image network with one-stage transfer

learning

• Im-2T denotes the image network with two-stage transfer

learning

• Im-2T-C denotes the image network with two-stage

transfer learning and contrastive learning

• CI-2T denotes the multimodal network with two-stage

transfer learning

• CI-2T-C denotes the multimodal network with two-stage

transfer learning and contrastive learning

3.2.1 Effectiveness of multimodal data fusion
We first evaluated the effectiveness of combining images and

clinical data to predict ICIP. To this end, we compared the

classification performance of the multimodal network with that

of the image network and the clinical network (CI vs. Cli and Im,

Table 2). As shown in Table 2, the image network achieved an
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AUC of 0.753 (Im, Table 2), which was superior to the clinical

network that yielded an AUC of 0.701 (Cli, Table 2). By

utilizing both images and clinical data, the classification

performance was significantly improved up to 0.797 (CI,

Table 2). Other metrics in Table 2 also indicates that

multimodal data fusion is beneficial to ICIP prediction. ROC

curves are shown in Figure 4.

3.2.2 Effectiveness of two-stage transfer
learning

We next evaluated the effectiveness of the proposed two-

stage transfer learning strategy. To this end, we first used the

image network without transfer learning as the baseline and then

gradually incorporated one-stage and two-stage transfer

learning. Compared with the baseline model trained from

scratch, one-stage transfer learning brought large performance

gain from 0.753 to 0.821 in term of AUC (Im vs. Im-1T, Table 2).

Moreover, the use of the two-stage transfer learning further lifted

the prediction performance. The AUC, accuracy, sensitivity, and

specificity were 0.854, 0.855, 0.800, and 0.910, respectively (Im-

2T, Table 2). The increasingly better performance from Im, Im-

1T to Im-2T suggests that using a pre-trained network and fine-

tuning on a large related dataset are essential to obtain good

performance. ROC curves are shown in Figure 5.

3.2.3 Effectiveness of contrastive learning
Finally, we evaluated the effectiveness of the contrastive

learning strategy in the image network and the multimodal

network. The image network with two-stage transfer learning

but without contrastive learning achieved AUC of 0.854,

accuracy of 0.855, sensitivity of 0.800, and specificity of 0.910

(Im-2T, Table 2). Adding contrastive learning gave a boost in

TABLE 2 Quantitative analysis of key components in our method. The best results are highlighted in bold.

Method AUC Accuracy Sensitivity Specificity Precision F1-score

Cli 0.701 0.730 ± 0.045 0.660 ± 0.134 0.800 ± 0.200 0.817 ± 0.171 0.723 ± 0.041

Im 0.753 0.725 ± 0.075 0.740 ± 0.195 0.710 ± 0.175 0.728 ± 0.079 0.717 ± 0.081

CI 0.797 0.815 ± 0.078 0.790 ± 0.143 0.840 ± 0.089 0.837 ± 0.096 0.814 ± 0.079

Im-1T 0.821 0.830 ± 0.120 0.700 ± 0.200 0.960 ± 0.089 0.837 ± 0.096 0.824 ± 0.125

Im-2T 0.854 0.855 ± 0.087 0.800 ± 0.200 0.910 ± 0.125 0.920 ± 0.110 0.851 ± 0.090

Im-2T-C 0.901 0.920 ± 0.084 0.960 ± 0.089 0.880 ± 0.179 0.910 ± 0.131 0.918 ± 0.087

CI-2T 0.865 0.880 ± 0.130 0.920 ± 0.110 0.840 ± 0.167 0.860 ± 0.142 0.879 ± 0.131

CI-2T-C 0.918 0.920 ± 0.084 0.920 ± 0.110 0.920 ± 0.179 0.943 ± 0.128 0.918 ± 0.087

FIGURE 4
ROC curves for the Cli, Im, and CI networks to show the
effectiveness of multimodal data fusion.

FIGURE 5
ROC curves for the Im, Im-1T, and Im-2T networks to show
the effectiveness of two-stage transfer learning.
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performance. The resulting AUC, accuracy, sensitivity, and

specificity were 0.901, 0.920, 0.960, and 0.880, respectively

(Im-2T-C, Table 2). Similarly, performance gain was also

observed when incorporating contrastive learning into the

multimodal network. The multimodal network with two-stage

transfer learning yielded AUC of 0.865, accuracy of 0.880,

sensitivity of 0.920, and specificity of 0.840 (CI-2T, Table 2).

The use of contrastive learning increased the performance by a

large margin. The resulting AUC, accuracy, sensitivity, and

specificity were 0.918, 0.920, 0.920, and 0.920, respectively

(CI-2T-C, Table 2). ROC curves are shown in Figure 6.

3.3 Visualization

To gain an understanding of why the performance was

improved when the key components such as two-stage

transfer learning were introduced to the model, the class

activation maps were generated by the gradient of the deep

learning to highlight the important regions within the input

image (Gotkowski et al., 2021). As shown in Figure 7, the primary

attention of the one-stage transfer learning model (Im-1T, first

row) was not focused on the lung area. However, the use of two-

stage transfer learning and especially contrastive learning

brought more attention to the lung area (Im-2T and Im-2T-

C, second and third rows). Interestingly, fusing clinical and

image features made the network concentrate on the whole

lung (CI-2T-C, fourth row), indicating that the whole lung is

crucial and informative for ICIP prediction. This makes sense as

ICIP can occur anywhere in lung.

4 Discussion

As ICI treatment is becoming more frequently used in lung

cancer patients, an increasing number of irAEs (i.e., ICIP) are

being reported. ICIP is potentially fatal. Thus, early prediction of

ICIP is crucial for improving treatment outcomes. However,

based on clinical factors or pretreatment CT images, it is very

challenging for doctors to predict whether ICIP will occur prior

to immunotherapy. Therefore, there is a critical need for an

accurate and automated approach to assist doctors in identifying

patients at risk for ICIP before immunotherapy, which allows

personalized treatment options and reduces the number of

deaths due to severe ICIP. In this study, we developed the

first deep learning model for predicting ICIP using clinical

information and pretreatment baseline chest CT images. In

addition to the use of multimodal data, we also introduced

two-stage transfer learning and contrastive learning in our

model development. We evaluated our method using five-fold

cross-validation on 24 ICIP patients and 24 non-ICIP patients.

The results demonstrated that the deep learning model accurately

differentiated between ICIP and non-ICIP patients, with an AUC

of 0.918.

Few prior studies have demonstrated the utility of radiomics

to predict irAEs. Colen et al. (2018) presented the first reported

work exploring the potential of CT-based radiomics to predict

patients at risk for developing ICIP and reported an AUC of 1

(Colen et al., 2018). Although the performance was extremely

high, this study only included 2 ICIP cases and suffered from

severe class imbalance problem. By contrast, our study used a

balanced dataset consisting of 24 ICIP cases and 24 non-ICIP

cases. Mu et al. proposed a PET/CT based radiomics approach to

predict severe irAEs in patients with NSCLC (Mu et al., 2020). A

total of 30 cases with severe irAEs and 164 control cases were

curated in the patient cohorts. The radiomics approach yielded

an AUC of 0.88 in the prospective validation cohort. However,

this work is based on PET/CT which is not widely available in

hospitals and thus has limited utility. In contrast to the

traditional radiomics methods that extracted a fixed set of

image features, our study proposed a deep learning model

that can directly learn discriminative features from CT images

and demonstrated a better performance with an AUC of 0.918.

The superiority of our method can be attributed to the use of

multimodal data fusion, two-stage transfer learning, and

contrastive learning in our deep learning model. The

effectiveness of these key components was validated by

extensive ablation studies. The multimodal data fusion model

outperformed the models built on either clinical data or CT

images by a large margin. This suggests that the two kinds of data

harbor complementary information. Thus, the ICIP prediction

task can greatly benefit from this fusion approach. Training deep

learning models requires a large dataset. However, in medical

applications, oftentimes, only a small dataset is available due to

low incidence of disease or expensive cost of data collection. Our

FIGURE 6
ROC curves for the Im-2T, Im-2T-C, CI-2T, and CI-2T-C
networks to show the effectiveness of contrastive learning.
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results confirm that transfer learning is helpful in this case.

Simply using a pre-trained model learned on a large unrelated

dataset (one-stage transfer learning) or subsequently retraining

the model on a large related dataset (two-stage transfer learning)

can improve the performance of ICIP prediction markedly.

Moreover, contrastive learning can further enhance the feature

representation ability by contrasting similar (positive) and

dissimilar (negative) samples.

This study has several limitations. First, although our method

was rigorously validated by five-fold cross-validation, the data used

in this study was collected from a single institution, future efforts will

concentrate on validating the findings in a larger multi-institutional

cohort. Second, tomaintain a balance of sample size between classes,

we randomly selected a portion of patients without ICIP to match

the sample size of the ICIP dataset. There might be an issue with this

strategy as it does not reflect a real-world class distribution. Third,

duo to the retrospective nature of this study, it may be prone to

biases from missing data and reliance on available medical

documentation for review. Prospective studies are needed in the

future.

In conclusion, patients who will develop ICIP have subtle

changes at their pretreatment baseline CT scans that could not

be identified by the naked eye but could be detected by quantitative

analysis. Our study presents the first deep learning model based on

clinical data and CT images to predict patients at risk for developing

ICIP. This model can accurately predict ICIP patients with an AUC

of 0.918, which enables efficient risk stratification, close monitoring,

and prompt management of ICIP. This will potentially improve ICI

treatment outcomes in patients with lung cancer.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding authors.

FIGURE 7
Activationmaps for a non-ICIP sample to show themost “important” regions that different methods consider. The red color represents a higher
weight (i.e., more attention is paid to this region).

Frontiers in Physiology frontiersin.org09

Tan et al. 10.3389/fphys.2022.978222

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.978222


Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of Guangdong Provincial

People’s Hospital. Written informed consent for participation

was not required for this study in accordance with the national

legislation and the institutional requirements.

Author contributions

PT and JC contributed to conception and design of the study.

PT, LW, WH, and GD collected the data. LW, YY, and SQ

analyzed and interpreted the data. LW and PT wrote the first

draft of the manuscript. DN, SD, and JC supervised the project

and revised the manuscript. All authors contributed to the

manuscript and approved the submitted version.

Funding

This study was supported by National Natural Science

Foundation of China (61901275, 62171290, 81972970, and

82172671), Guangzhou Science and Technology Plan Foundation

(2021-02-01-04-1002-0017), Shenzhen University Startup Fund

(2019131), Shenzhen-Hong Kong Joint Research Program

(SGDX20201103095613036), Natural Science Foundation of

Guangdong Province of China (2020A1515010186), GDPH

Supporting Fund (KY0120220119), and GDPH Supporting Fund

for NSFC Program (8190120260). The funding sources have no

involvement in the study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Akinleye, A., and Rasool, Z. (2019). Immune checkpoint inhibitors of PD-L1 as
cancer therapeutics. J. Hematol. Oncol. 12, 92. doi:10.1186/s13045-019-0779-5

Altaf, F., Islam, S. M. S., Janjua, N. K., and Akhtar, N. (2021). “Boosting deep
transfer learning for COVID-19 classification,” in Proceedings - International
Conference on Image Processing, ICIP, Anchorage, AK, USA, September 19–22,
2021. (IEEE Computer Society), 210–214. doi:10.1109/ICIP42928.2021.9506646

Atchley, W. T., Alvarez, C., Saxena-Beem, S., Schwartz, T. A., Ishizawar, R. C.,
Patel, K. P., et al. (2021). Immune checkpoint inhibitor-related pneumonitis in lung
cancer: real-world incidence, risk factors, and management practices across six
health care centers in North Carolina. Chest 160, 731–742. doi:10.1016/j.chest.2021.
02.032

Cheng, J., Pan, Y., Huang, W., Huang, K., Cui, Y., Hong, W., et al. (2022a).
Differentiation between immune checkpoint inhibitor-related and radiation
pneumonitis in lung cancer by CT radiomics and machine learning. Med. Phys.
49, 1547–1558. doi:10.1002/mp.15451

Cheng, J., Wang, H., Li, R., Li, X., Zhou, X., Yang, X., et al. (2022b). A two-stage
multiresolution neural network for automatic diagnosis of hepatic echinococcosis
from ultrasound images: a multicenter study. Med. Phys. 49, 3199–3212. doi:10.
1002/mp.15548

Chetan, M. R., and Gleeson, F. V. (2021). Radiomics in predicting treatment
response in non-small-cell lung cancer: current status, challenges and future
perspectives. Eur. Radiol. 31, 1049–1058. doi:10.1007/s00330-020-07141-9

Colen, R. R., Fujii, T., Bilen, M. A., Kotrotsou, A., Abrol, S., Hess, K. R., et al.
(2018). Radiomics to predict immunotherapy-induced pneumonitis: proof of
concept. Invest. New Drugs 36, 601–607. doi:10.1007/s10637-017-0524-2

Delaunay, M., Cadranel, J., Lusque, A., Meyer, N., Gounaut, V., Moro-Sibilot, D.,
et al. (2017). Immune-checkpoint inhibitors associated with interstitial lung disease
in cancer patients. Eur. Respir. J. 50, 1700050. doi:10.1183/13993003.00050-2017

Gitto, S., Cuocolo, R., Annovazzi, A., Anelli, V., Acquasanta, M., Cincotta, A.,
et al. (2021). CT radiomics-based machine learning classification of atypical
cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine 68,
103407. doi:10.1016/j.ebiom.2021.103407

Gotkowski, K., Gonzalez, C., Bucher, A., and Mukhopadhyay, A. (2021). “M3d-
CAM: a PyTorch library to generate 3D attention maps for medical deep learning,”

in Informatik aktuell (Regensburg: Springer Science and Business Media
Deutschland GmbH), 217–222. doi:10.1007/978-3-658-33198-6_52

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 770–778. doi:10.1109/CVPR.2016.90

Howell, M., Lee, R., Bowyer, S., Fusi, A., and Lorigan, P. (2015). Optimal
management of immune-related toxicities associated with checkpoint inhibitors
in lung cancer. Lung Cancer 88, 117–123. doi:10.1016/j.lungcan.2015.02.007

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
et al. (2017). The kinetics human action video dataset. arXiv Comput. Vis. Pattern
Recognit.

Khunger, M., Rakshit, S., Pasupuleti, V., Hernandez, A. V., Mazzone, P.,
Stevenson, J., et al. (2017). Incidence of pneumonitis with use of programmed
death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a
systematic review and meta-analysis of trials. Chest 152, 271–281. doi:10.1016/j.
chest.2017.04.177

Martins, F., Sofiya, L., Sykiotis, G. P., Lamine, F., Maillard, M., Fraga, M., et al. (2019).
Adverse effects of immune-checkpoint inhibitors: epidemiology, management and
surveillance. Nat. Rev. Clin. Oncol. 16, 563–580. doi:10.1038/s41571-019-0218-0

Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S. A., Yan, T.,
et al. (2020). Moments in time dataset: one million videos for event understanding.
IEEE Trans. Pattern Anal. Mach. Intell. 42, 502–508. doi:10.1109/TPAMI.2019.
2901464

Mu, W., Tunali, I., Qi, J., Schabath, M. B., and Gillies, R. J. (2020). Radiomics of
18 F fluorodeoxyglucose PET/CT images predicts severe immune-related adverse
events in patients with NSCLC. Radiol. Artif. Intell. 2, e190063. doi:10.1148/ryai.
2019190063

Naidoo, J., Wang, X., Woo, K. M., Iyriboz, T., Halpenny, D., Cunningham, J., et al.
(2017). Pneumonitis in patients treated with anti-programmed death-1/
programmed death ligand 1 therapy. J. Clin. Oncol. 35, 709–717. doi:10.1200/
JCO.2016.68.2005

Nishino, M., Sholl, L. M., Hatabu, H., Ramaiya, N. H., and Hodi, F. S. (2015).
Anti–PD-1–Related pneumonitis during cancer immunotherapy. N. Engl. J. Med.
373, 288–290. doi:10.1056/nejmc1505197

Frontiers in Physiology frontiersin.org10

Tan et al. 10.3389/fphys.2022.978222

https://doi.org/10.1186/s13045-019-0779-5
https://doi.org/10.1109/ICIP42928.2021.9506646
https://doi.org/10.1016/j.chest.2021.02.032
https://doi.org/10.1016/j.chest.2021.02.032
https://doi.org/10.1002/mp.15451
https://doi.org/10.1002/mp.15548
https://doi.org/10.1002/mp.15548
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1007/s10637-017-0524-2
https://doi.org/10.1183/13993003.00050-2017
https://doi.org/10.1016/j.ebiom.2021.103407
https://doi.org/10.1007/978-3-658-33198-6_52
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.lungcan.2015.02.007
https://doi.org/10.1016/j.chest.2017.04.177
https://doi.org/10.1016/j.chest.2017.04.177
https://doi.org/10.1038/s41571-019-0218-0
https://doi.org/10.1109/TPAMI.2019.2901464
https://doi.org/10.1109/TPAMI.2019.2901464
https://doi.org/10.1148/ryai.2019190063
https://doi.org/10.1148/ryai.2019190063
https://doi.org/10.1200/JCO.2016.68.2005
https://doi.org/10.1200/JCO.2016.68.2005
https://doi.org/10.1056/nejmc1505197
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.978222


Pillai, R. N., Behera, M., Owonikoko, T. K., Kamphorst, A. O., Pakkala, S., Belani,
C. P., et al. (2018). Comparison of the toxicity profile of PD-1 versus PD-L1
inhibitors in non–small cell lung cancer: a systematic analysis of the literature.
Cancer 124, 271–277. doi:10.1002/cncr.31043

Qian, J., Li, R., Yang, X., Huang, Y., Luo, M., Lin, Z., et al. (2022). Hasa: hybrid
architecture search with aggregation strategy for echinococcosis classification and
ovary segmentation in ultrasound images. Expert Syst. Appl. 202, 117242. doi:10.
1016/J.ESWA.2022.117242

Ramos-Casals, M., Brahmer, J. R., Callahan, M. K., Flores-Chávez, A., Keegan, N.,
Khamashta, M. A., et al. (2020). Immune-related adverse events of checkpoint
inhibitors. Nat. Rev. Dis. Prim. 6, 38. doi:10.1038/s41572-020-0160-6

Reck, M., Rodríguez-Abreu, D., Robinson, A. G., Hui, R., Csőszi, T., Fülöp,
A., et al. (2016). Pembrolizumab versus chemotherapy for PD-L1–positive
non–small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833. doi:10.1056/
nejmoa1606774

Rios Velazquez, E., Parmar, C., Liu, Y., Coroller, T. P., Cruz, G., Stringfield, O.,
et al. (2017). Somatic mutations drive distinct imaging phenotypes in lung cancer.
Cancer Res. 77, 3922–3930. doi:10.1158/0008-5472.CAN-17-0122

Robert, C. (2020). A decade of immune-checkpoint inhibitors in cancer therapy.
Nat. Commun. 11, 3801. doi:10.1038/s41467-020-17670-y

Sears, C. R., Rivera, M. P., Camus, P., Gaga, M., Garon, E. B., Gould, M. K., et al.
(2019). Knowledge gaps and research priorities in immune checkpoint
inhibitor–related pneumonitis an official American thoracic society research
statement. Am. J. Respir. Crit. Care Med. 200, E31–E43. doi:10.1164/rccm.
201906-1202ST

Thawani, R., McLane, M., Beig, N., Ghose, S., Prasanna, P., Velcheti, V., et al.
(2018). Radiomics and radiogenomics in lung cancer: a review for the clinician.
Lung Cancer 115, 34–41. doi:10.1016/j.lungcan.2017.10.015

Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R., and Chandra, A. B. (2020).
Review of indications of FDA-approved immune checkpoint inhibitors per NCCN
guidelines with the level of evidence. Cancers 12, 738. doi:10.3390/cancers12030738

van Timmeren, J. E., Leijenaar, R. T. H., van Elmpt, W., Reymen, B., Oberije, C.,
Monshouwer, R., et al. (2017). Survival prediction of non-small cell lung cancer

patients using radiomics analyses of cone-beam CT images. Radiother. Oncol. 123,
363–369. doi:10.1016/j.radonc.2017.04.016

Winer, A., Nicholas Bodor, J., and Borghaei, H. (2018). Identifying and managing
the adverse effects of immune checkpoint blockade. J. Thorac. Dis. 10, S480–S489.
doi:10.21037/jtd.2018.01.111

Wu, H., Wu, C., Zheng, H., Wang, L., Guan, W., Duan, S., et al. (2021).
Radiogenomics of neuroblastoma in pediatric patients: CT-based radiomics
signature in predicting MYCN amplification. Eur. Radiol. 31, 3080–3089. doi:10.
1007/s00330-020-07246-1

Xin Yu, J., Hubbard-Lucey, V. M., and Tang, J. (2019). Immuno-oncology drug
development goes global. Nat. Rev. Drug Discov. 18, 899–900. doi:10.1038/d41573-
019-00167-9

Xu, Q. Q., Shan, W. L., Zhu, Y., Huang, C. C., Bao, S. Y., Guo, L. L., et al. (2021).
Prediction efficacy of feature classification of solitary pulmonary nodules based on
CT radiomics. Eur. J. Radiol. 139, 109667. doi:10.1016/j.ejrad.2021.109667

Yang, L., Yang, J., Zhou, X., Huang, L., Zhao, W., Wang, T., et al. (2019).
Development of a radiomics nomogram based on the 2D and 3D CT features to
predict the survival of non-small cell lung cancer patients. Eur. Radiol. 29,
2196–2206. doi:10.1007/s00330-018-5770-y

Yu, J., Deng, Y., Liu, T., Zhou, J., Jia, X., Xiao, T., et al. (2020). Lymph node
metastasis prediction of papillary thyroid carcinoma based on transfer learning
radiomics. Nat. Commun. 11, 4807. doi:10.1038/s41467-020-18497-3

Zanfardino, M., Franzese, M., Pane, K., Cavaliere, C., Monti, S., Esposito, G., et al.
(2019). Bringing radiomics into a multi-omics framework for a comprehensive
genotype-phenotype characterization of oncological diseases. J. Transl. Med. 17,
337. doi:10.1186/s12967-019-2073-2

Zhang, K., Liu, X., Shen, J., Li, Z., Sang, Y., Wu, X., et al. (2020). Clinically
applicable AI system for accurate diagnosis, quantitative measurements, and
prognosis of COVID-19 pneumonia using computed tomography. Cell 181,
1360. doi:10.1016/j.cell.2020.08.029

Zheng, X., Yao, Z., Huang, Y., Yu, Y., Wang, Y. Y., Liu, Y., et al. (2020). Deep
learning radiomics can predict axillary lymph node status in early-stage breast
cancer. Nat. Commun. 11, 1236. doi:10.1038/s41467-020-15027-z

Frontiers in Physiology frontiersin.org11

Tan et al. 10.3389/fphys.2022.978222

https://doi.org/10.1002/cncr.31043
https://doi.org/10.1016/J.ESWA.2022.117242
https://doi.org/10.1016/J.ESWA.2022.117242
https://doi.org/10.1038/s41572-020-0160-6
https://doi.org/10.1056/nejmoa1606774
https://doi.org/10.1056/nejmoa1606774
https://doi.org/10.1158/0008-5472.CAN-17-0122
https://doi.org/10.1038/s41467-020-17670-y
https://doi.org/10.1164/rccm.201906-1202ST
https://doi.org/10.1164/rccm.201906-1202ST
https://doi.org/10.1016/j.lungcan.2017.10.015
https://doi.org/10.3390/cancers12030738
https://doi.org/10.1016/j.radonc.2017.04.016
https://doi.org/10.21037/jtd.2018.01.111
https://doi.org/10.1007/s00330-020-07246-1
https://doi.org/10.1007/s00330-020-07246-1
https://doi.org/10.1038/d41573-019-00167-9
https://doi.org/10.1038/d41573-019-00167-9
https://doi.org/10.1016/j.ejrad.2021.109667
https://doi.org/10.1007/s00330-018-5770-y
https://doi.org/10.1038/s41467-020-18497-3
https://doi.org/10.1186/s12967-019-2073-2
https://doi.org/10.1016/j.cell.2020.08.029
https://doi.org/10.1038/s41467-020-15027-z
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.978222

	Deep learning predicts immune checkpoint inhibitor-related pneumonitis from pretreatment computed tomography images
	1 Introduction
	2 Materials and methods
	2.1 Patients and data collection
	2.2 Development of the deep learning model
	2.2.1 Data preprocessing
	2.2.2 Network architecture
	2.2.3 Transfer learning
	2.2.4 Contrastive learning

	2.3 Implementation details
	2.4 Statistical analysis

	3 Results
	3.1 Patient characteristics
	3.2 Performance of deep learning model to predict Immune checkpoint inhibitors-related pneumonitis
	3.2.1 Effectiveness of multimodal data fusion
	3.2.2 Effectiveness of two-stage transfer learning
	3.2.3 Effectiveness of contrastive learning

	3.3 Visualization

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


