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Abstract
Although there is increased interest in utilizing machine learning (ML) to sup-
port drug development, technical hurdles associated with complex algorithms have 
limited widespread adoption. In response, we have developed Pharm-AutoML, an 
open-source Python package that enables users to automate the construction of ML 
models and predict clinical outcomes, especially in the context of pharmacological 
interventions. In particular, our approach streamlines tedious steps within the ML 
workflow, including data preprocessing, model tuning, model selection, results analy-
sis, and model interpretation. Moreover, our open-source package helps to identify 
the most predictive ML pipeline among defined search spaces by selecting the best 
data preprocessing strategy and tuning the ML model hyperparameters. The package 
currently supports multiclass classification tasks, and additional functions are being 
developed. Using a set of five publicly available biomedical datasets, we show that 
our Pharm-AutoML outperforms other ML frameworks, including H2O with default 
settings, by demonstrating improved predictive accuracy of classification. We further 
illustrate how model interpretation methods can be utilized to help explain the fine-
tuned ML pipeline to end users. Pharm-AutoML provides both novice and expert 
users improved clinical predictions and scientific insights.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Machine learning (ML) is a powerful methodology for analyzing complex 
healthcare data and automatic ML (AutoML) offers a way to automate tedious 
steps in ML pipeline. However, the current AutoML frameworks are not fulfill-
ing the needs of biopharmaceutical or healthcare researchers due to the lack of 
end-to-end automation of ML pipelines, including data preprocessing and model 
interpretation.
WHAT QUESTION DID THIS STUDY ADDRESS?
Pharm-AutoML is designed to provide an end-to-end AutoML solution, which ena-
bles biopharmaceutical researchers to automate the construction of ML models, pre-
dict clinical outcomes, and interpret ML models.
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INTRODUCTION

With the growing amount of health data collected from nu-
merous sources, such as electronic health records (EHRs), 
genomic sequencing, and biomedical research, big data in 
healthcare has become a popular research topic.1 Because of 
the data-driven nature of machine learning (ML),2 the large 
amount of data in health care offers the potential to success-
fully leverage ML techniques. Recently, it has been proposed 
that the analysis of complex big healthcare data by ML of-
fers considerable advantages over traditional biostatistical 
methods for tasks such as risk stratification and survival pre-
dictions.3,4 Researchers in biopharmaceutical development 
and healthcare fields are familiar with data that arise in their 
domain and standard analysis workflows. Nonetheless, they 
often lack the expertise necessary to apply advanced ML 
techniques.5 In particular, the interactive process between re-
searchers in the healthcare domain and expert data scientists 
requires expenditure of a copious amount of communication, 
time, and effort that may impede ML solution deployment 
and explanation.5 Motivated by the need to lower the techni-
cal barrier to application of ML, automated ML (AutoML) 
has become an active research area.6

In the context of both drug development and regulation, 
many potential applications of ML exist ranging from cate-
gories such as supervised and unsupervised learning to re-
inforcement learning.7 In this study, we focus on supervised 
classification tasks in the context of clinical pharmacology 
analysis for clinical outcome predictions.8 Examples of these 
tasks and their uses include: exposure-response analyses for 
the justification of dose selection, identification of key bio-
markers predictive of patient response for use in personalized 
health care, and prediction of patients who may experience 
drug-induced adverse events (AEs) to support clinical trial 
design. In addressing these topics, the input data, or fea-
tures, used in the analysis may involve baseline covariates, 
such as demographics and laboratory measurements or other 
biomarkers, as well as metrics of pharmacokinetics exposure 
(e.g., the maximum drug concentration [Cmax] or the area 
under the curve [AUC]), with the targets being categorical 
variables, such as clinical response (e.g., complete response 

or progressive disease) or AEs of various grades (e.g., diar-
rhea, hyperglycemia, etc.).

Many different Python-based AutoML solutions6 have 
been proposed in recent years. H2O AutoML9,10 is an open-
source ML workflow that supports the most widely used ML 
models and advanced models, such as deep learning and en-
semble. To ensure high performance and easy deployment, 
H2O utilizes Java to develop core algorithms and provides 
application programming interfaces (APIs) for Python and 
R users. In the ML field, hyperparameters6 refer to the set 
of tunable parameters that characterize the model via higher 
level concepts, such as model complexity, or capacity of 
regularization. Therefore, the hyperparameter optimization 
step can help identify the most suitable model(s) among the 
searching space that best fit the validation data. Compared 
with other popular AutoML packages, H2O has fewer hyper-
parameters to tune and applies random grid search optimiza-
tion techniques. Thus, this method may result in overfitting 
and an unsatisfactory generalization performance.11 As a 
drop-in replacement for the popular ML package scikit-
learn,12 auto-sklearn13 is a package that allows users to 
quickly adopt scikit-learn style functions to build models 
from their data. Auto-sklearn also has many data preprocess-
ing options and leverages Bayesian optimization14 to narrow 
down the search space of optimal hyperparameter combina-
tions. However, with auto-sklearn, it is not easy to extract 
optimization results and this package is reported to have un-
expectedly low prediction accuracy.15 Hyperopt-sklearn16 is 
another AutoML framework and uses hyperopt,17 a Python 
library for optimization over search spaces, to encompass 
many scikit-learn ML models. Hyperopt-sklearn allows users 
to define search space and display optimized hyperparame-
ters explicitly. However, this framework does not have many 
data preprocessing methods and lacks feature interpretation 
implementation. Thus, a further development of hyperopt-
sklearn is needed.

Despite growing interest in the field of AutoML, there 
has been little work done to apply these techniques to fulfill 
the needs of biopharmaceutical or healthcare researchers.5 
For example, ML data preprocessing and data splitting can 
be complex and time-consuming. For researchers with little 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Pharm-AutoML automates ML pipeline from data preprocessing, model tuning, 
model selection, results analysis, and model interpretation. We show that such an 
end-to-end workflow can outperform current implementations of ML and AutoML.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
Pharm-AutoML will help to accelerate the ML model development, deployment, and 
interpretation, thereby facilitating the application of ML for predicting outcomes and 
extracting insights in the context of clinical trials and drug research.
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ML expertise, implementation mistakes may occur along 
different stages of the workflow, resulting in detrimental 
errors, such as data leakage, which occurs when the infor-
mation from the validation or test data inadvertently enters 
the model training process. However, the existing AutoML 
frameworks (as mentioned in the previous paragraph) gen-
erally do not help streamline the end-to-end process. In ad-
dition, for pharmaceutical or healthcare applications, model 
interpretation is particularly important. Again, the existing 
AutoML frameworks do not include the most widely used 
and state-of-art model interpretation approaches, such 
as tree-based feature importance analysis18 and SHapley 
Additive exPlanations (SHAP) analysis.19,20 Thus, even 
after the ML models have been built, researchers using them 
may need to carry out additional analyses to reveal how the 
predictions are made. In this work, we present an end-to-end 
AutoML solution, Pharm-AutoML, aimed at researchers in-
volved in biopharmaceutical development and healthcare, 
which ensures simplicity and transparency of the entire ML 
pipeline (see Figure 1).

METHODS

Overview of pharm-AutoML

Pharm-AutoML is an open-source Python package aimed at 
end-to-end automation of complex and computationally ex-
pensive ML pipelines, including data preprocessing, model 
selection, hyperparameter tuning, and model interpretation. 
One Python code example is available in Text S1. Pharm-
AutoML is easy to deploy on both local computers as well 
as remote cluster systems (in Mac and Unix OS). As shown 
in the Pharm-AutoML flowchart (Figure 2), we implemented 
two pipeline branches for Pharm-AutoML: branch A “impute 
missings” and branch B “allow missings.” This arrangement 
was made because although some ML models are able to 
handle missing values in the algorithm, thereby not requiring 
the user to impute data, other algorithms require no miss-
ing data. For example, XGboost can handle missing values 

internally by putting all input samples for which the value of 
the feature being split is missing into a child leaf.

Our Pharm-AutoML implementation currently only han-
dles multiclass classification tasks (under the category of 
supervised learning), although other capabilities are in de-
velopment (see Discussion). As a demonstration of the utility 
and predictive performance of our implementation, we have 
selected five biomedical outcome prediction datasets (of 
multiclass classification) from the University of California, 
Irvine (UCI) ML repository and tested our package with de-
fault parameters. These five datasets used in this study were: 
(1) heart failure clinical record dataset, (2) breast cancer data-
set, (3 hepatitis dataset, (4) chronic kidney disease dataset, 
and (5) risk factors for cervical cancer dataset (Table S1).21 
We standardized these dataset examples into the format that 
satisfies our Pharm-AutoML input requirements (Code S1 
AutoML_package, sub-folder src_autoML/examples/data) 
and made them available on the Pharm-AutoML github page. 
We compared the prediction performance of the AutoML 
model with many popular models, including XGboost, 
Logistic regression, and H2O, using default settings.

Package prerequisites

Pharm-AutoML was developed in Python version 3.7 and 
supports both Mac and Unix operating systems. Currently, 
this package has not been fully tested for other Python ver-
sions. The prerequisite Python packages are available on the 
project Github page and modelers are able to execute an 
Anaconda command to set up the proper environment (Text 
S2). For each module in the Pharm-AutoML pipeline, we 
selected different pre-existing state-of-the-art packages to 
support the corresponding functionalities. For example, in 
the feature selection module and imputation modules (mod-
ules 1 and 2), Python packages numpy and pandas were 
used to convert data into structured arrays to be fully com-
patible with the subsequent module in the Pharm-AutoML 
pipeline. In the model selection modules (4A and 4B), we 
modified hyperopt-sklearn, a widely used Python package 

F I G U R E  1   Model schematic. (a) The traditional ML pipeline. (b) The Pharm-AutoML pipeline, an end-to-end AutoML. ML, machine 
learning



      |  481PHARM-AUTOML FOR END-TO-END MACHINE LEARNING

for Pharm-AutoML, to find the optimal set of hyperparam-
eters for all scikit-learn classifiers. The matplotlib package 
was used to visualize prediction results and model interpre-
tation (module 5).

Input data and settings

Pharm-AutoML requires input data to be in comma-separated 
values (CSVs) format, which includes both the input features 
and prediction targets as columns, and the instances are given 
as rows. The target column consists of binary or multiclass 

labels (with or without missing values). By default, all the 
columns, except the prediction target, are treated as input 
data features, although the user has the ability to explicitly 
remove specific features. Pharm-AutoML also supports cat-
egorical string data and qualitative data (with or without 
missing value) in the feature columns. It is noteworthy that 
if the modelers wish to treat a feature with numerical value 
as categorical data, Pharm-AutoML requires the modelers 
to specify the corresponding feature names in the categori-
cal_features parameter. The user also needs to specify the 
directory (result_path) as a required parameter to save all the 
preprocessed data, refitted models, and results plots.

F I G U R E  2   Pharm-AutoML flowchart. “rm” denotes “remove”. The bold underlined text refers to the user-defined parameters in each module. 
PCA, principal component analysis
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Preprocessing: feature selection and 
imputation (modules 1 and 2)

There are two modules in the data preprocessing step, 
feature selection (module 1) and imputation (module 2). 
We applied two different data preprocessing strategies for 
the respective branches. In the missing imputation branch, 
feature selection module (1A) first removes instances that 
lack prediction targets. In the same module, the algorithm 
checks if the data have features that take on identical val-
ues and removes those features. In addition, the user may 
manually ignore specific features via the drop_features 
setting. This allows the instances and features that have 
a missing fraction higher than the missing_threshold to 
be dropped. Further, pairs of features found to be redun-
dant when the Pearson correlation coefficient is greater 
than the setting threshold (correlation_threshold) are 
identified and the second feature of each pair is removed. 
Next, the data processed by the feature selection module 
1A is passed to the imputation module 2A. The imputa-
tion module first removes categorical features with a high 
ratio to the number of unique subjects (check_diff_cat_
threshold), for instance, patient names, then imputes the 
data based on whether the feature is numerical or cate-
gorical (impute_numerical_threshold or impute_categori-
cal_strategy). By default setting (which the user has the 
ability to change), categorical features are imputed by the 
most frequent value and numerical features are imputed 
by the mean value. Finally, categorical features are one-
hot encoded. The Boolean parameter add_nan_label de-
termines if Pharm-AutoML adds new features to label all 
missing values. On the other hand, in the Pharm-AutoML 
branch B allow missing, none of the imputation strategy 
is used for features-selected data. The users are allowed to 
pass multiple sets of preprocessing parameters to Pharm-
AutoML, thus generating multiple preprocessed data. 
Pharm-AutoML saves all of these preprocessed data into 
result_path as well as passing it to the data split module 
(module 3).

Data splitting (module 3)

Following the data preprocessing module, Pharm-AutoML 
splits the preprocessed data into training data (80% of all data) 
and test data (20% of all data) in a stratified manner, which 
preserves the same proportions of target variables in training 
and test sets. These preprocessed data are then saved into the 
results folder. To preserve the independence of the test data, it 
is not used until testing the fine-tuned model in module 5. In 
order to select the best ML model on training data, the model 
selection module further splits the total training data in a strati-
fied manner into fold-specific training data and validation data 
with n_folds cross-validation (done only once, see Figure 3). 
The parameter n_repeats controls the number of repeated strat-
ified splits with different randomization. Therefore, in n_re-
peats cross-validation, the n_folds cross-validation procedure 
will be repeated n_repeats times randomly. All splits of the 
training data enable the model selection module (modules 4A 
and 4B) to not only reduce the model overfitting, but also to 
identify the most stable model among all classifiers.

Model selection (module 4)

After the splitting of data into the training and test sets, 
Pharm-AutoML standardizes features in the training data 
by scaling to zero mean and unit variance and then trans-
forms the validation data by the standardized scaler com-
puted from the training data. For data consisting of high 
dimensional features, such as genomics data, the users have 
the ability to apply principal component analysis (PCA) 
to find the optimal number of transformed components.12 
The Pharm-AutoML uses all available classifiers within 
scikit-learn, including logistic regression classifier (LRC), 
random forest (RF), extra trees (ETs), adaboost classifier 
(AB), support vector machine classifier (SVC), k-nearest 
neighbors (KNNs), gradient boosting (GB) classifier, sto-
chastic gradient descent classifier (SGD), and xgboost 
classifier (XGboost).12 We use the Bayesian optimization 

F I G U R E  3   Visual representation of AutoML data split and cross validation strategy. ML, machine learning
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implemented by Python package hyperopt to search for the 
best set of hyperparameters to optimize the accuracy-based 
loss function in each classifier. To evaluate different ML 
approaches, the prediction performance of each model with 
optimal hyperparameters are evaluated across sets of valida-
tion data. In order to customize Pharm-AutoML for better 
performance on datasets of biomedical relevance, we uti-
lized five representative data examples to help set appropri-
ate hyperparameter search space. For example, in XGboost 
classifier, the hyperparameter min_child_weight refers to 
the minimum number of samples that a tree node can repre-
sent. The tree node will not split if there are fewer than min_
child_weight samples at that node. However, in healthcare 
applications, there are usually a relatively small number of 
samples. When the hyperparameter min_child_weight is too 
big, a large portion of samples may fall into a few particular 
leaves and thus, the XGboost classifier fails to perform well 
on validation data. Therefore, in Pharm-AutoML we set the 
upper bound of min_child_weight as 10 (code available in 
src_autoML/hpsklearn/components.py).

Results analysis and model interpretation 
(module 5)

In the results analysis module of Pharm-AutoML, we refit 
our fine-tuned models on all training data (all n-folds 
data) and then evaluate the prediction performance on 
test data. This module implements various model perfor-
mance metrics to reveal the performance of the selected 
model. These metrics include accuracy (ACC), F-1 score, 
sensitivity (SEN), specificity (SPE), area under receiver 
operating characteristic curve (AUROC), and area under 
precision recall curve (AUPRC). Plots showing n-fold re-
sults of the receiver operating characteristic (ROC) and 
precision recall curve are also generated and saved in the 
result_path.

Feature importance refers to how useful the features are 
in contributing toward predicting the target variable and 
may be quantified using different methods. Our package 
offers two ways to assess the best-performing model: (1) 
the scikit-learn based model-dependent feature importance 
method; (2) model agnostic interpretation methods (drop-
column feature importance method22 and SHAP analy-
sis.19,20 First, our package adopts the feature importance 
functionality of scikit-learn. For example, in the logistic 
regression model, the coefficients are calculated as feature 
importance scores whereas in the random forest classifier, 
the Gini index across all trees is used for the feature impor-
tance scores.18 All ML model candidates (LRC, RF, ETs, 
AB classifier, SVC, GB classifier, and XGboost classifier) 
are available for feature importance. We also implemented 
a way to quantify the feature importance by comparing 

model predictions with all features present versus an alter-
native model with the feature dropped for refitting.22 This 
functionality can be set up with the parameter useDropCol-
FeaImport. Finally, our package offers the ability to use 
SHAP analysis for explaining model predictions, which is 

F I G U R E  4   Models and ROC curves. (a) All available ML models 
ranked by average validation performance for predicting the biopsy 
examination outcome by risk factor features from a cervical cancer 
dataset. The error bars indicate the standard error of the ROC values 
over the fivefolds. (b) ROC curves of gradient boosting classifier on 
validation, and (c) test data for the cervical cancer dataset. AUC, area 
under the curve; GB, gradient boosting; ML, machine learning; ROC, 
receiver operating characteristic
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a novel approach based on game theoretical concepts.19,20 
For classification tasks, the SHAP values for each patient 
represent the contribution to the model prediction (i.e., the 
logit of the probability value) from the individual features, 
thus explaining how the prediction outcome is computed 
from the features in an additive manner (see Result and 
Discussion sections). All tree-based models (e.g.,XGboost, 
GB, and RG) can undergo SHAP analysis. Moreover, all 
of the model interpretation plots are saved in the results 
directory.

RESULTS

Pharm-AutoML facilitates comparison of 
models and output generation

In the data preprocessing step, Pharm-AutoML outputs 
details of each of the data preprocessing steps and saves 
them into a log file. We compared the average prediction 
performance of n-fold cross-validation data across all 
user-defined ML models. Figure 4 shows the model per-
formance, ranked by ROC AUC metric, when we tested all 
available ML models for prediction of biopsy examination 
outcomes from patient features within a cervical cancer 
dataset.

Pharm-AutoML also generates the ROC curve of the best 
model on n-folds cross-validation and test data. Figure  4 
shows the ROC curves generated by fitting the selected GB 
classifier to risk factors in the cervical cancer dataset. We 
demonstrate that the model generated by Pharm-AutoML is 
relatively stable across different folds of validation data and 
is able to prevent overfitting as shown by the evaluation of 
model performance using test data.

Pharm-AutoML package demonstrates 
competitive performance

In order to compare the performance of our Pharm-
AutoML with alternative frameworks, we evaluated five 
different ML or AutoML implementations on each of the 
five biomedical datasets shown in Table S1. These models 
used for comparison consist of: two scikit-learn models 
(logistic regression and XGboost classifiers, both with 
default settings), H2O framework with default settings, 
and our Pharm-AutoML with or without imputation. After 
finding the optimal hyperparameters and ML model, we 
randomly stratified the dataset into training and test data 
100 times and then refit the selected optimal models for 
comparison by training data and assessed the performance 
on test data. The area under the ROC curve (ROC-AUC) 
was used to measure the performance across different mod-
els. As shown in Figure 5, the performance of the Pharm-
AutoML framework is either superior or equal to that of 
H2O frameworks with default settings for all five data-
sets tested. Further, among all tested datasets, the Pharm-
AutoML models significantly outperform other models for 
heart, breast, and cervical cancer datasets (more details in 
Table S2).

Pharm-AutoML enables reproducible and 
interpretable results

In order to demonstrate the model explanation capability of 
our package, we provide the optimal model and feature im-
portance plots generated from the cervical cancer dataset as 
an illustration. We found that the GB classifier with the se-
lected hyperparameters (Text S3) performs the best among 

F I G U R E  5   Prediction performance comparison between Pharm-AutoML and other traditional ML models, for randomly sampled training and 
test sets performed 100 times. AUC, area under the curve; ML, machine learning; ROC, receiver operating characteristic



      |  485PHARM-AUTOML FOR END-TO-END MACHINE LEARNING

all models when predicting biopsy examination outcome for 
a cervical cancer dataset.

We then interpret the selected model using scikit-learn 
feature importance plot. Figure 6 shows the feature rank from 
the GB classifier.

As GB is a tree-based ML model, we can also use SHAP 
analysis to interpret this optimal model with the selected hy-
perparameter. Figure 7 shows the SHAP summary plot of the 
features rank extracted from the GB model. The “Schiller,” 
“Hinselmann,” and “Citology” features have the strongest 
impact on the outcome of the model, and these features 

correlate positively with the outcome, as shown by the sign 
of their SHAP values. Furthermore, this interpretation result 
agrees with open-source Kaggle notebooks.23,24

We find that the absolute SHAP values (summed across 
patients) obtained from the GB classifier are highly correlated 
to the absolute value of regression coefficients in the logistic 
regression model (Figure 6), with a Pearson correlation coef-
ficient value of 0.9052 (p < 10−5). This result illustrates the 
consistency between the interpretation of SHAP values on 
nonlinear models (such as tree models) with the regression 
coefficients in the linear setting.

F I G U R E  6   Scikit-learn plots. (a) Scikit-learn-based feature importance rank for predicting biopsy outcome from risk factors for cervical 
cancer. (b) Logistic regression features importance rank on predicting biopsy outcome from risk factors in a cervical cancer dataset. CIN, 
chemotherapy-induced neutropenia; Dx, diagnosis; HPV, human papillomavirus; IUD, intrauterine device; STD, sexually transmitted disease
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DISCUSSION

While there is growing interest in ML utilization for drug 
development,7,8,25 the technical hurdles of applying com-
plex ML algorithms hampers its broad adoption. Thus, there 
is a need for practical packages to accelerate ML applica-
tions in this domain. Our Pharm-AutoML package is an 
end-to-end ML package aimed at both academic and indus-
try researchers. Because it does not require complex coding, 
Pharm-AutoML enables rapid data analysis and ML model 
interpretation. Thus, by automating technical steps our pack-
age facilitates the utilization of ML models for predicting 
outcomes in clinical trials and with healthcare data. As it is 
built upon popular open-source libraries, such as scikit-learn 
and hyperopt, Pharm-AutoML is easy to maintain and utilizes 
standardized hyperparameters of ML models. Furthermore, 
Pharm-AutoML is not only a user-friendly package, but is 
also an open-source platform that ML experts can build on 
for further development. By augmenting existing statistical 
approaches, Pharm-AutoML has the potential to generate 
improved prediction models and reveal more insights from 
the fine-tuned ML model. Therefore, we anticipate it being 

an essential tool for the “AI-enabled 21st century clinical 
pharmacologist.”26

Although there are several other AutoML frameworks, 
our package is differentiated from these efforts in a num-
ber of ways. This includes splitting of the AutoML pipeline 
into “impute missings” and “allow missings,” which con-
forms to data imputation requirements for different ML al-
gorithms. The “allow missings” pipeline also prevents the 
introduction of potential noise into the dataset via imputa-
tions, which may impact model performance and computa-
tional time. As an error-prone step in the AutoML pipeline, 
hyperparameter tuning is generally time-consuming for 
most users of ML. We also demonstrate the good perfor-
mance of Pharm-AutoML by customizing hyperparame-
ter search space utilizing five representative biomedical 
datasets.

There are many packages available for implementing 
the hyperparameter tuning step in the ML pipeline, such as 
hyperopt-sklearn. However, few popular AutoML packages 
cover model interpretation, the most important step in bio-
medical and healthcare applications. To this end, we imple-
mented three model interpreters to explain our fine-tuned 

F I G U R E  7   SHAP value rank of features predicting biopsy in a cervical cancer dataset. CIN, chemotherapy-induced neutropenia; Dx, 
diagnosis; HPV, human papillomavirus; IUD, intrauterine device; SHAP, SHapley Additive exPlanations; STD, sexually transmitted disease
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model from two different perspectives, a model-dependent in-
terpreter based on scikit-learn feature importance and a model-
agnostic interpreter based on drop-column feature importance 
or SHAP analysis.19,20,22,27 The model-dependent interpreters 
explain ML models by analyzing algorithm characteristics. 
For example, the coefficients in logistic regression models can 
reflect the feature importance of the corresponding feature. 
On the other hand, the model-agnostic interpreters compute 
the contribution of each feature to the prediction regardless 
of the ML algorithm characteristics. Thus, the drop-column 
feature importance and SHAP analysis-based model-agnostic 
interpreter measure the magnitude of feature attributions and 
allows AutoML to explore all types of ML models, including 
high performing algorithms, such as XGboost.

We have successfully built an end-to-end AutoML package 
for classification tasks, however, a few topics require further 
work. A task that is currently not supported is the building of 
ML models for regression analysis, where the outcomes to be 
predicted are continuous rather than categorical variables.28 
In addition, survival analysis is frequently encountered in the 
analysis of clinical data, where the aim is to predict the time 
until an event of interest occurs while accounting for data cen-
soring.29 Various ML algorithms have been developed for sur-
vival analysis,30 each with its own set of underlying modeling 
assumptions. Given the importance of these tasks in the context 
of drug research and development, we aim to extend our Pharm-
AutoML package to include these capabilities in the near future 
and keep it updated on Pharm-AutoML github page.
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