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A B S T R A C T   

This research explores the three-dimensional characteristics of nanofluid dynamics within curved 
ducts, in contrast to earlier studies that mainly focus on two-dimensional flow. By using this 
ground-breaking method, we can capture a more accurate depiction of fluid behavior that 
complies with the intricate duct design. In this study, we investigate the three dimensional flow 
and entropic analysis of peristaltic nanofluid flows in a flexible curved duct, comparing the effects 
of silver and copper nanoparticles. To obtain accurate results, we assume physical constraints 
such as long wavelength and low Reynolds number and used a perturbation technique through 
NDSolve commands for finding exact solutions of the obtained differential equations. A 
comprehensive error analysis is provided through residual error table and figures to estimate a 
suitable range of the physical factors. Our findings indicate that the velocity of the nanofluid is 
directly proportional to the elasticity of the walls, while the mass per unit volume inversely af-
fects velocity. We show that reducing the aspect ratio of the duct rectangular section can decrease 
entropy generation by raising magnitudes of damping force exerted by to the flexible walls of the 
enclosure. Additionally, using a larger height of the channel than the breadth can reduce stream 
boluses. The practical implications of this study extend beyond turbines and endoscopy to 
biomedical processes such as drug delivery and microfluidic systems.   

1. Introduction 

Peristalsis is a vital mechanism that involves the movement of materials in various biological processes in the human body. Because 
of its widespread benefits, many scientists are now exploring peristaltic flows. The article by Vaidya et al. [1] examines blood flow 
analysis through a non-uniform inclined channel by treating blood as a non-Newtonian Phan-Thien-Tanner (PTT) liquid. The authors 
found that peristaltic flows at low Reynolds numbers and large wave number have approached significant attention in recent years. In 
another work, Nadeem et al. [2] established an exact solution data against the governing system of peristaltic flows, thermal, and mass 
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exchange using a sinusoidal channel. The contributors presented axially symmetric and parabolic velocity, concentration, and tem-
perature profiles. These studies demonstrate the importance of understanding peristaltic flows in various biological processes and their 
applications. Furthermore, they highlight the requirement for accurate quantitative models and methods of solution to examine the 
complex behavior of fluids in peristaltic motion. The article by Hasona et al. [3] investigates the effects of thermal radiation and 
electrical conductivity on the peristaltic flow of a Carreau Nanofluid. Thermal radiation is found to be a decreasing function of fluid 
temperature, according to the scientists. Peristaltic flow is a sort of fluid motion that physicists, mathematicians, and engineers 
frequently study, particularly in the context of peristaltic pumps. There is a substantial amount of work on the characteristics of such 
liquids in peristaltic pumping, as illustrated by Refs. [4–6]. Noreen et al. [7] examine the influence of a magnetic field on peristaltic 
flow in a Casson fluid model in another study. A lubrication scheme is executed to examine the flow characteristics. The scientists 
analyzed that when the Hartmann number M increases towards the channel walls, so does the velocity field, whereas it decreases in the 
channel center. Overall, these investigations show the complex behaviour of fluids in peristaltic motion and illustrate the need of 
taking into account elements like heat radiation, electrical conductivity, and magnetic fields when researching such systems. 

The flow of fluids across curved geometries occurs often in several domains, including microfluidics, industrial ducts, and medical 
equipment. Essentially, peristaltic flows—which include manipulating walls to contract and expand and promote the transit of items 
like blood, urine, food, and sperm—are what drive the majority of material movement through the body. This is essential to many 
biological activities. Researchers have conducted multiple studies to examine the effects of various viscosities and geometries on 
peristaltic flows. A curved conduit with changing viscosity model and electro-osmotic effects were used by Salahuddin et al. [8] to 
work on the peristaltic movement of carbon nanotubes. They found that increasing the viscosity parameter decreased flow velocity and 
temperature while altering the temperature profile for carbon nanotubes (CNTs) by increasing the heat absorption value. Additional 
studies have looked at peristaltic movement calculations in curved shapes using mathematical models. While McCash et al. [9] looked 
at the mathematical model of peristaltic flow in an elliptic duct with ciliary walls, Barton and Raynor [10] provided a theoretical 
analysis of wavy movement in tubes. The distribution of velocity and temperature profiles showed axial symmetry in both cases, the 
authors found. Studies in Refs. [11–13] have described peristaltic transports in curved enclosures for a variety of fluid models. The 
effect of curvature-dependent channel walls on laminar viscous material flow peristalsis through a curved geometry was investigated 
by Saba et al. [14]. The researchers found that when modeling flows in curved channels, the curvature parameter should be taken into 
account because it has a significant impact on the mechanical and thermal characteristics of the flow. These works highlight the 
significance of investigating the effects of curvature and changing viscosity on peristaltic flows in curved geometries as well as the 
requirement for accurate mathematical models and solution methodologies to comprehend these challenging systems. 

Small, fewer than 100 nm-diameter-diameter particles are known as nanoparticles. Nanoparticles like carbon nanotubes (CNTs) 
have the potential to revolutionize medical imaging, treatments, diagnostics, and other biological processes because of their small size 
and physical interaction with biological components. However, the low thermal conductivity of fluids typically limits the industrial 
applications of heat transfer analysis. To solve this problem, the amount of nanoparticles in the fluid might be increased. An exper-
imental study by Choi and Eastman [15] shown how adding nanoparticles to a fluid can enhance its thermal conductivity, viscosity, 
thermal diffusivity, and heat transfer rate [ [16,17]]. Using ion-slip and Hall effects, Qureshi et al. [18] calculated the dispersion of 
nanoparticles in magnetohydrodynamic (MHD) liquid. According to Akram et al. [19], the addition of nanoparticles to base liquids 
alters the thermal properties and viscosity of the resulting nanoliquids. Viscosity is a significant industrial economic variable. Some 
more interesting works on the topic can be cited in [20–24]. 

The majority of flows in the medical industry and in the human body are by their very nature three-dimensional. Due to the 
relevance of three-dimensional peristaltic flows to both the mechanics of roller pumps and blood flow within arteries, research has 
concentrated on these flows. Nadeem et al. [25], explored the effect of intricate conduits on pumping flow was investigated by 
resolving the resulting coupled and nonlinear equations numerically and by series solutions. In order to account for low Reynolds 
number and long wavelength restrictions, Ellahi et al. [26] carried out a theoretical examination of the impact of magnetohydrody-
namics on the peristaltic flow of Jeffrey fluid in a rectangular duct. The mathematical model for the peristaltic flow of Jeffrey fluid 
containing nanoparticles in a three dimensional conduit was examined in the wave frame in another work by Nadeem et al. [27]. The 
peristaltic flow of a pair stress fluid in a non-uniform rectangular duct with compliant walls was also studied by Ellahi et al. [28] in 
their final study. 

Entropy, which counts the different ways a thermodynamic system can be built, is a commonly used thermodynamics term that is 
frequently used to indicate the degree of disorder or the advancement of thermodynamic equilibrium. Understanding and raising the 
effectiveness of energy conversion technology, such as heat exchangers and combustion engines, are applications of entropy gener-
ation in fluid flow. Entropy generation analysis can help with the design and optimization of microfluidic devices and drug delivery 
systems in the medical profession. Overall, improving energy efficiency and creating efficient technologies in a variety of disciplines 
depend on research into entropy formation in fluid movement. Researchers have investigated the creation and prediction of entropy in 
a variety of flow conditions in non-Newtonian fluids. While Ellahi et al. [29] researched the peristaltic flow of nanofluid with entropy 
formation in a porous media; Abu-Hijleh et al. [30] investigated the numerical prediction of entropy generation from natural con-
vection in a horizontal cylinder. Hayat et al. [31] looked into the impact of entropy generation on the peristaltic flow of nanoparticles 
in a rotating frame, whereas Reddy et al. [32] researched entropy production for the peristaltic flow of gold-blood nanofluid under 
electrokinetic force in a microchannel. In order to study entropy formation in peristaltic flow utilizing single and multi-wall carbon 
nanotubes, Ijaz Khan et al. [33] utilized numerical simulations. Numerous biomedical and industrial industries use peristaltic flows in 
curved conduits. For instance, they are employed in artificial organs, bioreactors, microfluidics, and drug delivery systems. Peristaltic 
pumps are used in medicine delivery to accurately control the flow rate of pharmaceuticals. They are employed in microfluidics to mix 
and move fluids. Peristaltic flows are employed in bioreactors to produce an environment that is conducive to the growth of 
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microorganisms. Peristaltic flows are utilized in artificial organs to replicate the body’s normal blood flow. There are a few more recent 
researches on the subject that may be found in Refs. [34–36]. 

The explanation above makes it clear that little research has been done on the peristaltic process of nanofluid in curved duct 
sections. But a study of this kind would be very helpful for both biomedical and commercial uses. Understanding peristaltic flows in 
curved ducts is essential since most flow patterns are curved in shape. Additionally, because it may improve the thermal conductivity 
of ordinary fluids, the usage of nanofluids is becoming more and more significant in the medical industry. In this inquiry, peristaltic 
nanofluid flows in a curved duct with rectangular sides and flexible walls are studied in three dimensions to address these problems. To 
examine how different types of nanoparticles affect wavy flows, copper and silver nanoparticles are taken into consideration. The 
physical structure is mathematically represented under specific constraints in order to analyze the issue statistically, and then linear 
transformations are used to add a non-dimensional collection of new factors. By doing this, a complex system of equations is reduced to 
a manageable, concise set. The series solution technique is then used to solve the issue. The results are thoroughly described in the 
concluding section, and essential amounts are visually displayed with respect to specific criteria. This study is anticipated to shed 
important light on the peristaltic flows of nanofluids in curved ducts and has the potential to significantly affect biomedical and in-
dustrial applications. 

2. Mathematical modeling 

In this work, we take into account the flow of a viscous nanofluid in a curved rectangular duct (CRD) that has a 2h height and 2d 
width. Water is mixed with silver (Ag) and copper (Cu) nanoparticles, and a peristaltic wave travels along the axial direction at a 
constant speed of c. As a function of angle and time t, the conduit’s geometry is set up so that orthogonal line (y-axis) assumes the 
peristaltic walls, L stands for the reference distance from the center line. The cylindrical coordinate system is more practical because 
the flow geometry is curved. The lower walls’ temperature is given a magnitude of T1, whereas the lower portion has a temperature of 
T0 (see Fig. 1). 

We consider the curved duct model for the nanofluid as [ [8,12,17,24,37–39]]. 
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Fig. 1. Geometrical picture of the CRD.  
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A representation of the peristaltic walls is [ [38,39]] 

ã(θ, t) = h + bcos
2π
λ
(Lθ − ct). (6) 

The nomenclature table contains the parameters that are mentioned in the problem. The following transformations are performed 
to eliminate problem dimensions that complicate the system: 
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By incorporating the aforementioned modifications into equations (1)–(6), we obtain 
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The parameters generated above that are dimensionless are defined as 
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The wave-like border given in equation (6) takes on a dimensionless form 

a(z, t)= 1+φ cos 2 π(z − t). (13)  

Adjusting the lubrication approximation, i.e., (ξ= 0), equations 8–12 provide (the bar symbols excluded) 
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Here is a description of the thermophysical characteristics of nanofluid [28,40,41] 
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The boundary conditions are chosen by employing no-slip conditions, which maintain velocity at the walls with the static walls as 
[37–39]. 
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Compliant walls are viewed in dimensionless form as [ [12,13,28,37]] 
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Table 1 lists the physical characteristics of base fluid and nanoparticles: 

3. Method of solution 

Equations 14–22, which were systems of equations and boundary conditions, are mixed partial differential equations having 
variable coefficients. The boundary conditions also depend on the boundary expression a(θ,t), hence a perfect or numerical solution to 
this problem is not achievable. The issue can, however, be resolved quantitatively. We have a highly effective analytic series solution 
approach called the homotopy perturbation method [42], which is based on topology and perturbation theory. The kind of complex 
PDEs that are being described here might have solutions thanks to this technique. Following, in the proper order, is the deformation 
equation for the momentum equation (15) and the energy equation (17): 
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The x-operator L xx and the y-operator L yy (shown below) are two alternative types of linear differential operators that can be used 
in the aforementioned equations; however we chose the y-part of derivative to be a linear operator for the heat equation (17). For 
momentum equation (15), on the other hand, the following defined linear operator L is used to provide the most accurate results. 

Table 1 
Thermo-physical factors of nanofluid [40, 41].   

k(W/mk) ρ(kg /m3) cp(J /kgk) ρcp(j /m3k)

Silver (Ag) 429 10,490 235 2465150 
Copper (Cu) 401 8933 385 3439205 
Water (H2O) 0.613 997.1 4179 4166880.9  
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Taking the embedding parameter p∗ into consideration, consider the following perturbation equation 
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The zeroth order systems are then obtained by applying the aforementioned series to the respective deformation equations 23 and 
24 a with operator defined in equation (25) and equating the coefficients of exponents of p∗. 
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α2

1 + δx
∂p
∂z

= 0, (32) 

The boundary relations are given as 

w̃1(x,±a)= 0and w̃1(±1,y)= 0. (33)  

and 

L yy(ϑ̃1)+
knf

kf

(

L yy(ϑ̃0)+α2L xx(ϑ̃0)+
δα2

1 + δx
L x(ϑ̃0)

)

+
μnf

μf
Br
((

αL x(w̃0) −
αδ

1 + δx
w̃0

)2
+
(
L yw̃0

)2
)

= 0, (34)  

along with the limitations 

ϑ1(− a)= 0, ϑ1(a)= 0. (35) 

After handling Eqs. (28) and (32) by incorporating equations (29) and (33), we receive 

w0 = e
yαδ

1+δxC[1] + e−
yαδ

1+δxC[2] − A′ (1+ δx)μf

/ (
δ2 μnf

)
, (36)  

w1= 1 /
(
6δ2 (1 + δx)3μnf

)
e−

yαδ
1+δx

(
− 6e

yαδ
1+δxA′(1 + δx)4 μf + δ2

(
y3α3δ3C[2] + e

2yαδ
1+δx(− y3α3δ3C[1]+6(1 + δx)3C[3]

)
+6(1 + δx)3C[4])μnf

)

(37)  

By solving Eqs. (3), (30) and (31)4-35), we collect 

ϑ0 = y2/2+C[5] + y C[6], (38)  

ϑ1 =C[7] + y C[8]

−
1

12(1 + δx)4 kf μf

(6y2 (1 + δx)4 knf μf+3/2e2aαδ
1+δx (1 + δx)2

(3+ δ(6x+3x2δ+2y2α2 δ)) η C[1]2kf μnf − 2y4α4δ4ηC[1]C[2]kf μnf

+
3

2e−
2yαδ
1+δx

(1 + δx)2
(3+ δ(6x+3x2δ+2y2α2 δ))ηC[2]2 kf μnf ), (39)  

where the constants appearing in equations 36–39 are given as 
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A′= − E1φ cos[t − z] − E2φ cos[t − z] +E3φ cos[t − z]. C[1] =
(
e aαδ

1+δxA′(1+ δx
)
μf ) /

((
1+ e2aαδ

1+δx

)
δ2 μnf

)
,C[2] =

e aαδ
1+δxA′(1 + δx)μf
(
1 + e2aαδ

1+δx
)
δ2 μnf

,

C[3]= −

(
1

− e− 2aαδ
1+δx + e2aαδ

1+δx

)

e aαδ
1+δx

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a3 e aαδ
1+δx α3δ3C[1]

6(1 + δx)3 +
a3e− aαδ

1+δx α3δ3C[2]
6(1 + δx)3

−
A′(1 + δx)μf

δ2 μnf

⎞

⎟
⎟
⎟
⎟
⎟
⎠

− e− aαδ
1+δx

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a3 e− aαδ
1+δx α3δ3C[1]

6(1 + δx)3 −

a3e
aαδ

1+δx α3δ3C[2]
6(1 + δx)3 −

A′(1 + δx)μf

δ2 μnf

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

C[4]= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

6e aαδ
1+δx A′μf − 6e3aαδ

1+δxA′μf+24e aαδ
1+δxA′xδμf − 24e3aαδ

1+δxA′xδμf+

36e aαδ
1+δx A′x2δ2μf − 36e3aαδ

1+δxA′x2δ2μf+24e aαδ
1+δx A′x3δ3μf −

24e3aαδ
1+δxA′x3δ3μf+6e aαδ

1+δx A′x4δ4μf − 6e3aαδ
1+δxA′x4δ4μf+

2a3 e
2aαδ
1+δx α3δ5C[1]μnf − a3α3δ5C[2]μnf − a3 e

4aαδ
1+δx α3δ5C[2]μnf

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

6
(
− 1 + e4aαδ

1+δx
)
δ2 (1 + δx)3μnf

,

C[5]= 1 / 2
(
1 − a2),C[6]= −

(
1

2a

)

,

C[7] = − 1 /(2 a) ( − 1 /(12(1 + δx)4 kf μf )a
(

6a2(1 + δx)4 knf μf + 3 /2e2aαδ
1+δx (1 + δx)2

(
3 + δ(6 x+ 3x2δ+ 2a2α2δ))η C[1]2kf μnf −

2a4α4δ4ηC[1] C[2]kf μnf + 3 /2e− 2aαδ
1+δx (1 + δx)2

(3 + δ(6 x+ 3x2δ + a2α2δ))η C[2]2kf μnf ) − 1 /(12(1 + δx)4 kf μf )

C[8]=− 1/(16a(1+δx)2μf )e−
2aαδ
1+δx(3ηC[1]2μnf − 3e4aαδ

1+δxηC[1]2μnf +6xδηC[1]2μnf − 6e4aαδ
1+δxxδηC[1]2μnf+3x2δ2ηC[1]2μnf − 3e4aαδ

1+δxx2δ2ηC[1]2μnf+

2a2α2δηC[1]2μnf − 2a2e4aαδ
1+δxα2δ2ηC[1]2μnf − 3ηC[2]2μnf+ 3e4aαδ

1+δxηC[2]2μnf − 6xδηC[2]2μnf+ 6e4aαδ
1+δxxδηC[2]2μnf − 3x2δ2ηC[2]2μnf+

3e4aαδ
1+δxx2δ2ηC[2]2μnf − 2a2α2δηC[2]2μnf+ 2a2e4aαδ

1+δxα2δ2ηC[2]2μnf .. 
Final form of the solutions can be found by using the limitation of p∗→1 in. 
C[8]=− 1/(16a(1+δx)2μf )e−

2aαδ
1+δx(3ηC[1]2μnf − 3e4aαδ

1+δxηC[1]2μnf +6xδηC[1]2μnf − 6e4aαδ
1+δxxδηC[1]2μnf+3x2δ2ηC[1]2μnf − 3e4aαδ

1+δxx2δ2ηC[1]2μnf+

2a2α2δηC[1]2μnf − 2a2e4aαδ
1+δxα2δ2ηC[1]2μnf − 3ηC[2]2μnf+ 3e4aαδ

1+δxηC[2]2μnf − 6xδηC[2]2μnf+ 6e4aαδ
1+δxxδηC[2]2μnf − 3x2δ2ηC[2]2μnf+

3e4aαδ
1+δxx2δ2ηC[2]2μnf − 2a2α2δηC[2]2μnf+ 2a2e4aαδ

1+δxα2δ2ηC[2]2μnf .. 
Final form of the solutions can be found by using the limitation of p∗→1 in equation (27). 

4. Entropy analysis 

The standard shape of entropy equation is [29–33] 

Sgen = knf

(
∇T
T0

)2

+
μnf

T0

1
2

traceA1
2, (40) 

In component form, equation (40) can be expressed as 

Sgen =
knf

T0
2

[(
∂T
∂r

)2

+

(
1
r

∂T
∂θ

)2

+

(
∂T
∂y

)2
]

+
μnf

T0

[

2
(

∂u
∂r

)2

+

(
∂w
∂r

+
1
r

∂u
∂θ

−
w
r

)2

+

(
1
r

∂v
∂θ

−
∂w
∂y

)2

+

(
∂v
∂r

−
∂u
∂y

)2

+2
(

1
r

∂w
∂θ

+
u
r

)2

+2
(

∂v
∂y

)2
]

(41) 

Using formulas displayed in Eq. (7) in aforementioned equation (41), we have 
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Ns =
knf

kf

[

α2
(

∂ϑ
∂x

)2

+ξ2
(

1
1+δx

∂ϑ
∂z

)2

+

(
∂ϑ
∂y

)2
]

+
Br
Ω

[

2ξ2α2
(

∂u
∂x

)2

+

(

α∂w
∂x

+
ξ2

1+δx
∂u
∂z

− αδ
w

1+δx

)2

+

(
ξ2

1+δx
∂v
∂z

+
∂w
∂y

)2

+

(

ξα∂v
∂x

+ξ
∂u
∂y

)2

+2
(

ξ
1+δx

∂w
∂z

+αξδ
u

1+δx

)2

+2ξ2
(

∂v
∂y

)2
]

(42) 

Injecting physical constraint of small wave number in equation (42), we have 

Ns =
knf

kf

[

α2
(

∂ϑ
∂x

)2

+

(
∂ϑ
∂y

)2
]

+
Br
Ω

[(

α ∂w
∂x

− αδ
w

1 + δx

)2

+

(
∂w
∂y

)2
]

, (43)  

where NS in equation (43) is entropy generation number and some new found expressions are stated below 

Ns =
Sgen

SG
, SG =

kf (T1 − T0)
2

T0
2h2

,Ω=
(T1 − T0)

T0
.

Bejan number Be is the ratio of heat entropy and the whole system entropy and is given below in equation (44) 

Be=

knf
kf

[

α2
(

∂ϑ
∂x

)2

+

(
∂ϑ
∂y

)2
]

knf
kf

[

α2

(
∂ϑ
∂x

)2

+

(
∂ϑ
∂y

)2
]

+ Br
Ω

[(

α ∂w
∂x − αδ w

1+δx

)2

+

(
∂w
∂y

)2
] . (44)  

5. Results and discussion 

In this section, we’ve made a number of graphs that illustrate how different physical characteristics like temperature, velocity, 
entropy production, Bejan number, and stream function affect different profiles. We can learn about the behavior of the system under 
examination by studying these graphical elements. We have supplied Fig. 2(a-d)–10 in order to investigate the study’s findings. By 
developing residual error changing charts, Fig. 2 suggests the parametric value ranges of certain relevant problem components. Figs. 3 

Fig. 2. Residual error curves (a) for φ (b) for δ (c) for E1 (d) for E2.  
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and 4 depict velocity fluctuations with respect to coordinate y, allowing us to observe the impacts of the curvature aspect ratio, 
amplitude ratio, elastic tension E1, and mass per unit volume E2. Temperature profiles for various values of the parameter δ and E1 are 
shown in Figs. 5 and 6. Furthermore, we used Figs. 7 and 8 to show the entropy generation curves, which show the system’s irreversible 
losses. Figs. 9 and 10 examine the Bejan number, which is a measure of the system’s heat transmission efficiency. Finally, Fig. 11(a–c) 
and 12(a-c) show the streamlines, which provide a visual representation of the system’s flow patterns. We may acquire a full un-
derstanding of the system’s behavior under various conditions by evaluating all of these graphs together. 

5.1. Residual error 

In this part, we draw a Table 2 and sketch graphs for various graphs showing the accuracy of the results collected through the 
solution section. From the table and graphs we can also imagine about possible ranges of the parameters on which the solution remains 
convergent. In this regard, Fig. 2 is placed with part (a) showing curves of residual error for the aspect ratio factor φ (b) for the 
curvature ratio δ (c) for the elastic tension E1 and (d) for the mass per unit volume constant E2. It can be demonstrated from these 
figures that if we fix an upper error bound as E ≤ 1.4× 10− 7, the possible parametric intervals satisfying the prescribed error bound 
suggest that the approximate suitable range are 0≤ φ ≤1,0.1≤ δ ≤3.1,1 ≤ E1 ≤ 2,0 ≤ E2 ≤ 1.. 

5.2. Flow velocity 

Fig. 3(a and b) illustrates that the velocity decreases as the curvature aspect ratio δ and amplitude ratio φ increase. A curved duct’s 
aspect ratio is the ratio of its radius of curvature to its hydraulic diameter. The diameter of a circular pipe with the same cross-sectional 
area as the duct is described as the hydraulic diameter. A curved duct’s aspect ratio can have a substantial impact on the axial velocity 
of the fluid flowing through it. A smaller aspect ratio (i.e., a tighter curvature) can lead to higher axial velocity, whereas a wider aspect 
ratio (i.e., a more gradual curvature) can lead to lower axial velocity. Because of the way fluid travels via a curved conduit, this effect 
happens. This centrifugal force causes the fluid velocity to increase perpendicular to the direction of flow, causing the axial velocity to 
decrease. As a result of this centrifugal force, the fluid velocity, perpendicular to the flow direction is rising while falling in the axial 
direction. Conversely, when the aspect ratio is larger, the centrifugal force is weaker, and the decrease in axial velocity is less pro-
nounced. In practical applications, the effect of aspect ratio on axial velocity can have important implications for the design and 
performance of duct systems. For example, in fluid transport systems, a more gradual curvature (i.e., larger aspect ratio) may be 
necessary to prevent excessive turbulence and pressure losses. Fig. 3 also shows that the velocity varies inversely with the bigger the 
influence of the amplitude ratio φ. This underlines the physical fact that a larger amplitude of the peristaltic wave than the duct height 
results in a slower fluid flow. This is explained by the fact that a larger peristaltic wave transmits more energy to the fluid particles in 
the vertical direction to the flow side, resulting in a decrease in their velocity. This figure also contains a three dimensional graph of the 
velocity which reflects that in the axial direction of z-axis, the velocity curves are showing sinusoidal wave nature which represents 
that in a small interval 0 < z< 0.33 and 0.66 < z< 1, the velocity remains negative and in the interval 0.33 < z< 0.66, it is positive. It 
implies that in peristaltic motions, the fluid particles are pushed forward after a uniform interval by stretching the remaining particles 
backward by boundary contraction. This is accomplished by the extension and compression of the flexible surface walls. 

In Fig. 4(a), higher elastic tension (E1) causes the fluid particles to push forward, resulting in a similar behavior to that shown in the 
aspect ratio graph. The compliant walls in peristaltic flow refer to the walls of the conduit that are elastic or flexible. These walls can 
adjust in response to the regular contracting waves moving along the conduit, which might influence the flow behavior of the fluid 
flowing in the container. The elastic stretch of the walls, or their opposing ability to distortion, is a significant component in this 
situation. The elastic tension of compliant walls may have a substantial effect on the velocity of peristaltic flow. More specifically, a 
greater elastic tension has the potential to increase flow velocity whereas a lower elastic tension has the potential to decrease flow 
velocity. This effect is brought about by the elastic tension of the walls, which affects the pressure gradient that propels fluid flow. 
Greater pressure gradient and resistance to deformation are produced by more elastic walls, which boost flow velocity. In contrast, less 

Fig. 3. Axial velocity variation with respect to aspect ratio δ and φ, (a) two dimensional (b) three dimensional.  
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Fig. 4. Axial velocity variation with respect to the elastic tension E1, (a) two dimensional (b) three dimensional.  

Fig. 5. Heat transfer for the aspect ratio δ (a,b) for silver particles.  
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Fig. 6. Heat transfer for E1 (a,b) for silver particles.  

Fig. 7. Entropy generation for mass per unit area E2.  
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elastic barriers bend more readily and produce a smaller pressure gradient, which lowers flow velocity. The form and propagation of 
the peristaltic waves themselves can also be impacted by the elasticized strain of the boundaries. More elastic barriers allow the waves 
to be propelled more efficiently while maintaining their amplitude and shape. Lower flow velocity may come from the walls’ reduced 
elasticity, which may soften the waves and lessen their amplitude. When constructing peristaltic devices, it is important to consider 
how elastic tension influences the velocity of peristaltic flow in real-world applications. For example, the peristaltic pump, a piece of 
medical equipment used to administer drugs, have walls with elastic tension that may change the drug’s dose and flow rate to the 
patient. The system’s effectiveness and performance may be impacted by the elastic tension in industrial applications like fluid mixing 
and transport. This figure also demonstrates how the velocity function is directly inversely proportional to the effect of the compliant 
walls’ mass per unit factor E2. This demonstrates that the fluid speed increases as the mass per unit of the compliant walls increases. 

Fig. 8. Entropy generation for damping force E3.  

Fig. 9. Bejan number for the curvature α.  

Fig. 10. Bejan number for the elastic tension E1.  
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Fig. 11. (a,b,c): Flow pattern for E1.  

Fig. 12. (a,b,c): Flow pattern for δ.  

Table 2 
Method’s convergence and valid parametric range.  

Fixed parameters Parametric range Residual error |RE| ≤ 1.4× 10− 7 

μf= 3.55,
α= 0.1, z= 0.3,
t= 0.6,
φ= 0.8,
E3= 1.1, x= 0.2,
y= 0.5 

φ δ E1 E2 

0.0 0.1 0.12 0.1 1.4512× 10− 9 

0.2 8.30717× 10− 10 

0.4 4.04675× 10− 10 

0.6 1.46851× 10− 10 

0.8 2.59599× 10− 11 

1.0 0.0000000 
0.1 0.1 0.12 0.1 9.91356× 10− 10  

0.9   1.05491× 10− 7  

1.7   1.44462× 10− 7  

2.5   1.45316× 10− 7  

3.3   1.36395× 10− 7  

4.1   1.25685× 10− 7  

4.9   1.15439× 10− 7 

0.1 0.12 1 0.1 7.33872× 10− 9   

1.2  8.60743× 10− 9   

1.4  9.87613× 10− 9   

1.6  1.11448× 10− 8   

1.8  1.24135× 10− 8   

2  1.36822× 10− 8 

0.1 0.12 1 0 6.70437× 10− 9    

0.2 7.97307× 10− 9    

0.4 9.24178× 10− 9    

0.6 1.05105× 10− 8    

0.8 1.17792× 10− 8    

1.0 1.30479× 10− 8  
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This can be explained by the fluid particles’ increased velocity due to the flexible barriers’ encouragement of faster transit. On the other 
hand Fig. 4(b) is a three dimensional view of the same function under similar variations of the parameter. It is obvious to note from this 
part that velocity curves are showing up and down behavior along the axial coordinate z which is due to the peristaltic type of 
nanolfuid motion, however similar curves are found along the domain of x coordinate. 

5.3. Heat transfer 

The temperature profile’s behavior in relation to the curvature aspect ratio parameter δ is depicted in Fig. 5(a–d). According to the 
graph, a greater fluid flow temperature is caused by a bigger curvature aspect ratio. It can be explained as when the values of aspect 
ratio is increased the isothermal bolus expands which means that the heat is transferred at higher rate as compares to the previous 
graph. This suggests that a rectangular curved duct is preferable to a square-shaped arrangement for heat transfer. This happens as a 
result of a higher surface area-to-volume ratio, which expands the region where heat transmission can take place. Furthermore, a 
greater aspect ratio might result in more complicated flow patterns inside the duct, which can boost turbulence and convectional heat 
transfer. Additionally, a reduced aspect ratio may result in the duct’s flow patterns being simpler, which can lessen turbulence and 
restrict the convection of heat. In applications like heat exchangers, where heat transfer efficiency is crucial, the impact of aspect ratio 
on heat transfer in curved ducts is especially pertinent. It is possible to obtain the desired heat transfer rate in these applications by 
optimizing the aspect ratio of the curved duct while reducing pressure drop and other performance variables. Additionally, it has been 
found that copper nanoparticles transfer heat more quickly than silver particles. The middle of the flow region has greater heat 
transmission than the boundaries, according to the altitude of the curves from the left to right boundaries. According to the graph, 
copper particles transfer heat more quickly than silver nanoparticles. The effects of the factor E1 on the thermal profile are shown in 
Fig. 6(a–d). It is clear that the isothermal contours are expanded by large impact of the parameter which means that rate of thermal 
exchange is accelerated by the compliant walls’ elasticity. It is crucial to remember that as greater values for the elastic tension 
parameter are provided, the temperature differences between copper (Cu) and silver (Ag) particles grow, accordingly. The system’s 
compliant walls have elasticity, which means they can bend or stretch in response to applied forces. The flexibility of these walls is 
critical in permitting the previously indicated faster rate of thermal exchange. It indicates that the dynamic responsiveness of the walls 
to external pressures improves thermal transfer efficiency inside the system. 

5.4. Entropy generation 

The entropy generation function, which is a crucial component to understanding the heat loss during the flow, is seen in Figs. 7 and 
8. The mass per unit area E2 of compliant walls in a peristaltic flow system can have a considerable effect on entropy creation, which is 
a measure of the degree of irreversibility in a thermodynamic process. The deformation and movement of the walls are influenced by 
the mass per unit area of the walls, which in turn impacts the flow patterns and heat transmission in the system and alters entropy 
generation. A higher mass per unit area of the compliant walls can lead to an increase in entropy generation as observed in Fig. 7. This 
occurs because a higher mass per unit area results in stiffer walls that are more resistant to deformation, which increases the pressure 
drop and flow resistance in the system. This increase in flow resistance leads to more viscous dissipation, which is a source of entropy 
generation. Additionally, the higher mass per unit area can reduce the deformability of the walls, leading to less efficient pumping 
action and further increase in entropy generation. It is also worth noting that the least entropy may be obtained at the conduit’s central 
line, although it grows significantly towards the lower and higher surfaces for both parametric variation and the independent coor-
dinate y. Furthermore, the entropy generation rate of copper (Cu) particles is found to be greater than that of silver (Ag) particles. Fig. 8 
suggests the opposite scene for viscous damping force on the profile of entropy generation. It can be found that entropy generation 
becomes smaller for large viscous damping force E3 and it goes to zero at the central point of the domain y= 0, however for copper 
particles it remains lower than the silver particles. This indicates that larger damping force levels tend to diminish or enhance entropy 
within the system. 

5.5. Bejan number curves 

Fig. 9 shows the Bejan number plotted against the curvature aspect ratio. It illustrates how the Bejan number fluctuates in the 
corners but stays constant in the middle. This indicates that while the total entropy is greater than the thermal entropy along the walls, 
the entropy produced by thermal exchange in the flow is more than the total entropy at the center flow position, y∈ [ − 0.2, 0.2]. 
Moreover, more energy is lost in the center than on the other sides due to the high heat transfer rate. Additionally, the graph dem-
onstrates that while the mid-region exhibits the opposite tendency, Cu particles produce more uniform entropy than Ag particles along 
the side walls. Notably, the entropy ratio is unaffected by the variation in aspect ratio at the center point (y= 0). The inverse effect of 
the walls’ elastic tension (E1) on the entropy ratio is shown in Fig. 10, which implies that the thermal entropy is lower than the overall 
entropy. The graph demonstrates that the Bejan number of Cu particles is lower than that of Ag particles. It is also noteworthy that 
while the curves show variance on the corner sides, the Bejan number’s behavior is unaffected in the middle. 

5.6. Streamlines 

The flow pattern and bolus phenomena for various conduit elastic tension values are shown in Fig. 11. From left to right, the graph 
is divided into four quadrants. It is evident in the first quadrant that as E1 rises, so does the bolus size. The bolus size, however, grows in 
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the second quadrant. The remaining two parts of the graph show comparable tendencies. Compliant walls are essential in peristaltic 
flow because they produce the wave-like motion that forces fluid through a duct. The creation and spread of the boluses, the fluid 
regions that are propelled forward by the peristaltic wave, can be impacted by elastic tension in the compliant walls. The compliant 
walls stiffen and lose some of their flexibility when they are under tension. As the peristaltic wave travels down the tube, this may have 
an impact on the size and shape of the boluses that form. Because the walls are more rigid, they can withstand deformation and 
movement, resulting in narrower, longer boluses that advance more slowly. This may lead to lower mixing and transit efficiency, as 
well as slower flow rates. On the other hand, the compliant walls are more malleable and easier to follow the flow of the fluid when 
they are not under tension. This can result in boluses that are pushed forward more quickly and are wider and shorter. This may lead to 
higher flow rates, better mixing, and more effective conveyance. We can infer from Fig. 12’s discussion of the trapping bolus 
mechanism for the curvature ratio that, while the bolus size does not change in the first and third quadrants, it does fluctuate randomly 
in the second and third quadrants when the curvature ratio varies. 

5.7. Comparison with existing literature 

Fig. 13 is drawn to examine the comparison of current work with the existing literature done by Alfwzan, Wafa F. et al. [37]. This 
graph not only depicts the current work matching with previous study through limiting a specific parameter φ= 0 (neglecting the 
nanofluid effects) but also equate the current nanofluid analysis with viscous fluid case. We can judge from this graph that current 
work is overlapping the previous readings made by Alfwzan, Wafa F. et al. [37] if we neglect the nanoparticles volume fraction φ which 
shows that the current data is accurate. Moreover, if we do not neglect the said factor, we can see that the velocity goes down for 
nanofluid as compared to the simple base fluid. 

6. Conclusions 

In this study, the authors have focused on gathering data for three-dimensional, wavy nanofluid flow involving two distinct particle 
types (Ag and Cu) and on analyzing the formation of entropy that occurs during the heat transfer. Assuming a curved duct configu-
ration, the governing equations for this have been found and simplified using a three-dimensional cylindrical system followed by the 
relevant curvilinear transformations. There are some physical limitations in place, such as long wavelength and low Reynolds number. 
The homotopy perturbation approach has been used to solve the obtained systems of partial differential equations up to second order. 
Through the practice of including amounts in cases of several important flow parameters, the findings have been given and illustrated 
graphically. Following are some major findings from the graphical approach:  

• It is determined that the aspect ratio of the duct section and the surface elasticity created by the compliant walls are directly 
connected to the flow speed.  

• Curvature aspect ratio and amplitude ratio cause the velocity field to decrease, yet quicker flow is produced by the mass of the 
compliant walls and the elasticity of the walls.  

• It is also known that Ag particles emit less heat than Cu particles when all other factors are held constant. It is found that the density 
of the walls generates a lot more entropy than the damping force. Furthermore, it is shown that copper (Cu) particles produce less 
entropy than silver particles Ag.  

• It is concluded that the speed of flow is directly correlated with the aspect ratio of the duct section and the surface elasticity 
produced by the compliant walls.  

• The velocity field is decreasing with curvature aspect ratio and amplitude ratio, but the elasticity of the walls and the mass of the 
compliant walls produce faster flow. 

Fig. 13. Comparison of current work with Alfwzan, Wafa F. et al. [37].  
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• It is also acknowledged that, when all other parameters are held constant, Cu particles produce more heat than Ag particles. It is 
obtained that the walls density produces much entropy than what damping force creates. It is further noted that silver particles Ag 
generate more entropy than copper Cu.  

• Theoretically, for characteristics like curvature aspect ratio, heat exchange generates less entropy than total energy loss; however 
the elasticity of the walls generates a lot of entropy.  

• The growing variation in the border elasticity causes stream boluses to enlarge in size, but their number is found to be unaffected.  
• From three dimensional views, it is interesting to examine that the velocity profile follows the wavy path along the axial direction 

which reflects the effects of curvature on the flow attributes.  
• Accuracy of the results has been established from the residual graphs. 

7. Future directions  

• Following the conclusions presented above, the following are some potential future lines of inquiry:  
• Analyzing the effects of various nanoparticle types on the three-dimensional, wavy flows of nanofluids and the entropy they 

generate during heat transfer.  
• Analyzing how different duct forms and geometries affect the flow characteristics and entropy generation in nanofluids.  
• Examining the effects of extra variables on the flow and entropy production of nanofluids, such as base fluid viscosity, particle 

volume fraction, and thermal conductivity of the nanoparticles.  
• Developing new analytical or numerical methods to solve the governing equations of entropy generation and nanofluid flows more 

precisely and effectively.  
• Performing experiments to verify the theoretical conclusions and look into the applicability of the events that are being observed. 
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Nomenclature 

Symbol Definition 
u, w, v Cylindrical coordinate 
b Wave amplitude 
t Time 
a Wave height function 
L Length of rectangular duct 
p Pressure 
h Height of rectangular duct 
d Distance 
T Temperature 
k Thermal conductivity 
cp Heat capacity 
Pr Prandtl number 
Re Reynolds number 
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Br Brinkman number 
E1 Flexure rigidity 
E2 Mass per unit area 
E3 Viscous damping force 
Be Bejan number  

Greek symbol 
α Cross sectional aspect ratio 
ϑ Dimensionless temperature 
λ Wavelength 
μ Viscosity 
η Dynamic viscosity 
φ Amplitude ratio 
δ Curvature aspect ratio 
ξ Wave number 
ρ Density  

Subscripts 
F Fluid 
nf Nano fluid 
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