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Summary

Super-resolved microscopy techniques have revolutionized
the ability to study biological structures below the diffraction
limit. Single molecule localization microscopy (SMLM) tech-
niques are widely used because they are relatively straight-
forward to implement and can be realized at relatively low
cost, e.g. compared to laser scanning microscopy techniques.
However, while the data analysis can be readily undertaken
using open source or other software tools, large SMLM data
volumes and the complexity of the algorithms used often lead
to long image data processing times that can hinder the it-
erative optimization of experiments. There is increasing in-
terest in high throughput SMLM, but its further development
and application is inhibited by the data processing challenges.
We present here a widely applicable approach to accelerat-
ing SMLM data processing via a parallelized implementation
of ThunderSTORM on a high-performance computing (HPC)
cluster and quantify the speed advantage for a four-node clus-
ter (with 24 cores and 128 GB RAM per node) compared to
a high specification (28 cores, 128 GB RAM, SSD-enabled)
desktop workstation. This data processing speed can be read-
ily scaled by accessing more HPC resources. Our approach is
not specific to ThunderSTORM and can be adapted for a wide
range of SMLM software.

Introduction

Super-resolved microscopy (SRM) techniques, including
structured illumination approaches (Gustafsson, 2000;
Gustafsson, 2005), stochastically switched single molecule
localization techniques such as photo activated localization
microscopy (PALM) (Betzig et al., 2006; Hess et al., 2006)
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and stochastic optical reconstruction microscopy (STORM)
(Rust et al., 2006), and RESOLFT (Hofmann et al., 2005) tech-
niques such as stimulated emission depletion microscopy (Hell
& Wichmann, 1994; Klar et al., 2000) are transforming opti-
cal microscopy and providing new opportunities to study bi-
ology at scales below the classical diffraction limit. Although
the early commercial implementations of SRM were relatively
expensive compared to established optical microscopy instru-
mentation, there have been significant advances towards in-
creasing access to SRM, e.g. in terms of lower cost excitation
sources and detectors and openly shared data analysis tools.

Single molecule localization microscopy (SMLM) tech-
niques, such as STORM and PALM, have relatively simple
requirements for instrumentation, making them accessible to
a broad spectrum of researchers. They utilize sequential acti-
vation and localization of ‘switchable’ fluorophores to create
super-resolved images, where the resolution is primarily de-
termined by the ability to localize individual emitters. During
the image acquisition, a subset of fluorophores is stochastically
activated to a fluorescent state at any given time, such that
the position of each fluorophore can be determined with high
precision by determining the centre of the recorded intensity
distribution. Activation and deactivation can be realized in
many ways, e.g. by photoswitching fluorophores to emit in
the detection band or otherwise, by photobleaching to termi-
nate emission or by utilizing appropriate chemical buffers to
facilitate reversible photoswitching of fluorophores in and out
of dark states, as demonstrated in the technique described as
dSTORM (Heilemann et al., 2008).

SMLM can particularly benefit from the use of low-cost,
high power, multimode laser diodes (Kwakwa et al., 2016)
and low-cost CCD (Holm et al., 2014) or CMOS cameras (Diek-
mann et al., 2017; Ma et al., 2017), which can be used with
existing wide-field fluorescence microscopes or with low-cost
custom-built microscope frames [1212]. Access to SRM capa-
bilities for academic researchers is further enhanced by freely
available SMLM data processing tools, such as those listed in
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http://bigwww.epfl.ch/smlm/software/index.html. Although
all of these tools will enable SMLM, there are different trade-offs
in performance and these have been elegantly summarized in
Sage et al. (2015) for many of the most prevalent SMLM soft-
ware tools.

SMLM techniques are increasingly incorporated in cell biol-
ogy and other research programmes where they routinely pro-
vide image resolutions better than 50 nm. Automated SMLM
could provide powerful readouts of assays for drug discovery or
systems biology and extending SMLM to higher throughput is
an exciting prospect, recognizing the importance of robust sta-
tistical analysis over many samples and noting the potential to
average over labelling artefacts. However, SRM techniques are
generally slower than conventional intensity imaging tech-
niques and the concomitant data processing presents a sig-
nificant challenge. Even for manual microscopy experiments,
SMLM data sets can exceed 50 GB per field of view, particularly
for 3D image data with large (120 × 120 µm) fields of view
(FOV) (Kwakwa et al., 2016), for which the data processing
can require 10’s of minutes to hours on a standard desktop
computer.

To date, there has been considerable work to increase SMLM
data processing speeds. Typically, SMLM software is run on
relatively powerful multicore desktop computer workstations,
often integrated with the SMLM laboratory instrumentation.
Although the SMLM data processing speed may be increased
by upgrading the computer workstation, this provides dimin-
ishing return on investment once a configuration like that
discussed below is reached [i.e. 28 cores, 128 GB RAM, graph-
ics processing unit (GPU) and SSD-enabled] and many lab-
oratories will use lower performance computers. Significant
effort has been directed towards optimizing code and comput-
ing performance of SMLM data processing software (Wolter
et al., 2012) and GPUs) have been utilized for faster processing
(Smith et al., 2010; Brede & Lakadamyali, 2012; Wang et al.,
2012; Kechkar et al., 2013; Li et al., 2018). New, faster, lo-
calization algorithms have been devised, for example moving
from the early SMLM approaches based on iterative fitting of
sparse emitters to Gaussian profiles (e.g. Betzig et al., 2006;
Rust et al., 2006) to algorithms able to fit higher densities
of emitters with overlapping point spread functions (Holden
et al., 2011; Wang et al., 2012; Zhu et al., 2012) to noniter-
ative localization techniques (e.g. Henriques et al., 2010; Yu
et al., 2011; Parthasarathy, 2012; Liu et al., 2013; Ma et al.,
2015; Martens et al., 2018). After trying a number of different
SMLM software tools to analyse our large (120 × 120 µm)
field of view dSTORM data sets (often > 50 GB), we found
ThunderSTORM (Ovesný et al., 2014) with iterative fitting of
SMLM data to Gaussian point spread function (PSF) to provide
the most useful combination of functionality and processing
speed, noting that the benchmarking in Sage et al. (2015)
supported this choice.

Higher throughput automated SMLM has already been
demonstrated in pioneering work using PALM (Holden et al.,

2014), dSTORM and DNA PAINT (Beghin et al., 2017) and
could be beneficial for many SRM-based studies but the
image data processing presents challenges with respect to
long processing times that scale with the imaging through-
put achieved. For the high throughput dSTORM reported in
Beghin et al. (2017), the authors argued that postprocessing
the SMLM data would lead to unacceptable delays in the work-
flow and so they acquired and processed their dSTORM data
on-the-fly, making the use of rapid GPU accelerated analysis
software (Kechkar et al., 2013). Eight hours were required to
image 96 cells in 96 wells and they observed that the buffers
used to induce the fluorophore blinking led to degradation
of the imaging performance over time (with �10 h being a
practical limit for a dSTORM experiment). This limited the
number of cells that could be imaged in a screen. For many
high throughput applications, it would be important to in-
crease the numbers of cells imaged per well. This could be
addressed by imaging more cells in larger FOV and we note
that the use of multimode optical fibres to efficiently deliver
100 s mW of excitation power from low-cost multimode diode
lasers to the sample enables dSTORM of FOV >100 × 100 µm
to be routinely acquired (Kwakwa et al., 2016). Comparing
this to the 20.5 × 20.5 µm FOV reported for (Beghin et al.,
2017) suggests that high throughput dSTORM can be sig-
nificantly accelerated if SMLM data are acquired for larger
FOV (i.e. containing many more cells), but this would signif-
icantly increase the burden of data processing and so would
increase the total acquisition time required if the SMLM data
are processed on the fly. The large data volumes would also
challenge the available on-board GPU memory. We therefore
conclude that higher throughput SMLM would benefit signifi-
cantly from higher speed data postprocessing of the large data
sets resulting from SMLM data acquisition across large FOV.

To accelerate the postprocessing of SMLM data, we fur-
ther parallelized an open source SMLM image analysis tool,
ThunderSTORM, by running multiple instances simultane-
ously on subsets of the data on a high-performance comput-
ing (HPC) cluster, which provides a cost-effective means to
accelerate SMLM data processing that can be readily scaled
to utilize additional HPC resource for high throughput ap-
plications. Here, we demonstrate its application to exemplar
experimental dSTORM data, although we note that the im-
age processing tools we discuss below could be applied to
any SMLM analysis method that can be easily divided into
smaller independent processing tasks. Our implementation
with ThunderSTORM utilizes the open-source Bio-Formats li-
brary (Linkert et al., 2010) to prepare the data for parallel
processing and could be adapted for any SMLM analysis soft-
ware available as an ImageJ (Schindelin et al., 2015) plug-in
that analyses subsets of the data independently. Relatively
minor modifications to our code would enable the chosen
SMLM analysis plug-in to be run on HPC resources with-
out modification to the plug-in and with minimal manual
intervention.
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Fig. 1. Schematic of SMLM data analysis workflow.

One potential disadvantage of using centralized HPC re-
sources is the use of queuing protocols that do not return
immediate results. Since we are also interested in realising
SMLM analysis in close to real-time, such that the results can
inform ongoing imaging experiments, we have implemented
HPC ThunderSTORM on a dedicated four-node cluster (with
24 cores and 128 GB RAM per node) that provides a pri-
ority queue for immediate processing. This can be relatively
cost-efficient compared to purchasing high end desktop work-
stations, as well as providing sufficient RAM to accommodate
large SMLM data sets and the possibility to readily scale to
further nodes as required. We have not utilized GPU process-
ing, noting that, while GPU nodes are available for HPC clus-
ters, they are relatively expensive and require more specific
programming expertise. Although this could be addressed in
future extensions of our work, we speculate that scaling up the
SMLM analysis rate by using more standard HPC processing
nodes may be more cost-effective than investing in arrays of
GPU nodes.

We were also interested to compare the processing speed
of SMLM data processing using iterative fitting of emitters to
Gaussian profiles with a noniterative localization technique
and have taken advantage of the recent availability of the
ThunderSTORM plug-in providing noniterative phasor-based
localization (Martens et al., 2018) for SMLM to provide such a
comparison. Although the resulting super-resolved images are
not the same as those generated by iterative fitting, the pha-
sor localization approach provides images relatively rapidly
for both 2D and 3D SMLM data when implemented on a rea-
sonably fast desktop computer – even for large data sets. If
this is implemented on the data acquisition computer, there
would be no delay in copying data and the phasor-localization
approach could provide ‘preview images’ feedback to SMLM
users while their experiments are still underway.

Parallelization of SMLM analysis for HPC

Our software consists of a suite of Bash Linux shell scripts
and macros written in the ImageJ macro language. It has
been developed and tested running the open-source Im-
ageJ plugin ThunderSTORM (Ovesný et al., 2014; https://
zitmen.github.io/thunderstorm/) on an HPC cluster that uses
open-source PBS Professional (http://www.pbspro.org/) for
job scheduling and workload management. In general, the
data processing pipeline for SMLM can be considered in four
key stages, as depicted in Figure 1, of which the second and
most intensive is that of localizing each emitter in each frame
of the acquired image data. This is followed by a postpro-
cessing stage to apply drift correction and filters to the lo-
calization data set, which may require manual user inter-
vention to determine appropriate settings or which can be
automated, and then by an image visualization stage that ren-
ders the processed localization data set as super-resolved im-
age(s). Where the SMLM data processing requires more time
than the data acquisition, it is often convenient to analyse
multiple SMLM data sets ‘offline’ after an image acquisition
session. This could be appropriate for manual microscopy with
large FOV or for an automated high throughput SMLM sys-
tem. Accordingly, we have developed two workflows for SMLM
processing: ‘Parallel mode’ and ‘Batch mode’, which each run
using a single set of scripts, in order to simplify software main-
tenance.

Parallel mode

This mode has been developed to enable users to analyse a
large SMLM data set as quickly as possible by sharing the lo-
calization task between multiple HPC nodes. The paralleliza-
tion strategy assumes that the processing of each frame in
the raw data to find the localizations is independent of all
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the other frames. Subsets of the raw image data can there-
fore be processed independently and in parallel by each avail-
able node in the cluster. This is analogous to the approach
taken internally by the ThunderSTORM plug-in to more ef-
fectively utilize the multiple processing cores available in a
single computer node. In practice, however, we found that a
single instance of ThunderSTORM running on a node typi-
cally still does not fully utilize all the available CPU resources
and so further improvements in processing time can be ob-
tained by further subdividing the data and running multiple
instances of ThunderSTORM in parallel on each node. This
parallel approach can provide a considerable improvement in
the intensive localization processing stage. The tables of local-
izations obtained from each node are merged into a single file
to be processed on a single node since the subsequent steps,
such as postprocessing on the table of localizations and gener-
ating images, do not add significantly to the total processing
time. For convenience, preview images can be automatically
and rapidly generated from the filtered localization table to in-
form the user when optimizing both experimental and data
analysis parameters. This could help users, e.g. to quickly
judge the success of a given experimental protocol, or to decide
whether further postprocessing is necessary or to identify fea-
tures or regions in the field of view on which to concentrate the
analysis.

Batch mode

This mode is intended for use where a number of SMLM data
sets are to be automatically processed with no manual user
intervention, e.g. after acquisition of a z-stack or an array of
samples. In this mode, each available cluster node is used to
sequentially process the SMLM data corresponding to a single
FOV – from localization to postprocessing – thereby avoiding
the overhead associated with the copying of the raw data to
several different nodes. On each node, significant reductions in
processing time can still be obtained by splitting the job among
multiple instances of ThunderSTORM to more effectively uti-
lize each node’s processing resources.

Postprocessing and visualization

After the raw localization data have been generated, it must
be interleaved again if multiple ThunderSTORM instances are
use, and then a number of processing steps can be applied, in-
cluding thresholding, sigma filtering drift correction and com-
bining multiple localizations occurring in subsequent frames
that represent a single emitter. Note that the postprocessing
stage is not parallelized and operates on the entire data set.
These postprocessing steps might be selected manually, with
the user trying different settings in order for the user to optimize
setting for a final SMLM image. Alternatively, a predetermined
set of settings could be used to automate the postprocessing

steps, as would be appropriate if a large number of images were
being analysed in batch mode.

The visualisation step entails rendering the corrected (i.e.
postprocessed) localization data to produce the desired super-
resolved image. There are a number of approaches to visual-
ization available in ThunderSTORM, including convolving the
localization table with a Gaussian function, ‘average shifted
histogram’, ‘scatter plot’ and ‘histograms’. Typically, this com-
putation is much faster than the localization and it is not
worth the overhead to parallelize this task between multiple
HPC cores. However, given that this stage makes little advan-
tage of available parallel CPU resources on a single node, it
would be possible to generate multiple super-resolved images
by running visualization jobs in parallel on a single node us-
ing different jobs to implement different approaches or settings
applied to the same SMLM data set.

Methodology

Our approach utilizes the ImageJ (https://imagej.nih.gov/ij/)
open-source image-processing platform with the Bio-formats
ImageJ plug-in, developed as part of the Open Microscopy En-
vironment, providing the capability to load subsets of data
from the raw SMLM data files. Specifically, the Fiji (Schindelin
et al., 2012) distribution of ImageJ was installed along with
the Bio-formats and ThunderSTORM plug-ins. Since it proved
impossible to run this combination ‘headless’, i.e. without a
graphics environment, the Virtual Network Computing graph-
ical desktop sharing system was used to provide a headless
X-server (xvnc) on each node of the HPC cluster.

All software is available from https://github.com/Imperial
CollegeLondon/HPC_STORM.

Load balancing

In order to achieve the shortest processing time in parallel
mode, it is important to share the processing work equally be-
tween the available HPC cluster nodes since the final table of
localizations cannot be produced until all nodes have finished
their subsets of the SMLM data. If the work is unevenly allo-
cated, then the other nodes may remain idle until the ‘slowest’
node (i.e. that which has been allocated the most processing-
intensive task) finishes. One possible approach to load balanc-
ing is to breakdown the localization task to a large number of
smaller jobs that process subsets of sequential frames and al-
low the PBS Professional queuing system to allocate these jobs
as processing nodes become available. Unfortunately, there
is an overhead each time a new job is scheduled, so divid-
ing the SMLM data between a large number of small jobs
would be inefficient. A more efficient approach would be to
allocate each node with a single job of the same processing
burden, but then it can be difficult to accurately predict the
processing-time required to determine the localizations, since
this depends strongly on the number of localizations per frame,
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Fig. 2. Schematic of data flow for parallel HPC analysis of SMLM data.

which can change over the acquisition, e.g. due to photo-
bleaching. Instead the SMLM data are divided into interleaved
data sets (i.e. for our four-node HPC cluster, node one pro-
cesses frames 1, 5, 9, 13, . . . , node two processes frames
2, 6, 10, 14, . . . etc.). Using this approach, the distribu-
tion of localizations across the different frame sets is com-
parable and so too are the parallel job execution times. After
localization is completed, the localization results are merged
by interleaving the localization tables using the ‘awk’ and
‘sort’ commands in UNIX before passing the data back to
the ThunderSTORM plug-in for filtering, drift correction and
visualization.

Figure 2 shows the flow of the data analysis. Typical input
SMLM data can be several tens of gigabytes in size, depending
on the image acquisition parameters, whereas the output data
from the localization stage are only of order one gigabyte in
total, depending on the number of localizations found, and the
final rendered image results are only a few megabytes in size.
The data bottle-neck in the system is the transfer of the input
SMLM data to the individual processing nodes, the speed of
which is dependent on the network infrastructure available.
Each HPC node is sent the data it will process, which are stored
on its local HDD for processing.

Software structure

All the scripts and ImageJ macros are installed in a subdirec-
tory of the user’s home directory on the HPC cluster (called
‘Localization’). The data SMLM can be located in any direc-
tory to which the user has access for scp (secure copy). For 3D
processing, the required calibration file must be located in the
same directory as the raw SMLM data file.

The raw SMLM data file can be in any file format that the
open source Bio-Formats library can read as a time-series.
However, testing and development has been carried out
using the OME-TIFF files generated by the Micro-Manager
Open Source Microscopy Software (Edelstein et al., 2010;
https://micro-manager.org/). All output files, including .csv
files containing both raw and automatically postprocessed

localization tables, preview images and a log file describing
all the processing steps, are then written back to the same
directory where the input files were located.

The jobs are launched when the user runs a BASH script
called ‘LAUNCH localise.sh’, which takes the path to the input
data as an argument. Adding a second argument with the
name of a calibration file will trigger 3D processing. Finally,
adding a ‘-b’ argument will cause these data to be processed
in batch mode on a single processing node, leaving the other
nodes available to process further images.

This ‘LAUNCH localise.sh’ script then submits two jobs to
the PBS Professional queue. The first job script submitted is
‘NodeScript Multi.pbs’, which runs as an array job in paral-
lel on one or more nodes, as requested by the user. On each
node, this script can run one or more parallel instances of
FIJI/ThunderSTORM, each performing the required localiza-
tion calculations on a subset of the input SMLM data. On com-
pletion of all elements of this array job, the remaining merg-
ing and postprocessing job, MergeScript.pbs, then runs on a
single node, combining the outputs of the array jobs and load-
ing them back into a single instance of Fiji/ThunderSTORM
to perform any required postprocessing and visualization
tasks. A schematic of the processing scripts is shown in
Figure 3.

Processing (array) job. This array job consists of a script
called ‘NodeScript Multi’ that initially copies the input data to
the local disc. It then runs an ImageJ macro ‘Loc Macro’ in the
required parallel instances of Fiji, which uses ThunderSTORM
to create a table of localizations for a subset of the input SMLM
data, having first set up ThunderSTORM with the appropriate
camera settings, determined using the metadata in the SMLM
data file. The input data are shared among the n different
instances of ThunderSTORM running on the different nodes
by using the Bio-Formats plugin to load every nth image in the
stack, with each instance of ThunderSTORM using a different
starting image in the series. In this way, the load is balanced
among the different instances of Thunderstorm, as each has
a broadly similar data set to process. The table of results from
the localization process is written as a .csv file, to the local disc.
Two text files, a config file detailing which subset of frames has
been processed and a log file detailing all the steps in a human-
readable form, are also created. Control is then returned to
the calling script (NodeScript Multi), which copies all output
files to a temporary subdirectory in the user’s home directory,
accessible from all nodes of the cluster. Finally, all temporary
data stored on the node are automatically deleted once the job
ends.

Merge and postprocessing. This job consists of a script called
‘MergeScript’, which initially recombines the separate .csv
files from the user’s temporary home directory using Unix
utilities ‘awk’ and ‘sort’ to arrange the data into the original
image frame order, which is important for some subsequent
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Fig. 3. Schematic of software structure for HPC SMLM data analysis.

postprocessing utilities in Thunderstorm. It also concatenates
all the log files into a single file and then runs an ImageJ macro
‘Post Proc Macro’ that uses ThunderSTORM to open the com-
bined .csv file, to perform any required extra filtering and to
generate a preview image if required.

Automatic filtering can be implemented to remove un-
physical localization results with intensity values (number of
photons) less than one and further filtering can remove local-
izations with uncertainty in z of greater than 500 nm for 3D
localizations. We have also implemented an optional filtering
step in the post processing ImageJ macro that uses the UNIX
‘awk’ utility to quickly estimate the centile points in the sigma
distribution and then uses these values in ThunderSTORM
to delete localizations whose width (sigma) lies outside the
10th–75th intercentile range. The optional filtering step for
x–y drift correction provided within ThunderSTORM has also
been incorporated in our code. If this drift correction is selected
as one of the postprocessing steps, then ThunderSTORM
also generates a graph that summarizes the results of this
drift correction and this is saved as one of the outputs. The
optional postprocessing steps are configurable by changing
a string passed in from the LAUNCH localise script. This
mechanism makes it straightforward to include further steps
in the automated postprocessing of the table of localizations as
offered by ThunderSTORM. More sophisticated postprocessing
may include thresholding and filtering, usually according to
manually set criteria, e.g. with respect to width and height of
localization peaks, to reduce the impact of noise. A merging
step to combine multiple localizations occurring in subsequent
frames to represent a single emitter may be applied, enabling
duplicate localizations at the same position but different time
points to be excluded for single molecule counting applica-
tions. The postprocessed localization table is also saved to disc
at this point, again as a .csv file with a file name including the
postprocessing configuration string described above.

If a preview image has been requested, the last action per-
formed by ‘Post Proc Macro’ is to use the postprocessed table
of localizations to generate this using the average shifted his-
togram method. For 3D data sets, we additionally take the 3D
stack output from ThunderSTORM and combine the data us-
ing standard ImageJ operations into a 2D image, colour coded
for average z position in each pixel. The final rendered output
is written to disc with a filename containing either the string
‘2D’ or ‘3D’ as appropriate.

Finally, MergeScript copies all output files back to the di-
rectory in which the input file was originally located, under
a subdirectory named after the unique system job number.
This makes it straightforward to create multiple postprocess-
ing jobs, each performing different postprocessing options as
required. Again, all temporary data stored on the node are
automatically deleted once the job ends.

Experimental single molecule localization microscopy

To illustrate the performance of the HPCS-MLM data process-
ing, 2D and 3D STORM data were acquired using an ‘easyS-
TORM’ microscope system described in Kwakwa et al. (2016).
SMLM images were acquired using dSTORM of fixed cells, in
which alpha tubulin was labelled with Alexa Fluor 488 and/or
Acetyl alpha-tubulin with Alexa Fluor 647.

Cell culture. Mouse embryonic fibroblasts (NIH-3T3)
(ATCC, CRL-1658, USA) were seeded at a density of 20 000
cells per well in 8 well Labtek chamber slides (NUNC,
7342062, Denmark) in 400 µL of Complete media [DMEM,
supplemented with 10% fetal bovine serum (FBS) and 200 mM
glutamine] and cultured under standard cell culture condi-
tions (37°C, 5% CO2 humidified atmosphere) for 24 h. Cells
were fixed with 4% paraformaldehyde in PBS for 10 min,
permeabilized with permeabilization solution (PBS-Triton X

C© 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society., 273, 148–160



1 5 4 I . M U N R O E T A L .

Fig. 4. Images of acetylated tubulin in NIH-3T3 a mouse embryonic fibroblast: (A) wide-field fluorescence image; (B, C) automatically processed (averaged
shifted histogram) visualization of Gaussian NWLS fitting localization table (B) and phasor-based localization table (C), with lateral drift correction; (scale
bar is 10 µm, inset images are 10 µm × 10 µm).

0.05% for 10 min), blocked with Blocking solution (permeabi-
lization solution supplemented with 10% FBS) and probed with
primary antibodies for alpha tubulin (Sigma Aldrich, T8203,
USA) 1:2000 dilution in Blocking solution and/or acetyl
alpha-tubulin Lys 40 Monoclonal 6–11B-1 (ThermoFisher
Scientific, 32–2700, USA) for 1 h at 37°C or overnight at
4°C in Blocking solution. After three washes with perme-
abilization solution, a secondary antibody conjugated with
Alexa Fluor 488 at a dilution 1:2000 in Blocking solution
(ThermoFisher Scientific, A-21121, USA) and/or an antibody
conjugated with Alexa Fluor 647 (ThermoFisher Scientific,
A-31571, USA) was added and incubated at room tempera-
ture for 20 min followed by three washes with permeabiliza-
tion solution to remove excess unbound antibody. Samples
were subsequently washed three times with phosphate buffer
saline (PBS) at pH 8.7. Acetylation of alpha-tubulin was in-
duced by treating cells for 72 h with an inhibitor of deacety-
lases trichostatin-A (Cayman Chemical, 89730, USA) at a final
concentration of 100 nM.

Sample preparation for dSTORM. The dSTORM imaging
buffer (hereafter STORM buffer) was made prior to imaging
and consists of 50 mM mercaptamine (Sigma-Aldrich, M6500,
USA), 10 mM DL-lactate (Sigma-Aldrich, L1375, USA) in
PBS pH 8.7. Samples were washed three times with 400 µL
of STORM buffer. Subsequently, 10 µL of oxyrase enzyme
(Sigma-Aldrich, SAE0010, USA) was added to each sample.

The chamber slide was sealed with Parafilm (Sigma-Aldrich,
P7793-1EA, USA) and incubated 10 min at 37°C prior to
imaging on the STORM microscope.

Image acquisition. Our easySTORM (Kwakwa et al., 2016)
implementation of dSTORM utilizes a multimode laser diode
source (Cairn Research Ltd, UK) in combination with an in-
verted microscope frame (Carl Zeiss GmbH, Axiovert 200,
Germany) and a total internal reflection excitation beam cou-
pling unit (OptoTIRF, Cairn Research Ltd, UK). 3D STORM
is implemented using a cylindrical lens in the emission path
to provide an astigmatic point spread function that enables
axial localization of the fluorophores (Holtzer et al., 2007;
Huang et al., 2008). The chamber slide was imaged using
a 100x, 1.46 NA oil lens in an epifluorescence microscope
(Carl Zeiss, Axiovert 200, Germany) with no autofocus that
was configured for easySTORM (Kwakwa et al., 2016) (us-
ing an OptoTIRF module, Cairn Research Ltd) with a sCMOS
camera (Photometrics Prime 95B, UK). After identifying a
suitable field of view, the sample was allowed to settle for
10 min to reduce thermal drift during acquisition.

To image structures labelled with Alexa Fluor 647, the cells
were excited at 635 nm with an initial excitation intensity
of 2500 µW/cm2 at the sample plane to activate fluorophore
blinking and then power was decreased to �50% during im-
age acquisition using a camera integration of 30 ms per frame.
To image structures labelled with Alexa Fluor 488, excitation
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Table 1. Comparison of processing times with iterative fitting to Gaussian PSF and phasor-ThunderSTORM for SMLM data analysis using the desktop
computer and using one HPC node or the four-node HPC cluster in parallel mode.

File size (gigabytes) 13.4 GB (5000 frames)

Desktop PC (14 cores) Phasor Gaussian NWLS

Find localizations 9 min 30 s 39 min 17 s
Postprocessing: filtering lateral

drift correction and visualization
2 min 30 s 2 min 36 s

Number of localizations
(number after filtering)

11 168 044
(11 093 056)

10 981 212
(10 981 146)

Total processing time 12 min 00 s 41 min 53 s

Gaussian NWLS

One node Four nodes One node Four nodes
HPC cluster One job One job/node Four jobs Four jobs/node

Find localizations 48 min 58 s 11 min 46 s 17 min 15 s 4 min 16 s
Postprocessing: filtering, lateral

drift correction and visualization
5 min 06 s 5 min 14s 5 min 14 s 5 min 16 s

Number of localizations
(number after filtering)

10 981 212
(10 981 146)

10 981 212
(10 981 146)

10 981 212
(10 981 146)

10 981 212
(10 981 146)

Total processing time 54 min 04 s 17 min 00 s 22 min 29 s 9 min 32 s

at 462 nm was initially set to 1045 µW/cm2 and then re-
duced to �50% during image acquisition. Axial localization
for 3D STORM was implemented using a cylindrical lens of 1 m
focal length in the emission light path, placed at a distance of
approximately 40 mm in front of the camera chip.

Data processing. The SMLM data analysis was undertaken
on either a dedicated four-node priority queue on an HPC
cluster or a desktop computer running Windows 7. Each node
of the HPC cluster runs two Intel(R) Xeon(R) CPU E5-2650
v4 @ 2.20 GHz processors, each of which has 12 physical
cores (corresponding to 24 logical cores with hyperthreading),
resulting in a total of 48 available logical cores on each node.
Each node has 128 GB allocated RAM and local hard disc
drive. The desktop computer used for the comparison runs an
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz. This processor
has 14 physical cores (28 logical cores) and 128 GB RAM. In
addition to the higher clock speed, it is also equipped with a
solid-state drive for storage.

Performance of HPC SMLM analysis

Single molecule localization speed

Figure 4 shows images reconstructed from a 2D dSTORM data
set of an NIH-3T3 mouse embryonic fibroblast with alpha
tubulin labelled using antibodies conjugated to Alexa Fluor
647. The (13.4 GB, 5000 frames) SMLM data set was processed

using ThunderSTORM with the HPC cluster scripts running
in both parallel mode on a priority queue with four HPC nodes
and on a single node (i.e. in batch mode), and also on the
high specification desktop computer to which we had access.
For comparison, we undertook the 2D localization processing
stage using iterative fitting to a Gaussian profile and using
phasor-based localization. Figure 4(B) and (C) shows how the
reconstructed images compare for these two localization tech-
niques.

Table 1 presents the timings for key stages in the SMLM data
processing. Timings for the parallelizable localization section
have been separated from those of the postprocessing and vi-
sualization stages that are processed on a single node; both
sections include timings for reading in and writing out of data,
some of which also benefit from parallelization. Iterative non-
linear weighted least squares (NWLS) fitting to a Gaussian
profile required 41 min 53 s on the desktop computer and
54 min 4 s on a single HPC node. The relative timings for
phasor-based localization were similar for the single HPC node
and desktop PC (data not shown) and were approximately four
times less than the time required for iterative fitting to a Gaus-
sian profile. However, utilizing four nodes of the HPC cluster
in batch mode would allow three further image data sets to be
processed simultaneously in the same time – and this could be
extended arbitrarily, e.g. for high throughput multiwell plate
SMLM. When the four HPC nodes were used in parallel mode,
the localization step was approximately 4x faster running a
single job on each node, and over 11x faster when running
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Fig. 5. Reconstructed images (with expanded regions to show more de-
tail) of alpha-tubulin (green) and acetylated tubulin (red) in NIH-3T3
Mouse Embryonic Fibroblasts generated by parallel HPC analysis using the
4 × 24-core node cluster. Images reconstructed from (A) the full 25 000
frames and (B) a subset containing the first 10 000 frames of the acquired
data. (Scale bar is 10 µm, inset images are 10 µm × 10 µm).

four jobs on each of four nodes. In practice, the total SMLM
data processing time also includes the time to copy the SMLM
data to the analysis computer and any overheads or delays in-
troduced by the job scheduling system used on the HPC cluster.
These timings have been excluded from the comparisons pre-
sented here because they depend critically on the specific local

computer network infrastructure and the implementation of
the image data storage.

Figure 5 shows a two-colour image reconstructed from a
more challenging 2D, 2-colour dSTORM data set of an NIH-
3T3 mouse embryonic fibroblast with alpha tubulin labelled
with antibodies conjugated to Alexa Fluor 488 and acety-
lated tubulin labelled with antibodies conjugated to Alexa
Fluor 647. The raw data comprise 25 000 frames compris-
ing 67.3 GB of data contained in a set of 17 files for each
channel. It will be seen in Table 2 that the relatively high
specification desktop PC requires 163 min 31 s to process the
full Alexa Fluor 488 data set compared to 24 min 40 s when
using a parallelized four-node HPC cluster for Gaussian NWLS
processing. The total processing time could be readily reduced
further by utilizing a larger number of HPC nodes. Using Pha-
sor processing, the desktop PC processes the full data set in
41 min 24 s.

This large data set results from a large (�125 × 125 µm)
field of view of a densely labelled sample. Since the required
SMLM data processing times are so long, it is interesting
to consider time impact of processing only an early subset
of the acquired frames in order to reduce the data analysis
and storage requirements. Generally, the number of localiza-
tions decreases approximately exponentially with increasing
frame number, although this can vary – particularly if the
experimental parameters are adjusted during the acquisition.
Since the earlier frames typically contain more of the localiza-
tions, it is worth considering whether the information gained
from processing later acquired frames justifies the time and
data storage costs. The impact of acquiring/processing fewer
frames can vary from experiment to experiment and from sam-
ple to sample but acquiring significantly fewer than 25 000
frames will usually be a reasonable decision. To illustrate this,
Figure 5 compares the reconstructed images for this sample
when processing the full data set of 25 000 frames and when
only processing the first 10 000 of the frames acquired in each

Table 2. Comparison of processing times of SMLM data represented in Figure 5 for different stages of SMLM data analysis using the desktop computer,
and the four-node HPC cluster in parallel mode 5.

AF488 dSTORM (67.3 GB) Four HPC nodes four jobs/node Desktop PC

Algorithm Gaussian NWLS Phasor

Frames 25k 10k 25k 10k 25k 10k

Find localizations 16 min 34 s 10 min 18 s 159 min 07 s 122 min 57 s 37 min 36 s 20 min 26 s
Postprocessing (filtering, drift

correction and
visualization)

8 min 06 s 7 min 28 s 4 min 24 s 3 min 34 s 3 min 48 s 3 min 39 s

Number of localizations
(number after filtering)

19 308 944
(19 308 355)

16 975 777
(16 975 196)

19 308 944
(19 308 355)

16 975 777
(16 975 196)

19 981 786
(19 546 283)

17 645 143
(17 269 087)

Total processing time 24 min 40 s 17 min 41 s 163 min 31 s 126 min 31 s 41 min 24 s 24 min 05 s

Note: Timings are shown for Gaussian NWLS fitting on both HPC and the Desktop PC, and for Phasor fitting on the Desktop PC. Each algorithm is applied
to either the full 25 000 frames.
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Fig. 6. Depth-resolved dSTORM images of NIH3T3 cell with alpha-tubulin labelled with Alexa Fluor 647 reconstructed using ThunderSTORM with
(A) 10 000-frame data set (of 29 GB) reconstructed using (B) phasor-based localization, (C) Gaussian nonlinear weighted least squares fitting and (D)
Gaussian fitting using maximum likelihood estimation. Full size image (A) uses NLS and shows the 10 × 10 µm area zoomed for (C and D). (Scale bar 10
µm; depth colour scale: –400 to +400 nm).

Table 3. Comparison of processing times for different stages of SMLM data using the desktop computer and using the four-node HPC cluster in parallel
mode.

3D STORM (File size
10 000 frames, 29 GB)

Desktop PC
Phasor fitting

Desktop PC
Gaussian NWLS

HPC four nodes four
jobs/node NWLS

HPC four nodes four
jobs/node MLE

Find localizations 9 min 26 s 116 min 32 s 11 min 31 s 229 min 52 s
Postprocessing: filtering,

lateral drift correction
and visualization

3 min 27 s 3 min 33 s 4 min 29 s 4 min 18 s

Number of localizations
(number after filtering)

8 764 013
(8 707 036)

8 677 386
(6 754 187)

8 677 386
(6 754 187)

8 683 023
(6 767 722)

Total processing time
excluding
visualization

12 min 46 s 120 min 05 s 16 min 00 s 234 min 10 s

channel – and indicates that there is not a significant reduc-
tion in quality when using only 10 000 frames. In the blue
channel (timing results shown in Table 2), the first 10 000
frames contain 87% of the total localizations in the 25 000-
frame data set using Gaussian NWLS fitting, whereas in the

red channel the proportion was 49%. For the timings shown
in Table 2, the reduction in the processing time is less than the
reduction in the number of frames processed, because there
are more localizations to process in the earlier frames. How-
ever, the reduction in storage required for the 10 000-frame
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data set (i.e. only 27 GB in the absence of data compression) is
a significant benefit.

A final comparison was made with a 3D dSTORM data set
of a mouse embryonic fibroblast with alpha tubulin labelled
with Alexa Fluor 647 conjugated antibodies. The raw data
comprised 10 000 frames acquired with 30 ms camera inte-
gration and the data were analysed using phasor localization
and using iterative fitting to a Gaussian profile with either
NWLS fitting or maximum likelihood estimation (MLE). Note
that MLE takes significantly longer to compute, even when dis-
tributed over many nodes and jobs – computation of Gaussian
fitting using MLE was abandoned on the desktop PC after its
run-time exceeded 24 h. Figure 6 shows the resulting recon-
structed images for this 3D SMLM data set with depth encoded
as colour and Table 3 shows the data processing times required
for the desktop PC and the four-node HPC cluster with filter-
ing to remove localizations indicating a large uncertainty in z
(uncertainty output data only available for Gaussian fitting)
and drift correction. The resulting images for Gaussian NWLS
and MLE fitting are highly consistent with each other, whereas
the image reconstructed from the phasor analysis shows small
differences.

Conclusions

Motivated by the desire to develop a high throughput SMLM
platform capable of analysing large data sets comprising multi-
ple FOV of >120 × 120 µm, we have demonstrated a modular
approach to SMLM analysis that can be implemented on an
HPC cluster to provide acceleration of SMLM data processing
through parallelization. In particular, Tables 1–3 show the
reduction in data processing time for the critical SMLM local-
ization step that is achievable with parallel processing using
just four HPC nodes in parallel. With large SMLM data sets for
complex images – or for arrays of images – this parallelization
can easily be extended to utilize more HPC resource as required
to scale over orders of magnitude of data volumes.

We note that our approach to parallel SMLM data process-
ing on HPC nodes can take advantage of many speed en-
hancements due to improved hardware or software, noting
that it can be rapidly implemented with any SMLM software
tool compatible with Bio-Formats that can analyse a subset
of the data independently. For manual SMLM experiments,
the overheads associated with transferring the data to an HPC
cluster may outweigh the advantage gained by parallelizing
the processing and this decision will depend on the local net-
work infrastructure as well as the processing power of the local
laboratory computer. The phasor-based approach of Martens
et al. (2018) is interesting since it is already available as a
plug-in to ThunderSTORM and could provide useful preview
images, particularly if it can be implemented on the laboratory
computer to which the SMLM data are acquired.

We believe that the acceleration of processing is important
for higher throughput SMLM, where multiple replicates for

each experimental condition may be imaged. If these SMLM
data can be acquired with multiple FOV per well in 96 or 384
well plates, it is likely to be impractical to process these data on
the fly. Since parallel processing of SMLM data can be scaled
simply by increasing the number of HPC nodes utilized, we
believe that the approach we present here can find wide ap-
plication, particularly noting the ongoing reduction in HPC
computing costs. Besides screening with SMLM-based assays,
for example, it would enable convenient analysis of SMLM
data sets corresponding to many different image acquisitions,
for example, enabling studies of time-series SMLM data or for
single particle averaging to combine SMLM data from many
instances of a specific structure in order to improve the preci-
sion of the quantitative analysis, as demonstrated for imaging
the structure of the nuclear pore complex (Szymborska et al.,
2013).

With a view to further enhancing the speed of the
SMLM workflow, particularly for automated analysis of high
throughput SMLM data, the postprocessing steps may be au-
tomated, noting that the lateral drift correction step is already
being applied automatically within ThunderSTORM. Further
automation of the postprocessing of the localization data could
be realized by setting reasonable values of the filtering and
threshold parameters for a whole data set (e.g. from a mul-
tiwell plate or time series). These values could be determined
manually based on a ‘quick-view’ image that could be rapidly
calculated from a subset of frames sampled from the acquired
data or by utilizing phasor-based localization. Alternatively,
algorithms could be developed to rapidly search the SMLM
postprocessing parameter space to optimize the final super-
resolved image, for which deep learning approaches may be
appropriate (e.g. Ouyang et al., 2018).

As a general observation, we note that the speed of SMLM
data reconstruction (and, indeed, data acquisition) can be re-
duced along with the data volumes by not acquiring and/or
processing more image frames than is useful for the desired
outcome, as there may be little additional information present
in later frames where the number of localizations drops sig-
nificantly. If the decrease in the number of localizations with
frame number could be determined a priori, the SMLM data
acquisition time – and the corresponding data volumes ac-
quired – could be significantly reduced with minimal loss of
information by optimizing the number of acquired frames.
For high throughput SMLM, the optimization of the num-
ber of frames acquired could be set for a whole sample ar-
ray or it could be determined automatically in a preview
mode that rapidly samples the decrease in localizations with
frame number and automatically sets the limit to the num-
ber of SMLM frames acquired. We note that techniques be-
ing developed for rapid SLM of live cells, e.g. using Bayesian
analysis (Cox et al., 2012; Xu et al., 2017; Griffié et al., 2018),
would not be suitable for ‘Parallel mode’ processing since
they do not analyse sequential frames independently. How-
ever, it may be possible to adapt our ‘Batch mode approach’,
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where the data for each FOV could be analysed on a separate
HPC node – or as a separate instance running on an HPC
node.

The scripts that we run on our HPC cluster for the
work presented here can be accessed at: https://github.
com/ImperialCollegeLondon/HPC_STORM.

The data underlying the work presented in this manuscript
can be accessed on the OMERO server at: https://omero.
bioinformatics.ic.ac.uk/omero/webclient/?show=project-
4802.
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