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Editorial on the Research Topic

Sperm Differentiation and Spermatozoa Function: Mechanisms, Diagnostics, and Treatment

INTRODUCTION

One of the most remarkable processes in nature is the transformation of a generic round stem cell
into a streamlined spermatozoon that fertilizes the egg, complements it, and activates the program
that starts a new life. Sperm are unique because they undergo hyper evolution due to direct selection
by sperm competition, resulting in many molecular, and structural invocations. This extraordinary
biology affects virtually every process and structure of the sperm during spermatogenesis. The
manchette reshapes the nucleus. The protamine repacks the DNA. New RNA granules form.
The protein-based centrioles are remodeled. A flagellum with a unique configuration is formed.
Membrane-bound organelles such as Golgi and ER are converted and reduced to acrosome and
residual bodies. 80S ribosomes along with most of the cytoplasm are eliminated.

The spermatozoon continues to mature during its transport through the epididymis and
female reproductive system. There, the spermatozoon gains motility, undergoes capacitation,
and obtains epigenetic information. Hyperactivation and acrosome reaction allow it to fertilize
eggs. Post-fertilization, the spermatozoon components complement the egg and activate
embryo development.

All these unique properties of sperm are mediated by many sperm-specific proteins, making
spermiogenesis an ideal target for male contraceptive pills. Abnormalities in sperm differentiation
result in infertility, miscarriage, and congenital diseases, with a recent advance in transgenerational
inheritance indicating that alterations in the sperm “epigenome” can impact the life-long wellness
of offspring. Therefore, sperm dysfunction is a significant factor in men’s infertility and farm
animals’ subfertility. Resolving this condition requires novel ideas at multiple levels to improve
the diagnosis of sperm dysfunction and development of new treatments to complement in
vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). These also warrant the
advancement of reproductive technologies such as sperm cryopreservation.

Below we present the 20 papers in this collection that address many of the critical aspects of
sperm biology, medicine, and technology. We divided them into four categories: Unique Sperm
Organelles, Spermatogenesis, Spermatozoon Maturation, and Sperm Contribution to the Zygote.
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UNIQUE SPERM ORGANELLES:

ACROSOME, MANCHETTE, ATYPICAL

CENTRIOLES, MIGRATING CILIA

TRANSITION ZONE, AND

FIBROUS SHEATH

The acrosome is a specialized sperm organelle that contains
digestive enzymes and covers the sperm head, which continues
to surprise us with new findings (Zhang et al., 2020; Wang et al.,
2020). It was proposed to be derived from the lysosome, or related
organelle, or be a direct Golgi derivative (Hartree and Srivastava,
1965; Aguas and Pinto da Silva, 1985; Berruti et al., 2010). The
review by Khawar in this collection provides a brief historical
overview and highlights recent findings on acrosome biogenesis
in mammals.

The manchette is a unique transient microtubular structure
that shapes the sperm head and facilitates the development
of the sperm neck and tail (Mendoza-Lujambio et al., 2002;
Yang et al., 2018). A research paper in this collection by Tapia
Contreras and Hoyer-Fender shows that the protein coiled-coil
domain containing 42 (CCDC42) is a new centrosome protein
that functions in the head-to-tail coupling apparatus (HTCA)
and sperm tail formation.

The centrioles are an evolutionarily-conserved sub-cellular
organelle that evolved to have unique properties in sperm
cells (Avidor-Reiss, 2018; Avidor-Reiss and Turner, 2019). Each
human spermatozoon contains two remodeled centrioles that it
contributes to the zygote (Fishman et al., 2018). Most previous
investigations into the role of mammalian centrioles during
fertilization were completed inmurinemodels. However, because
mouse sperm and zygotes appear to lack centrioles, these
studies provide information that is limited in its applicability
to humans (Avidor-Reiss, 2018; Avidor-Reiss and Fishman,
2018). The review by Avidor-Reiss et al. in this collection
comprehensively summarizes and updates the role of centrioles
in human reproduction.

The ciliary transition zone is a gate separating the cilium
from the cytoplasm via (Malicki and Avidor-Reiss, 2014).
However, uniquely in the sperm, the transition zonemigrates and
separates the axoneme into two distinct compartments (Basiri
et al., 2014; Avidor-Reiss and Leroux, 2015; Avidor-Reiss et al.,
2017). Research papers in this collection by Persico et al. show
that the microtubule-depolymerizing protein Kinesin-13 Klp10A
is enriched in the ciliary transition zone and the base of the
migrating transition zone of Drosophila melanogaster sperm.
They suggest that Klp10Amay be a core component of the ciliary
transition zone.

The fibrous sheath is a unique sperm flagellum structure
that is responsible for regulating signal transduction, metabolic
pathways, and mechanical rigidity of the flagellum (Eddy, 2007;

Mukai and Travis, 2012; Lindemann and Lesich, 2016). A-Kinase
Anchor Protein 4 (AKAP4) is a major component of the fibrous
sheath (Fang et al., 2019). A research paper in this collection
by Nixon et al. found that AKAP4 is a target of oxidative stress
caused by electrophilic aldehyde, 4-hydroxynonenal (4HNE)
in sperm cells. These findings suggest that AKAP4 may be

a biomarker of sperm quality, warranting the design of an
antioxidant treatment for infertility.

SPERMATOGENESIS: NON-HORMONAL

MALE CONTRACEPTIVE PILL AND SPERM

COMPETITION

The non-hormonal male contraceptive pill can be achieved
by interfering with the many remarkable processes of
spermatogenesis (Thirumalai and Page, 2019). The review
by Kent et al. in this collection comprehensively summarizes
recently discovered potential target genes for such a pill. They
discuss novel contraceptive targets, new data for potential
druggability, and possible effects from paralog proteins.

Sperm competition is a unique form of evolutionary selection
that drives sperm innovation (van der Horst and Maree, 2014).
Human sperm properties suggest that sperm have low-risk sperm
competition as expected from a long history of male sexual
dominance or monogamy. In naked mole-rats, only one male
is reproductively active, and spermatogenesis is suppressed in
the other males of the colony (O’Riain et al., 2000). This
single male dominance example is a classic case of reducing
sperm competition, leading to simplified, polymorphic, and
slow-swimming spermatozoa (Van Der Horst et al., 2011). The
research paper in this collection by van der Horst et al. show that
lack of sperm competition also results in testicular structure and
spermatogenesis degeneration.

SPERMATOZOON MATURATION IN THE

EPIDIDYMIS AND FEMALE

REPRODUCTION: SIGNALING ENZYMES,

SMALL RNAs, AND INTRACELLULAR, AND

EXTRACELLULAR SPERM pH

Signaling enzymes are central to the mechanism that regulates
spermatozoon maturation since sperm is a transcriptionally
silent cell (Freitas et al., 2017). Two papers address this subject in
this collection. The review by Dey et al. recaps the contribution of
four signaling enzymes that are present as specific isoforms only
in placental mammals. Protein phosphatase PP1γ2, glycogen
synthase kinase 3 (GSK3), calcium-regulated phosphatase
calcineurin (PP2B), and protein kinase A (PKA) have critical
roles in sperm maturation and hyperactivation. A research paper
by Castillo et al. describes the quantitative proteomic profiling
of capacitated and calcium activated spermatozoa. They found
36 proteins with significant changes in their relative abundance
within these conditions and many that have post-translational
modifications. These results contribute to our knowledge of the
molecular basis of human fertilization.

Small RNAs such as PIWI-interacting RNAs (piRNAs),
transfer RNA fragments (tRFs), microRNAs (miRNAs), and
other non-coding RNAs are abundantly present in sperm and
function in spermatogenesis and intergenerational epigenetic
inheritance (Krawetz et al., 2011; Sharma et al., 2016; Sun
et al., 2018; Perez and Lehner, 2019). The review by Sharma
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in this collection explores the mechanism of sperm small RNA
remodeling during post-testicular maturation in the epididymis,
and the potential role of this remodeling in intergenerational
epigenetic inheritance.

Membrane potential is an essential feature during
capacitation for sperm fertilization capability (López-González
et al., 2014; Ritagliati et al., 2018). Two research papers in this
collection develop methods to determine membrane potential.
Molina et al. developed a technique based on flow cytometry
and showed it can predict the fertilizing ability of human sperm.
Baro Graf et al. developed a method based on potentiometric
dye in a fluorometric assay. They both showed that the plasma
membrane potential of capacitated sperm correlates with the
sperm acrosome reaction.

Intracellular and extracellular sperm pH are important
factors in sperm function as sperm encounter opposite PH
conditions during its transport. Therefore, controlling sperm pH
plays a crucial role in mammalian sperm physiology (Nishigaki
et al., 2014). Two papers in this collection address this subject.
A research paper by Chávez et al. established a robust imaging
method that allows for the determination of absolute intracellular
pH values in a single spermatozoon. The review by Touré
specifies the current knowledge regarding PH regulation in
sperm and its environment that is controlled by the distinct
epithelia. They specifically discuss the role of solute carrier
26 (SLC26) proteins and their interaction with cystic fibrosis
transmembrane conductance regulator channel (CFTR).

SPERM CONTRIBUTION TO THE ZYGOTE:

EGG ACTIVATION, SPERM

CRYOPRESERVATION, TRANSIENT

SPERM STARVATION, AND

INTRACYTOPLASMIC SPERM INJECTION

Egg activation by sperm factor is essential to prevent polyspermy
(Swann and Lai, 2016). PLC-Zeta is a novel, testis-specific
phospholipase C isoform that activates the egg post-fertilization
(Swann et al., 2012). The review by Saleh et al. in this collection
summarizes and updates the essential role of sperm-specific PLC-
Zeta. However, PLC-Zeta may not be the only activation factor,
and a potential “alternative” sperm factor may also be present.

Sperm cryopreservation is an essential technique for fertility
management (Ezzati et al., 2020). However, the post-thaw
viability of sperm differs among bulls—a research paper in
this collection by Ugur et al. describes a multivariate and
univariate analysis to identify potential freezability biomarkers.
Their findings suggest that amino acids may have important
roles in seminal plasma, although differences in amino acid
concentration do not mediate this process.

Transient sperm starvation is a new and novel method
to improve sperm performance, as described by the research

paper in this collection by Navarrete et al.. This study
discusses starvation increased hyperactivated motility, the
ability to fertilize in vitro, and the production of pups in
mice. Starvation also increased the fertility of a sub-fertile
mouse and enhanced ICSI success in bovine. These findings

raise the possibility that starvation may be used to improve
assisted reproductive technologies in other mammalian species,
including humans.

Intracytoplasmic sperm injection (ICSI) is a clinical
treatment that introduces sperm to the oocyte independent of
the sperm’s ability to move and the two gametes’ ability to fuse
(Sánchez-Calabuig et al., 2014). Two papers in this collection
address this subject. A research paper in this collection by
Fernández-González et al. compared the ICSI success rate of
spermatids from different regions of epididymis. They found
that mice caput spermatozoa and caudal spermatozoa have
similar potential to produce embryos and offspring by ICSI.
A review in this collection by Oseguera-López et al. discusses
novel techniques of sperm selection for improving IVF and
ICSI outcomes. They describe the latest technologies focusing
on those proven to improve sperm genetic integrity, fertilization
capacity, embryo production in vitro survival, pregnancy, or
delivery rates.

CONCLUSION

Significant progress was made over the years in understanding
the fundamental biology of the sperm. However, as evident
from the studies described above, many aspects of this biology
remain poorly understood. More studies are required to
identify the molecular mechanisms that mediate and regulates
spermatogenesis as well as spermatozoon maturation and
capacitation. We need to understand better what controls sperm
movement and its infraction with the female reproductive
tract and the egg. A crucial future endeavor is identifying
other essential contributions the sperm makes to the zygote
in addition to the DNA. Gaining this information will guide
future translational research towered the diagnosis and treatment
of infertility, assisting the domesticated animal industry, the
development of a male contraceptive pill, and improve the
wellness of the next generation.
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