
Structural Interactions within the Default Mode Network
Identified by Bayesian Network Analysis in Alzheimer’s
Disease
Yan Wang1, Kewei Chen2, Li Yao1,3, Zhen Jin4, Xiaojuan Guo1,3*, the Alzheimer’s Disease Neuroimaging

Initiative

1 College of Information Science and Technology, Beijing Normal University, Beijing, China, 2 Banner Alzheimer’s Institute and Banner Good Samaritan PET Center,

Phoenix, Arizona, United States of America, 3 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 4 Laboratory of

Magnetic Resonance Imaging, Beijing 306 Hospital, Beijing, China

Abstract

Alzheimer’s disease (AD) is a well-known neurodegenerative disease that is associated with dramatic morphological
abnormalities. The default mode network (DMN) is one of the most frequently studied resting-state networks. However, less
is known about specific structural dependency or interactions among brain regions within the DMN in AD. In this study, we
performed a Bayesian network (BN) analysis based on regional grey matter volumes to identify differences in structural
interactions among core DMN regions in structural MRI data from 80 AD patients and 101 normal controls (NC). Compared
to NC, the structural interactions between the medial prefrontal cortex (mPFC) and other brain regions, including the left
inferior parietal cortex (IPC), the left inferior temporal cortex (ITC) and the right hippocampus (HP), were significantly
reduced in the AD group. In addition, the AD group showed prominent increases in structural interactions from the left ITC
to the left HP, the left HP to the right ITC, the right HP to the right ITC, and the right IPC to the posterior cingulate cortex
(PCC). The BN models significantly distinguished AD patients from NC with 87.12% specificity and 81.25% sensitivity. We
then used the derived BN models to examine the replicability and stability of AD-associated BN models in an independent
dataset and the results indicated discriminability with 83.64% specificity and 80.49% sensitivity. The results revealed that the
BN analysis was effective for characterising regional structure interactions and the AD-related BN models could be
considered as valid and predictive structural brain biomarker models for AD. Therefore, our study can assist in further
understanding the pathological mechanism of AD, based on the view of the structural network, and may provide new
insights into classification and clinical application in the study of AD in the future.
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Introduction

Alzheimer’s disease (AD) is a well-known neurodegenerative

disease that is characterised by abnormal brain anatomy with

clinical manifestations of memory loss and cognitive impairment.

As a non-invasive technique, structural magnetic resonance

imaging (MRI) makes it possible to measure and investigate

morphological alterations in the human brain. Using structural

MRI, the previous studies have demonstrated that brain volume

reductions were a general feature in aging [1,2] and not only AD

specific. However, AD could be taken as the accelerated aging

progress, for example, the annualized rate of hippocampal volume

loss was higher in AD patients than that in normal controls (NC)

[3]. Therefore, AD would lead to extensive volume decreases or

severer atrophy in some brain regions compared with NC.

Specially, a large number of structural MRI studies have shown
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that AD patients revealed significant reductions in grey matter,

mainly in the medial temporal lobe, the posterior cingulate gyrus,

and the parietal and frontal lobes [4,5,6,7], and white matter

decreases in the corpus callosum (CC), the inferior longitudinal

fasciculus, and the parahippocampal, inferior parietal and middle

frontal regions [8,9,10,11]. Most of these studies utilised univariate

statistical approaches and focused on localising the affected brain

regions. In contrast to univariate methods, multivariate approach-

es effectively characterised the interrelationships among different

brain regions and contributed to the understanding of structural

covariance patterns of morphological abnormalities caused by

normal aging and dementia [12,13,14].

Recently, several studies have used multivariate approaches to

identify AD-related covariance patterns [15,16,17]. Using a scaled

subprofile model (SSM), Alexander et al. investigated the grey

matter network in individuals at risk for AD [15]. Multivariate

network analyses based on a principal component analysis (PCA)

were also used to explore white matter tract integrity in AD [16].

Our previous study utilised joint independent component analysis

(jICA) and identified three grey-white matter source networks,

mainly in the frontal/parietal/temporal-superior longitudinal

fasciculus/corpus callosum regions, that had significant volume

reductions in AD patients compared to NC [17]. The approaches

were data-driven and voxel-based. Additionally, using a small

world approach, i.e., a region of interest (ROI)-based multivariate,

He et al. found both decreases and increases in cortical thickness

intercorrelations in the parietal and temporal cortices, implying

aberrant changes in cortical morphometry in AD patients [18,19].

Although these multivariate methods provided an effective tool for

constructing structural covariance patterns in the study of AD, to

date, less is known about specific structural probabilistic depen-

dency or the interactions among spatially distributed brain regions.

In recent years, Bayesian network (BN) analysis without a prior

model has been successfully introduced to functional MRI (fMRI)

and structural MRI studies [20,21,22,23]. In the context of

neuroimaging studies, BN is a ROI-based multivariate technique.

Chen et al. performed BN analysis on structural MRI data from

individuals with mild cognitive impairment (MCI) and revealed

complex, nonlinear multivariate interactions among grey matter

volume changes in the left hippocampus and the right thalamus

[21]. Furthermore, Chen et al. applied dynamic BN modelling to

represent volume-change dependencies among different brain

regions over time in a longitudinal study of normal aging and MCI

[20]. These studies focused on the brain regions that were

significantly AD-related. It would be interesting to explore inter-

regional associations among brain regions that are not only

affected by AD (or MCI), but are also known for their great

importance in general; for example, the core ROI of the default

mode network (DMN).

Indeed, the DMN is one of the most frequently studied resting-

state networks. Using both fMRI and diffusion tensor imaging

(DTI) technology, some researchers now believe that functional

connectivity in the resting-state reflects structural connectivity in

the DMN, such as the cingulum bundle connecting posterior

cingulate cortex (PCC) and the medial prefrontal cortex (mPFC)

and the descending cingulum bundles connecting PCC and medial

temporal lobe [24,25]. Although fMRI studies suggested altered

DMN connectivity in patients with AD compared to NC [23,26],

it was commonly assumed that the altered functional connectivity

was associated with abnormal structural connectivity in the DMN

[27,28] and little was understood regarding structural inter-

regional interactions within the DMN. Most of the previous

studies on structural covariance patterns in the brain defined the

regions involved in the functional network as seeding regions or

ROI in order to explore the underlying structural networks

[12,27,29,30]. Such studies provided new insights into structural

interactions within the DMN in AD.

In this study, we performed a BN analysis by treating regional

grey matter volumes as continuous variables to investigate

structural inter-regional relationships within the DMN in AD

patients in contrast to NC. Eight ROIs in the DMN were defined

as nodes of the BN. Then, a permutation test was used to detect

differences in the BN models between the AD and NC groups.

Furthermore, we evaluated the replicability and stability of our

AD-associated BN model in an independent dataset acquired

using a different scanner.

Materials and Methods

Ethics statement
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) study

was approved by Institutional Review Board (IRB) of each

participating site including Banner Alzheimer’s Institute, and was

conducted in accordance with Federal Regulations, Internal

Conference on Harmonization (ICH) and Good Clinical Practices

(GCP). Data collection for Open Access Series of Imaging Studies

(OASIS) was approved by the Washington University Alzheimer

Disease Research Center (ADRC) and all the subjects participated

in the studies according to the guidelines of the Washington

University Human Studies Committee. Written informed consent

was obtained from all participants or legally authorized represen-

tatives prior to scanning, according to the local IRB rules and local

laws.

Subjects and MRI acquisition
Two datasets, one from the ADNI (http://www.loni.ucla.edu/

ADNI) and one from OASIS database (http://www.oasis-brains.

org), were used in this study. In order to further guarantee the

quality of all the data, we checked every structural image and

found that all the images in this study were available.

ADNI data. As a $60 million, 5-year project, the ADNI was

launched in 2003 by the National Institute on Aging (NIA), the

National Institute of Biomedical Imaging and Bioengineering

(NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations. The

primary goal of ADNI has been to test whether serial MRI,

(positron emission tomography) PET, other biological markers,

and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early AD. The Principle

Investigator of this initiative is Michael W. Weiner MD, VA

Medical Center and University of California-San Francisco.

ADNI is the result of efforts of many co-investigators from a

broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the USA and

Canada.

According to ADNI protocols, the severity of cognitive

impairment was assessed using Mini-Mental State Examination

(MMSE) [31] and Clinical Dementia Rating (CDR) scores [32].

Individuals assigned to the probable AD group met the National

Institute of Neurological and Communicative Disorders and

Stroke/Alzheimer’s Disease and Related Disorders Association

(NINCDS/ADRDA) criteria [33]. At the time this study was

initiated, 80 AD patients (39 females and 41 males, mean age:

75.4466.51 years, range: 60290; mean MMSE: 23.5961.92,

range: 20226; CDR: 0.5 or 1) and 101 NC (45 females and 56

males, mean age: 75.9364.35 years, range: 60290; mean MMSE:

29.1061.01, range: 25230; CDR: 0) were included. The AD

group did not significantly differ from the NC group in sex ratio

Structural Interactions within the DMN in AD
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(x2
(1)~0:316,p~0:574) or age (t(179)~�0:615,p~0:539) but had

significantly lower MMSE scores

(t(179)~{24:808,p~8:017E{60). All data were collected at

baseline or screening and were acquired on 1.5 T MRI scanners.

T1-weighted sagittally oriented 3D anatomical imaging data for

each subject was collected using MPRAGE sequence with

1.2561.25 mm in-plane spatial resolution and 1.2 mm thickness

(8u flip angle); the other parameters differed at each scanning site.

For each subject, we selected the best quality image which

underwent complete pre-processing including B1correction, non-

uniformity correction using N3 histogram peak sharpening

algorithm and scaling [34].

OASIS data. The second dataset included 41 AD patients

(75.5866.94 years [range: 61292], 17 males and 24 females) with

mean MMSE scores of 21.6363.62 (range: 15226) and 55 NC

(74.1667.66 years [range: 60290], 22 males and 33 females) with

mean MMSE scores of 29.15 61.25 (range: 25230). All the

subjects underwent the full clinical assessment of Washington

University Alzheimer Disease Research Center (ADRC) including

MMSE and CDR scores. The AD group did not significantly

differ from the NC group in sex ratio (x2
(1)~0:021,p~0:885) or

age (t(94)~0:936,p~0:352) but had significantly lower MMSE

scores (t(94)~{14:287,p~2:729E{25). The structural MRI

scanning performed on a 1.5 T MRI scanner. For each subject,

three to four T1-weighted MPRAGE images were collected

(TR = 9.7 ms, TE = 4.0 ms, TI = 20 ms, flip angle = 100, field of

view = 256 mm 6256 mm, voxel size = 1 mm 61 mm, slices

= 128 and thickness = 1.25 mm, sagittal). In this study, the T1

image was an average image (1 mm 61 mm 61 mm) that was a

motion-corrected coregistered average of all available data.

For the ADNI and OASIS datasets, there were no significant

differences in sex ratio (AD group: x2
(1)~1:040,p~0:308; NC

group: x2
(1)~3:398,p~0:065) and age (AD group:

t(119)~{0:117,p~0:907; NC group: t(154)~1:842,p~0:067).

AD group of ADNI dataset significantly differed from that of

OASIS dataset in the MMSE scores

(t(119)~3:882,p~1:708E{4), but NC group did not

(t(154)~0:251,p~0:802).

Image preprocessing
The spatial preprocessing of the structural MRI data was

performed using the VBM8 Toolbox (http://dbm.neuro.uni-jena.

de/vbm8) in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). The

VBM8 procedure involved two main steps: segmentation and

normalization. For each subject, every structural image was

segmented into a rigid-body aligned grey matter, white matter and

cerebrospinal fluid (CSF) using adaptive maximum posterior and

partial volume estimation [35,36]. Two denoising methods,

spatially adaptive non-local means denoising filter [37] and

classical Markov Random Field approach were applied to improve

the segmentation. The grey matter image was normalized by a

diffeomorphic anatomical registration using exponential Lie

algebra (DARTEL) protocol [38], in which template creation

and image registration are performed iteratively. DARTEL utilises

a single constant velocity field to generate diffeomorphic and

invertible deformations. At each iteration, the individual brain

tissue maps were registered to a newly created template, and,

finally, the grey matter tissue maps were normalized to the

Montreal Neurological Institute (MNI) space. Afterwards, the

registered grey matter maps were multiplied by Jacobian

determinants with only non-linear warping to exclude individual

differences in total intracranial volume. Lastly, the grey matter

maps for all the subjects were smoothed using an 8 mm full width

at half maximum (FWHM) Gaussian kernel.

For the OASIS data, spatial preprocessing was performed

following the same procedures used for the ADNI data.

ROIs definition
We named eight ROIs in the DMN mainly according to the

previous studies [39,40]. Each ROI mask was generated using

WFU_PickAtlas software (http://www.ansir.wfubmc.edu) [41,42].

Table 1 shows the specific details of eight ROIs. Every ROI mask

covered the entire area of the corresponding anatomical region

defined by the AAL altas. We respectively positioned the ROI

masks to cover the entire grey matter map for each subject. The

average grey matter volume of each ROI was calculated by

thresholding all the voxels in the smoothed grey matter images

within the ROI at a level of 0.15 for each individual. For the

ADNI data, the average grey matter volumes of the eight ROIs, as

the nodes of the BN, were used as continuous variables that were

inputted into the BN model to investigate structural interactions

within the DMN in AD patients and NC. For the OASIS data, the

ROIs definition was implemented following the methods described

above.

Bayesian network analysis
A BN model, consisting of nodesX~fX1,X2,:::,Xdg and

directed arcs, is a directed acyclic graph (DAG) that can be used

to describe conditional dependence among nodes [21,23,43].

Below, we provide a brief introduction to BN in the context of the

current study.

For the jth of d = 8 ROIs, (j~1,2,:::,d), Xj(j~1,2,:::,d) is a set of

average grey matter volumes of ROI j. Given the variable X , we

applied the search-and-score approach to generate the graph

structure and maximum likelihood estimation to obtain a set of

parameters [22]. Bayesian Information Criterion (BIC) was used

as the model evaluation criterion when searching for the best

model.

BIC(h)~
Xd

j~1

L(j,pj ,ĥh
mle
j ){

jĥhmle
j j
2

log n

Here,d and n are the number of nodes and the number of the

sample, respectively; L(j,pj ,h)~
Xn

i~1

log p(Xij jXi,pj
,h) is the log-

likelihood of node j with parent node-set pj , indicating the degree

of fitness;
jĥhmle

j j
2

log n is the penalty of model complexity;

ĥhmle
j ~ arg sup hL(j,pj ,h) is the maximum likelihood estimate of

the parameter of node j. The procedure was implemented based

on the Bayesian Net Toolbox (www.cs.ubc.ca/̃murphyk/

Software/BNT/bnt.html).

For each node j, the expression p(Xj jpj ,hj) represents the

conditional probability density of the node given its parent node-

set pj . The joint probability density for all the ROIs is:

p(X )~
Yd

j~1

p(Xj jpj ,hj)
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p(Xj jpj ,hj)~
1

(2p)d=2jSj1=2
expf{ 1

2
(Xj{mj)

T S{1(Xj{mj)g

where p(Xj jpj ,hj) is the conditional probability density of node j;

mj and Sj denote the conditional mean and variance of Xj

respectively.

Each node in the BN model can be considered as a linear

function of its parent nodes with an additional error term. A

permutation test [44] was employed to examine the difference in

each of the linear coefficients between the AD and NC groups for

each node. In our study, permutation was performed 5000 times

on the distributions of all subjects, and we assessed the difference

in terms of the type-I error probability of AD. NC or NC.AD.

BN models as a classification tool: generalizability evaluation

using an independent dataset

We first utilised the ADNI data to construct BN models for the

AD and NC groups. We then used the OASIS data to evaluate the

distinguishing power of the models in the classification of AD and

NC. By comparing the joint probability density between the two

BN models, we could predict the group membership of a given

subject. Finally, classification accuracy was assessed using receiver

operating curve (ROC) analysis. We defined accuracy as NY/

(NY+NN), in which NY was the number of individuals that were

correctly identified and NN was the number of individuals that

were not correctly identified.

Results

Structural interactions within the DMN
Figure 1 shows the BN models of the AD and NC groups, and

each connection direction and weight coefficient are given in

Table 2. Connections, including lITC_rITC, lIPC_rIPC,

lIPC_PCC, lIPC_lITC and lIPC_mPFC, were present in both

the AD and NC groups. Although the connections between rHP

and lHP, rITC and rHP, rIPC and PCC were observed in both

groups, the directions of the connections were opposed to each

other. The connections from mPFC to lITC and from mPFC to

rHP were observed only in the NC group, and the connections

from lITC to lHP, rITC to rIPC, and lHP to rITC were only

observed in the AD group.

Between-group interactions differences
The permutation test-based type-I errors for the between-group

differences are listed in Table 3. At a significance level of_, the

connections from lIPC to mPFC, mPFC to lITC, and mPFC to

rHP in the NC group were stronger than in the AD group.

Additionally, compared to the NC group, the connections from

lITC to lHP, lHP to rITC, rHP to rITC, and rIPC to PCC were

stronger in the AD group.

Classification accuracy as assessed by the second dataset
The classification results for the ADNI and OASIS data are

summarised as follows. The classification accuracies of the two

datasets were similar, 84.53% for ADNI and 82.29% for OASIS.

The corresponding joint probability density scores distinguished

the AD patients from NC with 87.12% and 83.64% specificity,

81.25% and 80.49% sensitivity for the ADNI and OASIS data,

respectively.

Discussion

In this study, we constructed two BN models to investigate the

structural interactions of grey matter among the core regions of the

DMN in AD and NC. We employed a permutation test to detect

differences in BN connections between the two groups. The AD

patients showed significant reductions in inter-region dependency

in the connections from lIPC to mPFC, mPFC to lITC, and

mPFC to rHP and increases in the connections from lITC to lHP,

lHP to rITC, rHP to rITC, and rIPC to PCC. Moreover, the

application of the constructed BN based on the ADNI data

predicted AD and NC in a second dataset with high accuracy,

sensitivity and specificity.

The connections between the bilateral brain regions located in

the left and right hemispheres were strong in both the AD and NC

groups. And the connection patterns between bilateral regions

including connections from lITC to rITC and lIPC to rIPC were

consistent with the study of functional connectivity in the DMN

conducted by Wu et al.[23]. In a previous study, Zheng et al.

proposed that functional activation was distributed in both

hemispheres and that the left hemisphere might influence the right

hemisphere via the anatomical connections of the CC [22]. In

addition, Mechelli et al. demonstrated that the grey matter density

of a brain region could be used to predict the density of the same

region in the contralateral hemisphere [45]. The findings from these

two studies are in agreement with the significant bilateral

connections shown in the current study. In our study, an interaction

between the PCC and the lIPC was observed in both groups but

there was no between-group difference. In a previous study, Pagani

et al. found that the PCC covaried with the left lateral parietal lobe

by using single photon emission computed tomography (SPECT)

[46]. Moreover, a connection between the mPFC and the lIPC

existed in both groups, with evidence that the inferior parietal lobule

was connected to the prefrontal cortices [47].

Table 1. Eight ROIs in the DMN.

Brain regions Abbreviations AAL labels

Posterior cingulate cortex PCC cingulum_post_L/R + precuneus_L/R

Medial prefrontal cortex mPFC frontal_sup_medial_L/R

Left hippocampus lHP hippocampus_L+parahippocampus_L

Right hippocampus rHP hippocampus_R+parahippocampus_R

Left inferior parietal cortex lIPC parietal_inf_L

Right inferior parietal cortex rIPC parietal_inf_R

Left inferior temporal cortex lITC temporal_inf_L

Right inferior temporal cortex rITC temporal_inf_R

doi:10.1371/journal.pone.0074070.t001

Structural Interactions within the DMN in AD

PLOS ONE | www.plosone.org 4 August 2013 | Volume 8 | Issue 8 | e74070



Significantly decreased interactions among the mPFC and the

lIPC, lITC, and rHP were found in the AD group. These

decreased connections might have resulted from the lack of brain

plasticity which referred to the brain’s lifelong ability for physical

and functional changes during maturation, learning and environ-

mental influence [48]. The frontal regions are related to memory

and executive function, and the mPFC is an important hub in

whole brain connectivity [49,50]. In this study, the mPFC had

interactions with different brain regions in NC group revealing

that the mPFC was an important hub to exchange information

with other DMN core regions. Compared to NC, we found that

the number of connections between the mPFC and other brain

Figure 1. Bayesian network models of DMN based on grey matter volume variations in NC (left panel) and AD (right panel). The
arrows represent dependency among brain regions and the thickness of the arrows represents the strength of the connections. The connections with
asterisks are those that were significantly stronger for NC/AD than for AD/NC.
doi:10.1371/journal.pone.0074070.g001

Table 2. List of connections and corresponding weight
coefficients in the Bayesian network models of the NC and AD
groups.

Weight coefficients

Connections NC AD

I lITC_rITC 0.8118 0.7026

lIPC_rIPC 0.4035 0.5992

lIPC_PCC 0.6841 0.4065

lIPC_ lITC 0.3021 0.3930

lIPC_mPFC 0.5990 0.4888

II mPFC_lITC 0.3506

mPFC_rHP 0.3199

III lITC_lHP 0.6596

rITC_rIPC 0.2626

lHP_rITC 20.6363

IV rHP_lHP 0.8421

lHP_rHP 0.8023

rITC_rHP 0.4000

rHP_rITC 0.7691

PCC_rIPC 0.3397

rIPC_PCC 0.3723

Note: Part I of this table lists connections in both the AD and NC groups. Parts II
and III list the connections present in only the NC or AD, respectively. Part IV
lists connections with opposing direction for the two groups.
doi:10.1371/journal.pone.0074070.t002

Table 3. Type-I error probabilities of the between-group
connection differences.

NC.AD AD.NC

Connections Probability Connections Probability

lITC_rITC 0.4044 lITC_rITC 0.5956

lIPC_rIPC 0.7514 lIPC_rIPC 0.2486

lIPC_PCC 0.3330 lIPC_PCC 0.6670

lIPC_lITC 0.7002 lIPC_lITC 0.2998

lIPC_mPFC 0.0000 lIPC_mPFC 1.0000

mPFC_lITC 0.0282 lITC_lHP 0.0380

mPFC_rHP 0.0476 rITC_rIPC 0.1586

rHP_lHP 0.1638 lHP_rITC 0.0038

rITC_rHP 0.1580 lHP_rHP 0.1454

PCC_rIPC 0.1920 rHP_rITC 0.0046

rIPC_PCC 0.0352

Note: The left column, ‘‘NC.AD’’, shows the probabilities of type-I error in the
hypothesis that connections in NC group are greater than in the AD group. The
right column, ‘‘AD.NC’’, displays the opposite situation. The probabilities in
bold indicate significantly greater connections (p,0.05).
doi:10.1371/journal.pone.0074070.t003
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regions was reduced in AD which might arise from the atrophy of

grey matter affected by AD. The mPFC might be vulnerable in

AD due to its anatomical connections with regions firstly affected

by this disease. Specifically, the HP, playing an important role in

memory, atrophied at the early stage and had connection with

mPFC, but this connection was lost in AD [51], which was

consistent with the current study. Using DTI technique, Lo et al.

found that the decreased nodal efficiency in AD was mainly

located in the frontal regions, including the medial part of the

superior frontal gyrus, the dorsolateral part of the superior frontal

gyrus, and the middle frontal gyrus [49]. Our results agreed with

the research conducted by Lo et al. in this regard. We observed

that the interaction between the mPFC and PCC was lost in two

groups, which might arise from the injured cingulate bundle

caused by aging [52].

Compared to the NC group, there were some significantly

increased interactions in the AD group, including lITC_lHP,

lHP_rITC, rHP_rITC and rIPC_PCC. During MCI and early

AD, regional grey matter atrophy was mainly located in the

hippocampus and then extended to other brain regions as the

disease progressed [4,21]. In addition, the strength of the

interaction from lIPC to lITC in AD was increased, although

the between-group difference was not prominent. In the BN

models, we observed a probabilistic dependency of lIPC_mPF-

C_lITC in the NC group but not in the AD group. Disruption of

this probabilistic dependency in the AD group might be due to the

abnormality in the mPFC; therefore, the lITC might predomi-

nantly rely on the lIPC to some extent, which could lead to the

increased interaction between the lITC and the lIPC in the AD

group. Moreover, He et al. found an increased correlation

between the supramarginal gyrus and the inferior temporal gyrus

in the AD group [18], similar to that found in the current study.

The altered connections between the inferior parietal cortex and

other brain regions discussed above support the hypothesis that the

parietal lobe might be a biomarker for AD [47].

We employed BN models to infer AD/NC group differences by

integrating grey matter volume information from multiple brain

regions. For the ADNI data, ROC analysis demonstrated that the

discrimination had 87.12% specificity and 81.25% sensitivity, and

the accuracy rate was 84.53%. Both the sensitivity and specificity

were high and were greater than 81%. To evaluate the

replicability and stability of our AD-associated BN model, we

applied the BN models to an independent dataset acquired using a

different scanner. To a certain extent, the data processing step

might influence the classification results. To preserve the validity

of the classification, the independent dataset must follow the same

preprocessing procedures as the dataset used to construct the BN

models. For the OASIS data, following preprocessing, the ROC

analysis still indicated discriminability with acceptable rates of

83.64% specificity, 80.49% sensitivity and 82.29% accuracy. The

accuracy, sensitivity and specificity in the OASIS dataset were

high and were similar to those of the ADNI dataset. Although the

accuracy of classification for AD vs NC ranged from 70% to 95%

[53,54,55], most of the studies focused on obvious structural

alterations in specific brain regions, such as the hippocampus,

when distinguishing the new subjects and did not consider

interactions among the different regions. Moreover, there was

little trade-off between the indexes of sensitivity and specificity.

Our results verified the validity of our AD-associated BN models

and supported the hypothesis that the models were universal and

scanner-independent. The AD-related BN models can be consid-

ered as valid and predictive structural brain biomarker models for

AD.

The brain is a complicated network [56,57,58] and the DMN is

one of the most important resting-state networks affected by AD,

which is marked by abnormalities in structural interactions and

functional connectivity [23,26,27]. The morphological changes in

the grey and white matter in different brain regions comply with

the covariance pattern, reflecting the network attributes of the

human brain. The progress of most neurodegenerative diseases

spreads along brain networks, and the network-based hypothesis is

supported by researches [59]. We could infer the structural

network by analysing the covariance and interactions among

different brain regions using structural MRI measurements.

Neurodegenerative diseases resulted in abnormal covariant

relationships in structure due to grey matter atrophy. A previous

study based on cortical thickness indicated that the brain has a

‘‘small world’’ nature and that AD could cause network

abnormalities [18]. Furthermore, the structural measurements

and the network map could be employed to distinguish AD

patients from NC [54,59].

BN modelling, as a multivariate approach to represent

interactions among variables, provided interesting findings in

fMRI and has been gradually employed in the study of structural

MRI data in recent years. However, BN modelling in structural

MRI has mainly detected inter-regional associations that are

affected by MCI [20,21], and the application of BN in the study of

AD needs more exploration. In addition, BN analysis of structure

was mostly based on discrete variables [20,21,60], and there was

inevitable information loss during discretization [21]. To over-

come this risk, we proposed Gaussian BN models based on

continuous variables [43] This approach required the distribution

of the continuous variables to be Gaussian; therefore, we verified

that the ROI measurements met this requirement in our study.

Furthermore, because the distribution of the weight coefficient in

each model was unknown, we tested the between-group differ-

ences based on weight coefficient metrics using a nonparametric

permutation test. The permutation test did not rely on the

distribution of the dataset and could sufficiently utilise information

from the original sample data, sequentially enhancing the power of

the test.

One limitation of this study was that the FLAIR sequences for

subjects from the ADNI and OASIS were not available to us to

perform direct examination of focal lesions in the white matter. It

is necessary to further explore the effect of focal lesions on grey/

white matter segmentation in future investigation. Additionally,

DTI data were not available for the examination of possible

anatomical correspondence of the connections (or co-variations)

identified in our study. Finally, we only focused on the DMN, but

it would be interesting to investigate abnormality in other resting-

state networks that are also affected by AD. Nevertheless, our

results demonstrate the feasibility of using BN modelling to further

understand the pathological mechanisms of AD, based on the view

of the structural network, and of using BN as tool to distinguish

AD from NC.
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