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Abstract: A novel double-shelled hollow (DSH) structure of ZnTiO3 microrods was prepared by
self-templating route with the assistance of poly(diallyldimethylammonium chloride) (PDDA) in
an ethylene glycol (EG) solution, which was followed by calcining. Moreover, the NH3 gas-sensing
properties of the DSH ZnTiO3 microrods were studied at room temperature. The morphology and
composition of DSH ZnTiO3 microrods films were analyzed using scanning electron microscopy
(SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The formation
process of double-shelled hollow microrods was discussed in detail. The comparative gas-sensing
results revealed that the DSH ZnTiO3 microrods had a higher response to NH3 gas at room temperature
than those of the TiO2 solid microrods and DSH ZnTiO3 microrods did in the dark. More importantly,
the DSH ZnTiO3 microrods exhibited a strong response to low concentrations of NH3 gas at
room temperature.
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1. Introduction

ZnO and TiO2 films have been extensively studied for use in sensing, but traditional ZnO and
TiO2 gas sensors, which are based on ZnO and TiO2 films, can typically only be used at temperatures
from 300 to 500 ◦C [1,2]. Additionally, selectivity is also an important property of metal oxide-based
sensors. Several designs of sensors’ construction were proposed for achieving the selectivity of these
sensors, such as directly doping small amounts of noble metals (Au, Pd, and Pt), a suitable filter
containing the noble metal catalysts method, and nano-carbon-based composite materials film [3–6].
ZnO and TiO2 are well known inorganic photocatalysts, so that ultra-violet (UV) irradiation has
been used to reduce the operating temperature of these sensors [7–10]. ZnO–TiO2 binary oxide
systems have a better photocatalytic performance than single systems [11]. The ZnO-TiO2 binary
oxide system had three compounds: they are ZnTiO3 (cubic, hexagonal), Zn2TiO4 (cubic, tetragonal)
and Zn2Ti3O8 (cubic) [12–18]. ZnTiO3 has attracted particular interest because of its potential for
use in the photocatalysis of the degradation of organic pollutants, and in adsorption and microwave
devices [18–20]. Numerous reports have revealed that ZnTiO3 has favorable photocatalytic properties
in visible light [21–24], favoring its use for gas sensors at room temperature [25]. Yadav et al. [25]
fabricated a ZnTiO3 nanopowders film using a physicochemical method for sensing liquefied petroleum
gas (LPG) at room temperature. Ippolito et al. [26] fabricated an acetone gas sensor that was made of
ZnTiO3 nanoarrays using a hydrothermal method. The limit of detection (LOD) of this sensor under
light and at 350 ◦C was 10 ppb.

One-dimensional (1D) nanostructured materials such as tubes, wires, belts, and rods have great
potential for use in gas sensors, not only because of their excellent optical, electrical, and mechanical
properties, but also because of their efficiency and activity sites, which are caused by their high
porosity and large surface area [18,27]. Hollow micro/nanostructures have also attracted enormous
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interest because of their many hollow cavities, which make the surface area of hollow structures
significantly greater than that of their solid counterparts [28]. In recent decades, many methods have
been used to prepare ZnTiO3 nanopowders, such as the conventional solid-state reaction, the molten salt
method, the sol-gel method, the chemical bath deposition and the hydrothermal method [13–16,29–31].
The physicochemical properties of ZnTiO3 nanopowders depend on their morphology, the size of
the crystallites, and the crystallographic structure. Recently, Chi et al. [18] fabricated pristine solid
ZnTiO3 microrods, and You et al. [32] fabricated a reduced grapheme oxide decorated solid ZnTiO3

microrod composite using the polyvinylpyrrolidone (PVP)-assisted sol-gel method for use in the
photo-degradation of rhodamine B. However, no attempt has been made to prepare a double-shelled
hollow (DSH) structure of ZnTiO3 microrods and to study their NH3 gas-sensing properties at
room temperature.

Ammonia (NH3) is known to be highly hazardous to the environment and the human body
because of its high toxicity. Accordingly, the fabrication of NH3 gas sensors that can be used at room
temperature, with a high response and a low production cost, has attracted much attention. In this
work, a novel room-temperature NH3 gas sensor with a high sensitivity, based on novel DSH ZnTiO3

microrods, was fabricated. DSH ZnTiO3 microrods were prepared using a self-templating approach,
by heating sol-gel derived Zn-Ti glycolates with poly(diallyldimethylammonium chloride) (PDDA) in
an ethylene glycol (EG) solution and then calcining. This method is very simple, has a low production,
and does not involve heterogeneous coating, so it can be easily scaled up for the fabrication of sensors.
A plausible process for the fabrication of DSH structures is proposed. X-ray diffraction (XRD), scanning
electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction
(SAED), and energy dispersive X-ray (EDX) analysis were used to characterize the composition and
morphologies of the DSH ZnTiO3 microrods. The NH3-sensing properties of DSH ZnTiO3 microrods
at room temperature, including the sensing response, sensing linearity, selectivity, response/recovery
times, repeatability, stability, and sensing mechanism, were also studied.

2. Experimental Methods

2.1. Materials

The following chemicals were used as received without further purification: titanium
(IV)-ethylhexanoate (Ti[(OOCCH(CH2)4(CH3)2)]4 (TE, Alfa Aesar), zinc acetate dehydrate
(Zn(OAc)2·2H2O; Sigma-Aldrich, St. Louis, MO, USA), ethylene glycol (EG, J. T. Baker), poly
(diallyldimethylammonium chloride (PDDA, molecular weight (Mw) = 200,000~350,000, Aldrich).

2.2. Fabrication of Gas Sensors Based on DSH ZnTiO3 Microrods and Measurement of Their Sensing Properties

1.25 g TE, 0.25 g Zn(OAc)2·2H2O and 0.3 mL PDDA were added to a 10 g EG solution, which
was then stirred at 190 ◦C for 1.5 h. An as-prepared precursor solution (PDDA-Zn-Ti-glycolates rods
precursor) was drop-coated on an alumina substrate with interdigitated electrodes (IDE). The system
was then calcined at 500 ◦C for 4 h at a heating rate of 5 ◦C min−1 for decomposing the matrix polymer
and organic groups, and for oxidizing and crystallizing the Zn-Ti-glycolates. Figure 1a shows a picture
of the structure of the as-prepared NH3 gas sensors. The preparation and characterizations of the TiO2

solid microrods were completed according to our previous report [33].
The electrical and NH3 gas-sensing characteristics of the DSH ZnTiO3 microrods were measured

using a bench system, as shown in Figure 1b. The volume of the bench system is 18 L. A Direct current
(DC) mode was used to measure the resistance of the as-prepared sensors. A power supply (GW,
PST-3202) applied a fixed 5 V to the sensor circuit. A DAQ device (NI, USB-6218) was used to measure
the resistance of the sensor in various concentrations of NH3 gas. A standard 1000 ppm NH3 gas in
N2 gas (Shen Yi Gas Co., Taiwan) was used to prepare the required various NH3 gas concentrations.
The desired various gas concentrations were prepared by diluting the known volume of standard NH3

gas with dry air, and were calibrated by a standard gas sensor system (Dräger, MiniWarn). A fan was
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used to disperse the testing gases inside the bench system and was purged with air. All experiments
were measured at room temperature (about 23.0 ± 1.5 ◦C) and the relative humidity at 45% RH.
The response (S) of the sensors was calculated according to Equation (1):

S (%) =
(Rair −Rgas)

Rair
× 100%. (1)

Rair and Rgas are the electrical resistances of the sensor in the air and testing gas at the exposure time of
300 s, respectively.
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Figure 1. (a) The structure of the NH3 gas sensor and (b) the measurement system for testing the
gas sensors.

2.3. Characterization of DSH ZnTiO3 Microrods

The composition and morphologies of the DSH ZnTiO3 microrods film coated on an alumina
substrate were investigated using X-ray diffraction (XRD) using Cu Kα radiation (Shimadzu, Lab
XRD-6000), scanning electron microscope (SEM, JEOL JSM-5310), transmission electron microscopy
(TEM, JEM-1400; JEOL, Tokyo, Japan), selected-area electron diffraction (SAED) and energy dispersive
X-ray (EDX) analysis.

3. Results and Discussion

3.1. Characteristics of DSH ZnTiO3 Microrod Film

3.1.1. XRD Characterization of DSH ZnTiO3 Microrods

Figure 2a,b presents the XRD spectra of the DSH ZnTiO3 microrods that were calcined at 500 ◦C for
4 h and without calcining, respectively. The reflections at (220), (311), (400), (511) and (440) agree closely
with the cubic crystal phase of ZnTiO3. No peak that corresponded to the TiO2, ZnO or zinc titanates,
all of which are associated with other stoichiometries, was observed. These results are consistent
with the literature [18,32]. The XRD results further verified that the formation and crystallinity of the
as-prepared ZnTiO3 at temperatures as low as 500 ◦C were attributable mainly to the short diffusion
paths of metal ions during the heat treatment of the PDDA-Zn-Ti-glycolates rods as the precursor in
the polyol processing [14]. Additionally, the diffraction peaks of the DSH ZnTiO3 microrods without
calcining were unobvious and broad, indicating a poor crystalline structure (Figure 2b).
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3.1.2. SEM and TEM Analyses of Morphology of DSH ZnTiO3 Microrod Film

Figure 3 presents the SEM images of the partially DSH ZnTiO3 microrod film that was prepared by
the self-templating approach, which was followed by calcining. Figure 3a reveals the presence of clearly
regular microrods, which had aggregated into bundles. The high-magnification SEM image of the DSH
ZnTiO3 microrods (Figure 3b) shows that the microrods were linked together in an interconnected
porous network structure. The length and diameter of the DSH ZnTiO3 microrods were about 3~6 µm
and 0.25~0.45 µm, respectively. The microrod structure had round and narrow tips and open ends
(indicated by arrows). Figure 4 presents the TEM images of the DSH ZnTiO3 microrods that were
synthesized by PDDA-assisted self-templating. The low-magnification TEM image of a single DSH
ZnTiO3 microrod (Figure 4a) shows a partially hollow structure at its end. The higher-magnification
TEM image of the selected area in Figure 4a indicates that the ZnTiO3 microrods had a double-shelled
structure (indicated by arrows) (Figure 4b). The shell was thin, and the internal diameter of the hollow
rod was about 0.23 µm. The high-resolution TEM (HRTEM) image of the DSH ZnTiO3 microrods
indicates that the lattice spacing of the adjacent lattice planes was about 0.27 nm, consistent with the
(220) crystal plane of cubic ZnTiO3 (Figure 4c). The SAED pattern (inset in Figure 4c) confirms that the
microrods comprised cubic ZnTiO3, consistent with the relevant XRD results. To further investigate
the composition of the DSH ZnTiO3 microrods, EDX elemental mapping and an elemental analysis
(Figure 4e) were conducted. The EDX elemental mapping (Figure 4d) suggested the presence of Zn, Ti,
and O only in the DSH ZnTiO3 microrods. The EDX elemental analysis (Figure 4e) revealed an atomic
ratio of Zn to Ti of close to 1:1, revealing a close match with the stoichiometric composition.
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Figure 5 presents a plausible synthesis of the DSH ZnTiO3 microrods. First, chain-like
sol-gel-derived Zn-Ti-glycolates were formed by heating in an EG solution. EG is well known
to serve as a complexing agent in the formation of Zn-glycolate and Ti-glycolate from Zn2+ and
Ti4+ ions (path (1)) [34], respectively. The Zn-glycolate was then intercalated with Ti-glycolate,
forming chain-like Zn-Ti-glycolates, similar to those described elsewhere [34–36]. Then (path (2)),
during the sol-gel process, PDDA was adsorbed on the surface of these chain-like Zn-Ti-glycolates
by electrostatic attraction at a high temperature, forming hollow PDDA-Zn-Ti-glycolates rods as a
precursor. In the cooperative assembly process, PDDA exhibited the dual action of protecting and
etching. PDDA molecules were wrapped outside the chain-like Zn-Ti-glycolates in the initial stage of
heating, protecting them in a stable shell. Since the PDDA (with quaternary amines) was coated on the
surfaces of chain-like Zn-Ti-glycolates, the increase in the amount of counterions (OH−) nearby increased
the local alkalinity and facilitated etching accordingly. Hollow PDDA-Zn-Ti-glycolates rods were
thus formed as a precursor [28,37]. Additionally, if many of the surface Zn-Ti-glycolates rods became
covered by PDDA, the penetration of etching species into the interior of the Zn-Ti-glycolates rods was
prevented, and no hollow structure was formed. Finally (path (3)), the hollow PDDA-Zn-Ti-glycolates
rods as the precursor underwent a post-calcination treatment at a high heating rate (5 ◦C min−1).
The outmost PDDA-Zn-Ti-glycolates layer with a limited thickness was concentrated; the outermost
ZnTiO3 shell was degraded and oxidized; and the inner PDDA-Zn-Ti-glycolates layer was contracted.
Thereafter, the outermost ZnTiO3 shell separated from the shrinking internal PDDA-Zn-Ti-glycolates
layer. Subsequently, the inner ZnTiO3 shell formed in the same way until the organic groups in the
precursor PDDA-Zn-Ti-glycolates burned out [38]. As a result, DSH ZnTiO3 microrods were formed.
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3.2. NH3 Gas-Sensing Properties of DSH ZnTiO3 Microrod Film

Figure 6 presents the responses (S) of the TiO2 solid microrods, ZnTiO3 powders, DSH ZnTiO3

microrods, and DSH ZnTiO3 microrods in the dark, to 100 ppm of NH3 gas at room temperature.
The response (S) values for the TiO2 solid microrods, ZnTiO3 powders, DSH ZnTiO3 microrods,
and DSH ZnTiO3 microrods in the dark were 16.17, 17.75, 45.32, and 21.07, respectively. The DSH
ZnTiO3 microrods exhibited a stronger response (S) than those of the TiO2 solid microrods and ZnTiO3

powders, and the DSH ZnTiO3 microrods in the dark. This result may be attributable to the fact that
the DSH ZnTiO3 microrods exhibited a higher surface area, larger pores, and a greater total pore
volume than the TiO2 solid microrods and ZnTiO3 powders did. Moreover, the fact that ZnTiO3

exhibited a higher response in the visible light than in the dark may be attributable to the fact that
the DSH ZnTiO3 microrods had a good photocatalytic activity in the visible light [39,40]. Figure 7a
presents the dynamic responses (S) of the DSH ZnTiO3 microrods to various concentrations of NH3.
They exhibited a response (S) of 5.1%, even to a low NH3 testing concentration of 1 ppm. The limit
of detection (LOD) was estimated at the lower calibration point of 1 ppm by considering a S/N of 3.
The LOD was 0.45 ppm. Figure 7b presents the linear dependence of the response (S) of the DSH
ZnTiO3 microrods on the concentration of NH3 gas. The sensitivity ( ∆S

∆C ) is obtained from the slope
of the linear sensing curve. The linear sensing properties in the ranges of 1 to 20 ppm and 20 to
200 ppm of NH3 gas differed. The sensitivity at 5 to 150 ppm of NH3 gas was larger than that at
150 to 300 ppm, and a rapid decrease in the slope was observed from 20 to 200 ppm of the NH3 gas.
This result was related to the synergistic effect of the surface area and the photocatalytic activity of
the DSH ZnTiO3 microrods. As the concentration of NH3 increased to 20~200 ppm, the number of
active sites for adsorption decreased, causing a rapid decline in the slope. Figure 8 plots the real-time
resistance of the DSH ZnTiO3 microrods to 5 ppm of NH3 over time. The response time (ResT90) and
recovery (RecT90) times are calculated as the time taken for the resistance of the sensor to change by
90% of its maximum change after the exposing time of the NH3 gas at 300 s. The response (ResT90)
and recovery (RecT90) times of the DSH ZnTiO3 microrods were 93 and 363 s, respectively. Figure 9
plots the response and recovery times as a function of the NH3 gas concentration. The recovery time
increased with an increasing NH3 gas concentration. The rather long recovery time was attributable to
the hollow interior cavities of the DSH ZnTiO3 microrods. The sensor also exhibited a good reversibility.
Figure 10 plots the effect of the ambient humidity on the response (S) of the DSH ZnTiO3 microrods.
The response (S) of the DSH ZnTiO3 microrods decreased with an increase in the ambient humidity,
with measurements at testing concentrations of NH3 of 5 ppm. This result was reasonable because
the physisorbed water occupied the active sites of the DSH ZnTiO3 microrods. Figure 11 plots the
results concerning the interfering effects of CO, H2, NO2, NO, and SO2 gases on the DSH ZnTiO3

microrods. These interfering gases may be regarded as having unobvious interference effects with
NH3 at 100 ppm. However, NO2 and NO gases detectably interfered with NH3 at less than 5 ppm.
Figure 12 plots the long-term stability of the DSH ZnTiO3 microrods. The mean response (S) of the
DSH ZnTiO3 microrods to 50 ppm and 5 ppm NH3 gas for 68 days were 49.11 and 17.34, respectively.
The response drift for 68 days was calculated as the relative standard deviation (RSD). The RSD for the
DSH ZnTiO3 microrods to 50 ppm and 5 ppm NH3 gas were 6.5% and 8.3%, respectively. The relative
standard deviation (RSD) of the response (S) of the DSH ZnTiO3 microrods to 50 ppm NH3 gas was
6.0%, indicating its favorable repeatability. The NH3 gas-sensing properties of the presented NH3

sensor was compared with those of sensors in the literature, as shown in Table 1 [41–46]. The DSH
ZnTiO3 microrods had the lowest detection limit for sensing NH3 gas at room temperature.
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Figure 6. The response (S) of intrinsic TiO2 microrods, ZnTiO3 powders, DSH ZnTiO3 microrods, and
DSH ZnTiO3 microrods in the dark, in 100 ppm NH3 gas at room temperature.
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Figure 7. (a) The response (S) of the DSH ZnTiO3 microrods to various concentration of NH3 gas at
room temperature, and (b) the linear dependence of the response (S) of the DSH ZnTiO3 microrods on
the concentration of NH3 gas at room temperature. The sensitivity ( ∆S

∆C ) is determined from the slope
of the linear curve.
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Figure 8. The response and recovery of the DSH ZnTiO3 microrods to 5 ppm NH3 at room temperature.
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Figure 12. The long-term stability of a NH3 gas sensor based on DSH ZnTiO3 microrods (dotted line as
the average response (S) value). (�) 50 ppm and (N) 5 ppm NH3 gas.

Table 1. Comparison of the performance of the NH3 gas sensor developed herein with the literature.

Sensing Material Operating
Temperature (◦C)

Detection Limit
(ppm)

Response/Recovery
Time (s) References

TiO2 25 5 34/90 [41]
TiO2 microspheres/RGO 25 5 -/- [42]

TiO2/RGO 25 - 55/- [43]
ZnO/NiO 25 15 20/90 [44]
ZnO/Pd 200 30 198/334 [45]

Pd NPs/TiO2 MRs/RGO 25 2.4 420/3000 [46]
DSH ZnTiO3 microrods 25 1 93/363 This work

3.3. Electrical Properties and NH3 Gas-Sensing Mechanism of DSH ZnTiO3 Microrod Film

Figure 13 plots the real-time resistance of the DSH ZnTiO3 microrod film as a function of time for
various concentrations of NH3. The resistance of the DSH ZnTiO3 microrod film herein was reduced
by exposure to NH3 gas (electron-donating). Accordingly, the prepared DSH ZnTiO3 microrod film
had the electrical property of an n-type semiconductor. Therefore, the changes in resistance of the DSH
ZnTiO3 microrod film by exposure to NH3 gas have been suggested from the reports of Hieu et al. [47],
Gupta et al. [48], and Shi et al. [49], as illustrated in Equations (2)–(4) [47–49]:

O2 (g) + e− O2 (ads), (2)

NH3(g) NH3(ads), (3)

4 NH3(ads) + 3 O2 (ads)
− 2 N2 + 6 H2O + 6 e−. (4)

First, the atmospheric oxygen adsorbed electrons from the conduction band of the surface of the
DSH ZnTiO3 microrod film, forming O2(ads)

− (Equation (2)). Then, the adsorption of electron-donating
NH3 gas molecules interacts with pre-adsorbed oxygen ions (O2(ads)

−) and releases electron carriers
into the n-type DSH ZnTiO3 microrod film, causing its electrical resistance to decrease, while increasing
the concentration of NH3 gas (Equations (3) and (4)). From all of the above, two main effects are
proposed to explain why the DSH ZnTiO3 microrod film had the strongest response (S). First, the DSH
ZnTiO3 microrods had hollow cavities, and their consequently large surface area favored NH3 gas
adsorption. Second, the fact that the response of the DSH ZnTiO3 microrod film in light was stronger
than in the dark is directly related to its photocatalytic activity. In the presence of sunlight, electrons
were photo-excited from the valence band to the conduction band of the DSH ZnTiO3 microrods, and
these photo-generated electrons at the surface of the DSH ZnTiO3 microrods were then transferred to
the adsorbed oxygen, increasing the adsorbed oxygen ions, favoring the chemisorption of NH3, and
thereby improving the response of the DSH ZnTiO3 microrods [28,29,33,34].
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Figure 13. The real-time resistance of DSH ZnTiO3 microrods as a function of time (s) toward different
NH3 concentrations from 1 to 200 ppm.

4. Conclusions

Novel DSH structures of ZnTiO3 microrods were fabricated via a PDDA-assisted self-templating
approach in an EG solution and were then calcined. The synergistic surface-protecting and core-etching
of chain-like Zn-Ti-glycolates by PDDA explains the formation of double-shelled hollow structures
of the ZnTiO3 microrods. The ZnTiO3 microrods exhibited a strong response to low concentrations
of NH3 gas at room temperature, including a good sensitivity (5.1%) at 1 ppm NH3, a good linearity
(Y = 1.5575 X + 7.5526; R2 = 0.9068) at 1~20 ppm NH3, a fast response time (93 s), a good repeatability,
a good reversibility, a high selectivity, and a good long-term stability (at least 68 days).
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