
INVESTIGATION

Bulked-Segregant Analysis Coupled to Whole
Genome Sequencing (BSA-Seq) for Rapid Gene
Cloning in Maize
Harry Klein,*,1 Yuguo Xiao,†,1 Phillip A. Conklin,‡,1 Rajanikanth Govindarajulu,§ Jacob A. Kelly,†

Michael J. Scanlon,‡ Clinton J. Whipple,† and Madelaine Bartlett*,2

*Plant Biology Graduate Program and Biology Department, University of Massachusetts Amherst, Amherst, MA 01003,
†Department of Biology, Brigham Young University, 4102 LSB, Provo, UT 84602, ‡Department of Plant Biology, Cornell
University, Ithaca, NY 14853, and §Department of Biology, West Virginia University, Morgantown, WV 26506

ORCID IDs: 0000-0002-0747-5856 (Y.X.); 0000-0002-0369-8606 (M.B.)

ABSTRACT Forward genetics remains a powerful method for revealing the genes underpinning organismal
form and function, and for revealing how these genes are tied together in gene networks. In maize, forward
genetics has been tremendously successful, but the size and complexity of the maize genome made
identifying mutant genes an often arduous process with traditional methods. The next generation
sequencing revolution has allowed for the gene cloning process to be significantly accelerated in many
organisms, even when genomes are large and complex. Here, we describe a bulked-segregant analysis
sequencing (BSA-Seq) protocol for cloning mutant genes in maize. Our simple strategy can be used to
quickly identify a mapping interval and candidate single nucleotide polymorphisms (SNPs) from whole
genome sequencing of pooled F2 individuals. We employed this strategy to identify narrow odd dwarf as an
enhancer of teosinte branched1, and to identify a new allele of defective kernel1. Our method provides a
quick, simple way to clone genes in maize.
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Forward genetics remains a powerful way to ‘ask the plant’which genes
matter for a particular trait or phenotype (Mueller 2006). Because for-
ward genetics relies on random mutagenesis, it presents an unbiased
method for identifying novel genes that act in particular pathways.
While forward genetic screens can reveal new genes, they can also
reveal novel functions for known genes; providing a richer, more deeply
nuanced view of gene function essential for a true understanding of
how genes and gene networks contribute to building an organism
(Nawy et al. 2010; Gallavotti et al. 2010; Vlad et al. 2014; Gillmor
et al. 2016). After random mutagenesis, mutant genes are most often
identified through linkage mapping.

Linkagemapping, using a combination of bulked-segregant analysis
(BSA) and fine mapping, has been very successful for cloning maize
genes (Gallavotti andWhipple 2015). The process starts when amutant
of interest is crossed to a wild-type individual in a contrasting genetic
background. The resulting F1 individuals are selfed or backcrossed, and
mutants are identified in the F2 or backcross population. These mu-
tants can be used to identify a region of increased homozygosity in a
chromosomal region physically linked to the lesion causing the mutant
phenotype. This region of increased homozygosity can be rapidly de-
tected using bulked-segregant analysis (Michelmore et al. 1991).

In bulked-segregant analysis, pools of wild-type and mutant indi-
viduals are genotyped at markers spread across the genome. In chro-
mosomal regions not linked to the mutant lesion, markers will be
segregating according to typical 1:2:1 (or 1:1 in backcross) segregation
ratios. In a pooled BSA sample, these unlinked markers will all be
genotypically heterozygous. Linkedmarkers will be homozygous for the
mutant parent genotype, unless F1 recombination has happened be-
tween themutant lesionandaparticularmarker.Achromosomal region
enriched for these linked markers represents a likely location for the
mutant gene under study, and the coordinates of these linked markers
define an initial mapping interval. Once this initial mapping interval is
identified, F1 recombination is again used to place recombination

Copyright © 2018 Klein et al.
doi: https://doi.org/10.1534/g3.118.200499
Manuscript received June 13, 2018; accepted for publication September 5, 2018;
published Early Online September 7, 2018.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
Supplemental material available at Figshare: https://doi.org/10.25387/g3.7014851.
1Contributed equally to the manuscript
2Corresponding Author: University of Massachusetts Amherst, 374 Morrill 4S,
611 North Pleasant St., Amherst, MA 01003. E-mail: mbartlett@bio.umass.edu

Volume 8 | November 2018 | 3583

http://orcid.org/0000-0002-0747-5856
http://orcid.org/0000-0002-0369-8606
https://doi.org/10.1534/g3.118.200499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25387/g3.7014851
mailto:mbartlett@bio.umass.edu


breakpoints in individual mutants, and thus narrow the mapping in-
terval using fine mapping (Gallavotti and Whipple 2015). The fine
mapping process is often time consuming, and identifying causative
lesions and mutant genes can take years.

The advent of next-generation sequencing (NGS) means that BSA
can be used to very quickly identify a very small mapping interval, and
even the causative lesion, without fine mapping. In BSA-Seq, whole
genome shotgun sequencing usingNGS can be used toquickly genotype
mutant vs. non mutant BSA pools at many thousands of markers
spread across the genome. These BSA-Seq data can reveal the genomic
interval that contains the mutant gene of interest, and with enough
coverage, the lesion itself (Zou et al. 2016). Since random mutagenesis
produces lesions throughout the genome, and since NGS does not de-
pend on established genotyping assays, BSA-Seq can be used to identify
a chromosomal region using just the polymorphisms induced by mu-
tagenesis. In this case, the contrasting genetic background used for the
BSA can simply be that of an unmutagenized parent. This modification
to BSA-Seq has been called MutMap (Abe et al. 2012). BSA-Seq (and
MutMap) has been used to identify mutant loci inArabidopsis thaliana,
soybean, barley, Mimulus, rice, sorghum, and Brachypodium dis-
tachyon (Schneeberger and Weigel 2011; Abe et al. 2012; Mascher
et al. 2014; Woods et al. 2014; Addo-Quaye et al. 2017; Ding et al.
2017; Song et al. 2017; Jiao et al. 2018). In maize, BSA coupled to RNA-
Seq (BSR-Seq) has been used successfully to clone mutant genes (Liu
et al. 2012; Li et al. 2013; Nestler et al. 2014; Tang et al. 2014). Con-
ventional BSA-Seq has been used to identify genomic regions under-
lying variation in flowering time and plant height QTL in a maize
population (Haase et al. 2015), but cloning mutant genes using BSA-
Seq is not yet routine in maize.

Here, we report a user-friendly protocol for cloning mutant maize
genesusingBSA-Seq.Weusedthisprotocol toclonetwogenes recovered
from EMS mutagenesis screens. We used conventional BSA-Seq in the
case of one gene, andMutMap in the other. We identified narrow odd
dwarf (nod) as an enhancer of teosinte branched1 (tb1) using

conventional BSA-Seq, and identified a seedling lethal allele of de-
fective kernel1 (dek1) using MutMap (Doebley et al. 1997; Lid et al.
2002; Becraft et al. 2002; Rosa et al. 2017). In addition, we used our tb1
enhancer data to design insertion-deletion (indel) markers for down-
stream fine mapping. This fine mapping to reduce the recombination
interval is critical in cases where only a single allele for a particular
mutant exists, and in cases where no clear candidate lesion is identi-
fied. Our method provides a quick, easy method for cloning mutant
genes in maize.

METHODS

Plant material and isolation of mutants
To identify enhancers and suppressors of the tb1 (Doebley et al. 1997)
and narrow sheath (ns) (Scanlon et al. 1996) phenotypes, we performed
EMS mutagenesis screens. tb1 encodes a TCP transcription factor with
a well characterized role in suppressing axillary branching or tillering
(Doebley et al. 1997). The ns loci regulate the initiation of lateral cells in
the maize shoot apical meristem. ns1 and ns2 encode duplicate homeo-
domain transcription factors, homologous to PRESSED FLOWER in
Arabidopsis thaliana (Nardmann et al. 2004). We mutagenized pollen
homozygous for a weak allele of tb1 in the A619 inbred (tb1-sh), and ns
in an unknown background obtained from Pioneer Hi-Bred Intl. (ns1;
ns2), using established protocols (Neuffer et al. 1997). After mutagen-
esis, M1 progeny were selfed to generate M2 populations, where we
identified the mutants tb1 enhancer (ten) and very narrow sheath (vns).
ten, which arose in the A619 genetic background, was crossed to the
B73 genetic background and then selfed to generate an F2 mapping
population (Figure 1a). vns is seedling-lethal. Therefore a wild-type
sibling, heterozygous at vns, was backcrossed to a ns1 heterozygote
fixed for ns2 (ns1/NS1;ns2/ns2), and the progeny selfed to generate a
mapping population (Figure 1b).

For BSA-seq, tissue samples were collected from 101 ten mutant
individuals, and 9 vnsmutant individuals in the mapping populations.

Figure 1 Crossing scheme to generate ten and vns mapping populations. (A) For ten, we crossed a homozygous ten tb1-sh double mutant
(in A619) to a wild-type individual of a widely divergent genotype (B73), then selfed many plants in the resulting F1. We selected ten mutants in
the F2 generation, regardless of the tb1 phenotype. We pooled tissue from 101 of these mutants into a single DNA extraction and a single library
for whole genome shotgun sequencing. (B) For vns, we backcrossed a plant heterozygous at vns to a wild-type individual of the unmutagenized
parental genotype. We selfed many individuals in the resulting F1 (50% heterozygous at vns). We selected 9 vns mutants in the F2 generation,
regardless of the ns phenotype, and pooled tissue into a single DNA extraction and NGS library.
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Weused this small number of vns individuals because that was what we
had available from a small mapping population. Mutants in the F2
mapping populations were sampled independent of their genotypes
at tb1 or ns1 (i.e., neither ten nor vns was dependent on tb1 or ns,
respectively). Because the vns genetic background is unknown, we also
collected tissue samples for 9 wild-type siblings in the vns mapping
population and for the parents of the EMS mutagenesis screen. To
characterize the genetic interaction between tb1 and ten, we counted
tillers in families segregating tb1-sh and ten.

DNA extractions and NGS sequencing
Tissue samples were pooled by hole punching each leaf twice to ensure
equal representationof individuals.WeextractedDNAfromthepoolsof
tissue using a CTAB method (Gallavotti and Whipple 2015). Libraries
were prepared using the TruSeq DNA sample prep kit according to the
manufacturer’s instructions (Illumina). We sequenced the ten mutant
pool on an Illumina Hi-Seq 2500 at Brigham Young University. Se-
quenced reads were 125bp long with paired-ends. We sequenced vns
mutants, vns wild-type siblings, and unmutagenized parents on an
Illumina Hi-Seq 2500 at Cornell University. Sequenced reads from
vns were 150bp long with paired ends. Different sequencing platforms
were used because of differing availability at our respective institutions.

NGS quality control and read alignment
We used the genomic tools hosted on Galaxy web portal to process our
Next-Gen sequencing data (Afgan et al. 2016). An overview of our
process is shown in Figure 2. We used FastQC (v. 0.69) to determine
the quality of our sequencing data, and established a PHRED quality
cutoff of 20 based on this analysis (Ewing et al. 1998; Andrews 2014).
We used FASTQ Groomer (v. 1.1.1) to convert our FASTQ files to
Sanger format for input into downstream Galaxy tools (Blankenberg
et al. 2010). Trimmomatic (v. 0.36.3) was used for sliding window
trimming averaged across 4 base pairs with average quality .20 and
for adapter sequence removal (Bolger et al. 2014). The Galaxy tool cat,
which concatenates datasets tail-to-head (cat) (v. 0.1.0) was used to
join sequencing files together if data were split from multiple Illumina
sequencing runs (Afgan et al. 2018). We used Bowtie2 (v. 2.3.2.2) to

align sequencing reads to the B73 reference genome version 4, release
56 and to generate an index (Langmead and Salzberg 2012; Jiao et al.
2017). Read alignment was assessed with Mtools Flagstat (v. 2.0) (Li
et al. 2009).

Variant calling
SAMtoolsmpileup (v. 2.1.3)was used to output variants from the indexed
bam file into pileup or variant call format (vcf) files (Li et al. 2009). Pileup
files were generated for identification of the mapping region and vcf files
were generated for identification of candidate SNPs. To filter variant files
for mapping region identification, we used SAMtools filter pileup (v.
1.0.2), a custom Galaxy tool, to filter based on read coverage and quality
(Li et al. 2009). We filtered out non-variant positions, and focused only
on variant positions with coverage of 8 or more reads, each with a quality
score of 20 ormore. To generate vcf files for candidate SNP identification,
we used Varscan (v. 0.1). We used a minimum homozygous calling
frequency of 0.99, and filtered out SNPs with low read coverage
(coverage ,8) (Koboldt et al. 2012). We used this coverage cutoff to
reduce artifacts from sequencing and/or mapping error, and 8 was well
below the coverage means for both of our datasets.

We also used our mapping data to generate an A619 variant file. We
usedVarscan (v. 0.1) to call SNPs in ten and 4otherA619mutants.Wedid
not assign a coverage cutoff for these datasets, and retained only SNPs that
had a paired read. We used the function findCommonVariants in the
Rsubread package (Shi et al. 2013) to identify SNPs common to all 5 data-
sets (File S1).

Data processing for plotting and SNP filtering
Each filtered pileup file was split into 10 chromosomes. At each
nucleotide position in the pileup file, we calculated variant allele
frequency by dividing the number of reads that differed from the
B73 reference sequence by the quality adjusted total number of reads
at that position. This variant allele frequencywas added as a newcolumn
in the pileup file. Nucleotide position, reference allele, alternate allele,
coverage, and variant allele frequencywere extracted from the pileupfile
to create a variant file for downstream analysis in R (Wickham and
Francois 2015; Wickham 2016).

Figure 2 A simplified overview of our BSA-Seq
pipeline. (A) We analyzed our NGS data in Galaxy
and in R to identify chromosomal regions that
contained the mutant genes. (B) SNP filtering to
identify candidate (EMS) SNPs.
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Mapping region identification
We plotted our data against the B73 reference genome, to identify
chromosomal regions enriched for homozygous SNPs, presumably in
linkage with the causative lesions. Before plotting, we filtered positions
with coverage .100 to remove highly enriched positions in our data.
High coverage SNPs are likely in repeat rich regions and will not be
informative for mapping region identification (Addo-Quaye et al.
2017). We used ggplot2 to plot the number of homozygous variant
positions that differed from the B73 reference genome, per 1Mbp chro-
mosomal bin (Wickham and Francois 2015; Wickham 2016). For these
analyses, nucleotide positions that differed from the reference genome
at a frequency greater than or equal to 0.99 were defined as homozy-
gous variants. For vns, we went on to remove SNPs that were in the
wild-type sibling and unmutagenized parent datasets, and plot only
those homozygous SNPs that were unique to the mutant pool. For both
ten and vns, we also plotted the number of homozygous canonical EMS
variants (G to A and C to T transitions) per 1Mbp bin. We defined the
limits of the ten and vns mapping intervals as those chromosomal
coordinates where variant frequency returned to background levels.

SNP filtering for candidate SNP identification
Once we had identified likely mapping intervals for ten and vns, we
searched for potentially causative lesions in each of these intervals. Here,
we returned to the vcf file generated using Varscan. Although we could
have investigated the filtered EMS SNPs from our pileup file used to
determine the mapping region directly, we chose to use Varscan because
it outputs a vcf file, needed for downstream candidate SNP analyses using
SnpEff (Cingolani et al. 2012).We filtered out all backgroundA619 SNPs
(File S1) from the ten dataset, and all parental and homozygous wild-type
SNPs from the vns dataset. We reasoned that it was highly unlikely that
the causative SNPs could be any known SNPpresent in anymaize inbred.
Therefore, we applied an additional SNP filtering step, and removed all
the maize Hapmap 3.2.1 SNPs from both datasets, and our A619 SNPs
from vns (Merchant et al. 2016; Bukowski et al. 2018). Once we had a set
of positions enriched for SNPs unique to each of our particular mutant
pools, we filtered out SNPs that were not homozygous and were not
canonical EMS changes (G to A or C to T) (Till et al. 2004). The final
set of homozygous EMS SNPs unique to each dataset was the input for an
analysis of likely SNP effects on gene function.

To identify SNPs in our filtered datasets that might negatively affect
gene function, we used SnpEff (version 4.3a). SnpEff identifies nonsense

SNPs and splice sitemutations as likely to have highly deleterious effects
ongenefunction,andallmissenseSNPsas likely tohavemoderateeffects
on gene function (Cingolani et al. 2012). Functional annotations for the
genes disrupted by likely moderate- and high-effect candidate SNPs
were obtained from Gramene (Tello-Ruiz et al. 2018). Candidate SNPs
were validated through Sanger sequencing and/or complementation
crosses.

Indel marker design and fine mapping
To refine our ten mapping interval, we designed custom markers for
fine mapping. We used Varscan (v. 0.1) to identify insertion and de-
letion polymorphisms (indels) in our mapping interval that differenti-
ated our mutant pool from the B73 reference genome. We chose indels
that were 15 base pairs in length or longer, and designed primers to
flank these indels by 100-150bp (Table S1). DNA was extracted from
each of the 101 F2 mutants originally pooled into one NGS library and
used for Indel PCR (Gallavotti and Whipple 2015). Size differences
between the resulting PCR products were detected on 3.5% agarose gels.

Data availability
Rawsequencingdata available atNCBI SRA(https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA476333). A protocol for NGS data analysis and
plotting in R is available at protocols.io (https://www.protocols.io/view/
bsa-seq-in-maize-qyedxte). Supplemental material available at Fig-
share: https://doi.org/10.25387/g3.7014851.

RESULTS

Mutant phenotypes
Froman EMSmutagenesis screen of tb1-shmutants in the A619 genetic
background, we recovered a dwarf mutant with additional tillers that
we called tb1 enhancer (ten) (Figure 3a). very narrow sheath (vns) was
uncovered in an independent EMS mutagenesis screen. vns single mu-
tants are seedling lethal and often fail to develop more than 3 leaves
(Figure 3c). Although vnswas isolated in an ns enhancer screen, vns did
not enhance ns.

To determine the nature of the genetic interaction between ten and
tb1, we counted tillers in a population segregating both tb1-sh and ten.
Tiller number (per plant) was counted in 15 tb1-sh single mutants,
15 ten single mutants and 15 tb1-sh; ten double mutants. tb1-sh
and ten single mutants had an average of 4 and 2 tillers respectively.

Figure 3 ten and vns were identified in EMS mutagenesis screens. (A) ten (left), tb1-sh ten (middle), tb1-sh (right). (B) Quantification of tillers in a
9:3:3:1 population of ten and tb1-sh shows a synergistic interaction between ten and tb1-sh. (C) Wild-type (left) and vns mutant (right) exhibiting
reduced growth at the seedling stage.
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ten tb1-sh double mutants had an average of 9 tillers, showing a syn-
ergistic interaction between ten and tb1-sh in tiller development (Figure
3b).

Both ten and vns are on chromosome one
To identify the causative lesions underlying the ten and vns mutant
phenotypes, we sequenced pooled DNA from 101 ten individuals and
9 vns individuals from F2 mapping populations (Figure 1). We se-
quenced ten pools and vns pools on an Illumina platform with outputs
of 125 bp and 150bp paired end reads, respectively. For ten, we re-
covered 450,665,452 reads, and for vnswe recovered 311,711,046 reads.
For ten, 97% of our reads (438,746,898) mapped to version 4 of the
maize genome, and 91% were properly paired (409,548,662). For vns,
90% of our reads (279,239,524) mapped, and 77.5% were properly
paired (241,580,812). The average coverage of all ten and vns mapped
reads was 26-fold and 17-fold respectively (Table 1). The combined
dataset that we used to generate the A619 SNP dataset included 1.1
billion mapped reads, for a mean coverage of 59-fold (File S1).

To identify the chromosomal regions corresponding to ten and vns,
we searched for regions of the genome enriched for homozygous var-
iants in the mutant pools. For ten, we plotted the number of homozy-
gous SNPs in the NGS data that differed from B73 (variant
frequency .=0.99), per 1 Mbp bin. This plotting quickly identified a
tall peak on the short arm of chromosome 1, between 0 and 20 Mbp.
Plotting only homozygous canonical EMS SNPs (G to A and C to T
transitions) identified a peak at the same position, although this peak
was shorter (Figure 4a). We also identified two much smaller peaks at
the telomeres of chromosome 1 and 5 that contained regions with
protein coding genes. These telomeric peaks, at regions of the genome
where recombination is high (Gore et al. 2009), were very narrow, and
had sharp boundaries. In contrast, the peak at the top of chromosome
1 was much wider and taller than any of the telomeric peaks, and had
broad shoulders. These broad shoulders are what we expected from a
segregating locus mapped by BSA, where each genome in the pool will
have different recombination breakpoints surrounding the mutant le-
sion. We hypothesized that the telomeric peaks were likely caused by
differences between our B73 stocks and those used to generate the B73
reference genome. These differences may be because of the histories of
our B73 stocks in our own labs, or because of the stocks’ provenance
(Liang and Schnable 2016). We focused on the 0-20 Mbp peak at the
top of chromosome 1 as the initial ten mapping interval, which in-
cluded 623 genes.

For vns, identifying a chromosomal location was not quite as simple
because vns arose in an unknown genetic background, and a vns het-
erozygote was crossed to an unmutagenized parent, and not outcrossed
to any reference genotype (e.g., B73) (Figure 1b). Thus, plotting only
homozygous vns variants revealed, as expected, extensive homozygosity
distinct from the B73 reference. There was still no clear peak when we
plotted only canonical EMS SNPs. However, after removing all unmu-
tagenized parental and wild-type sibling SNPs, as well as all the Hap-
Map 3.2.1 and A619 SNPs, we found a region of high homozygosity on

the short arm of chromosome 1 between 40 and 70 Mbp (Figure 4b).
This vns interval was larger compared to the ten region, perhaps due to
the small number of individuals (9) included in each vns pool, or the
increased recombination at the end of chr.1 where ten is located. As
with ten, plotting only EMS SNPs still revealed a (shorter) peak. The
presence of many non-EMS SNPs in the vnsmapping interval is likely a
result of heterozygosity in the parental ns1 ns2 stock. The vnsmapping
interval included 651 genes.

Fine mapping of ten using custom indel markers quickly
reduced the mapping interval
Both the ten and vns pools were sequenced fairly deeply (Table 1), and
our sequencing data were thus likely to contain both causative lesions.
However, in cases where mutant pools are sequenced to a shallower
depth, and the causative lesions might be missed, we reasoned that the
sequencing data could be used to design markers for fine mapping to
reduce the mapping interval. This fine mapping will also be critical for
reducing the mapping interval if there are multiple gene candidates in
the mapping interval. Therefore, as a proof of concept, we used our
NGS data to design five insertion/deletion (indel) markers to refine the
ten interval (Gallavotti and Whipple 2015) (Table S1). We used these
markers to genotype 101 ten individuals from the F2 mapping popu-
lation and narrowed the ten interval to a region that includes 74 genes
between 11.1 and 13.1 Mbp (Figure 4a). Thus, we were able to quickly
reduce the ten mapping interval more than eightfold, and simplify the
evaluation of candidate SNPs.

SNP filtering and candidate SNP identification
Next, we wanted to identify candidate SNPs in our BSA-seq mapping
regions.Weused a variant calling program,Varscan, to call genotypes at
variant positions based on allele frequency (Koboldt et al. 2012). Var-
scan identified 36,186,873 and 36,790,695 SNPs genome-wide in the
ten and vns datasets, respectively (minimum read depth of 8) (Table 2).
We removed putative background and non-causative SNPs from these
datasets, as described in the Methods. After SNP filtering, we were left
with 50 homozygous EMS SNPs in the ten mapping interval, and
427 homozygous EMS SNPs in the vns interval (allele frequency .
0.99).

To identify which SNPs in these final sets might have deleterious
effects on gene function, we ran these SNPs through SnpEff (Cingolani
et al. 2012). SnpEff identified 4 missense mutations in our tenmapping
interval. The vnsmapping interval included 1 splice site mutation, and
2 missense mutations (Table 3).

Candidate SNP validation
In our ten dataset, the four missense SNPs were in genes encoding a
3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 1 (DHS1)
(Zm00001d027725); an SH2 domain protein (Zm00001d027752); His-
toneH2A 8 (Zm00001d027775); and a knownmaize gene - narrow odd
dwarf (nod) (Zm00001d027722). nod encodes amaizeMID-COMPLE-
MENTING ACTIVITY protein (Rosa et al. 2017). nod-1 is a loss-of-
function allele of nod in the B73 background (Rosa et al. 2017).
Compared to the B73 inbred, nod-1 exhibits several pleiotropic devel-
opmental defects, such as short stature, small organs, a lack of ligules,
compromised apical dominance, and increased tiller growth (Rosa et al.
2017). This pleiotropic phenotype strongly resembled ten single mu-
tants. Combined with our NGS data, this led us to speculate that ten
could be an allele of nod.

To test whether tenwas an allele of nod, we Sanger sequenced nod in
one of our ten mutants, and performed complementation crosses.

n Table 1 Sequencing data summary for ten and vns

Measure ten vns

Reads 450,665,452 311,711,046
Mapped reads 438,746,898 279,239,524
% Mapped Reads 97.36 89.58
Paired reads 409,548,662 241,580,812
Coverage 26.06 16.59
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Sanger sequencing confirmed that ten harbored the same missense
mutation in nod that was identified through NGS (Figure 5b). In our
field, nod-1 homozygous individuals failed to produce mature tassels or
ears by the time that ten plants were ready for crossing. Therefore, we
crossed ten to heterozygous nod plants and examined the F1 progeny.
Both ten and nod-1 are recessive mutations. Therefore, if ten were an
allele of nod, we expected about half of the F1 progeny to show the nod
phenotype, and half of the F1 progeny to show a wild-type phenotype.
Otherwise, if tenwere not an allele of nod, we expected all F1 progeny to
show a wild-type phenotype. Indeed, we found that 12 of 26 F1 plants
were short, and lacked ligules (P = 0.69, chi-squared test, one degree of
freedom, Figure 5d), as is the case with nodmutants (Rosa et al. 2017).
Therefore, we concluded that ten is an allele of nod, and henceforth will
refer to it as nod-ten.

The single likely high effect SNP in the vnsmapping interval was in a
donor splice site of a known maize gene, defective kernel1 (dek1)
(Zm00001d028818) (Figure 5c). Dek1 encodes a membrane-spanning
protein with a calpain protease domain (Lid et al. 2002). dek1mutants
contain a root primordium but lack a shoot structure (Neuffer et al.
1997), similar to what was observed in vns mutants. This led us to
suspect that vns might encode an allele of dek1.

To determine if the SNP in dek1 was responsible for the vns
phenotype, we crossed heterozygous vns plants with heterozygous
dek1 plants. If vns were an allele of dek1, we expected about one
quarter of the F1 progeny to show the dek1 phenotype, and three
quarters of the F1 progeny to show a wild-type phenotype. Other-
wise, if vns were not an allele of dek1, we expected all F1 progeny to
show a wild-type phenotype. In the F1 progeny, 9 of 36 plants were

Figure 4 Both ten and vns are on chromosome 1. (A) ten likely lies between 0 and 20 Mbp on chromosome 1. Plotting the number of
homozygous positions that differ from the B73 reference genome (per 1 Mbp chromosomal bin) reveals a large peak on chromosome 1 (top).
This peak is still visible, but smaller, if only homozygous EMS SNPs are plotted (bottom). (B) vns likely lies between 40 and 70 Mbp on
chromosome 1. Plotting the number of homozygous positions that differ from the B73 reference genome (per 1 Mbp chromosomal bin) reveals
no distinct peaks (top). After filtering out parental, wild-type sibling, Hapmap 3.2.1 and background SNPs, a large peak on the short arm of
chromosome 1 is revealed (middle). This peak is still visible, but smaller, if only homozygous EMS SNPs are plotted (bottom). �indicates a region
where our B73 stocks likely differed from those that were used to generate the B73 reference genome.
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very small, and died shortly after producing only a small number of
leaves (P = 1, chi-squared test, one degree of freedom, Figure 5e).
Similarly, 7 of 36 F1 progeny of the heterozygous dek1 self exhibited
the same phenotype (P = 0.44, chi-squared test, one degree of free-
dom). Thus, vns failed to complement the dek1 mutant phenotype,
indicating that vns is an allele of dek1. Henceforth we will refer to
vns as dek1-vns.

DISCUSSION
Here, we report a BSA-Seq method for cloning EMS mutants in maize.
Using this method, we identified and validated causative SNPs for two
separate EMS-induced mutants. We have provided a detailed protocol
for conducting these analyses using Galaxy, as well as a SNP variant file
for the A619 genetic background (File S1). This has the potential to be
useful for anyone working in A619 - including for making a synthetic
A619 reference genome (McKenna et al. 2010). In addition, we showed
an interaction between the known maize genes nod and tb1 (Doebley
et al. 1997; Rosa et al. 2017).

We discovered a synergistic interaction between tb1 and nod in
regulating tiller production (Figure 3). Although nod is predicted to
encode a membrane-localized maize MID-COMPLEMENTING
ACTIVITY homolog, and may function to coordinate plant develop-
ment in response to intrinsic and extrinsic cues (Rosa et al. 2017), how
exactly nod regulates plant development remains largely unknown.
The homolog ofNOD inArabidopsis thaliana,MCA1, may be involved
in Ca2+ uptake and the cell wall stress response pathway (Yamanaka
et al. 2010). In maize, hormone metabolism and cell division are over-
represented GO categories in nod-1 mutant transcriptomes, relative

to wild-type (Rosa et al. 2017). Interestingly, tb1 is downregulated
(2.4-fold) in nod-1 shoot apices, relative to wild-type (Rosa et al.
2017), which suggests that nodmight act upstream of tb1 to regulate
its expression. nod could represent a sensor of positional and envi-
ronmental cues that regulate tb1-mediated tiller outgrowth. The
exact mechanism through which nod and tb1 synergistically regu-
late tiller outgrowth requires further investigation.

In any BSA-Seq experiment, the key goals are to define the smallest
mapping interval possible, and to identify a small number of potentially
causative lesions. To achieve these goals, both the size of the mutant
pool and sequencing depthmust be considered. In our experiments, the
nod-tenBSA-Seqmapping interval encompassed�20Mbp on the short
arm of chromosome 1, and included 623 genes. The dek1-vnsmapping
interval encompassed �30Mbp on the short arm of chromosome 1,
and included 651 genes (Figure 4). Thus, despite a much smaller mu-
tant pool (9 dek1-vns individuals vs. 101 nod-ten individuals), and a
lower recombination rate where dek1-vns is located (Gore et al. 2009),
the dek1-vnsmapping interval included only 28 (4%) more genes than
the nod-tenmapping interval.Mean coverage in both datasets was fairly
high (26-fold for ten and 17-fold for vns), allowing for both causative
lesions to be captured. To identify just the genomic interval that con-
tains a particular gene, sequencing depth could be reduced, but the
chances of catching the causative lesion will be similarly reduced. In
a case where no clear candidate lesion is recovered, and/or there are
many genes in a BSA-Seq mapping interval, fine mapping would be-
come essential. Thus, our results indicate that sequencing to the deepest
level affordable is more important than a big mutant pool for a success-
ful BSA-Seq experiment.

Themost important advantage of BSA-Seq over othermethods is its
simplicity, both in terms of sample collection and data analysis. While
BSA-Seq is used extensively in other taxa (Schneeberger and Weigel
2011; Abe et al. 2012; Mascher et al. 2014;Woods et al. 2014; Ding et al.
2017; Song et al. 2017; Jiao et al. 2018), gene mapping via Bulked-
Segregant RNA-Seq (BSR-Seq) is more often used for cloning maize
genes (Liu et al. 2012; Li et al. 2013; Nestler et al. 2014; Tang et al. 2014).
In BSR-Seq, RNA from a pool of mutants and RNA from a pool of non-
mutants is used to make RNA-Seq libraries (Liu et al. 2012). These
libraries are sequenced, and the resulting reads mapped to the maize
reference genome. BSR-Seq offers a very good method for genome
reduction, thus increasing sequencing depth without increasing cost.
If the RNA-Seq is performed using the right tissue at the right devel-
opmental stage, BSR-Seq offers the advantage of differential gene
expression data as well as mapping information. In contrast, since
BSA-seq relies on DNA extraction, sample collection can be done at
any developmental stage, and from any tissue. Although bulk RNA
extractions are not extraordinarily challenging, DNA extractions are
far simpler, and can be performed by relatively inexperienced trainees

n Table 2 Varscan SNP data summary for ten and vns (coverage >
8)

SNPs
ten

(ROI = 0–20Mbp)
vns

(ROI = 40–70Mbp)

Genome-Wide
Total SNPs

(genome wide)
36,186,873 36,790,695

Homozygous EMS SNPs
after filtering

148 7,899

Region of Interest (ROI)
Total SNPs 266,837 470,763
Homozygous EMS SNPs

after filtering
50 427

High effect homozygous
EMS SNPs

0 1

Moderate effect
homozygous EMS
SNPs

4 2

n Table 3 Candidate SNPs for ten and vns

Chr Position Ref Alt Gene ID SnpEff Call Effect Functional Annotation

ten
1 12172055 C T Zm00001d027722 Moderate L129F narrow odd dwarf (nod)
1 12286537 C T Zm00001d027725 Moderate P208L 3-deoxy-D-arabino-heptulosonate 7-phosphate

synthase 1 (DHS1)
1 12631437 C T Zm00001d027752 Moderate G139E SH2 Domain Containing Protein
1 13337447 G A Zm00001d027775 Moderate D67N Histone H2A 8

vns
1 47570165 G A Zm00001d028818 High Splice Site defective kernel1 (dek1)
1 53173992 G A Zm00001d028965 Moderate A38V Protein of unknown function
1 53174101 G A Zm00001d028965 Moderate R2C Protein of unknown function
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in the lab. This technical simplicity offers the advantage of being able to
involve high school students and junior undergraduates in authentic
research experiences (Lopatto et al. 2014). In addition, the data analysis
for BSR-Seq is not as straightforward as it is for BSA-Seq. In BSR-Seq,
allele-specific expression must be accounted for, as well as differential
expression of genes not linked to the mutant gene in mutant vs. wild-
type pools (Liu et al. 2012). Here, too, simplicity offers speed for the
experienced researcher, and excellent training opportunities for begin-
ning scientists.

For dek1-vns, we used a modification of BSA-Seq that has been
called MutMap (Abe et al. 2012). In MutMap, instead of generating
an F1 between contrasting genotypes, the F1 comes from a mutant
backcrossed to a wild-type, unmutagenized individual in the same ge-
netic background as the mutant. Thus, MutMap introduces no addi-
tional genetic variation in the initial F1 cross. Instead, MutMap relies
on co-segregation of induced SNPs with the mutant phenotype,
allowing for the identification of a region of increased homozygosity
in the mutant pool. MutMap would likely also have been successful in
identifying nod-ten. In both of our datasets, just mapping the EMS
mutations reveals clear peaks corresponding to the mutant genes
(Figure 4). One advantage that MutMap offers is that no additional
genetic variation is introduced in the F1 cross. This genetic variation
can suppress or enhance mutant phenotypes, which can make scoring
F2 populations challenging. However, in these cases, conventional
BSA-Seq could be used to identify both causative lesions and modi-
fiers in one step (Song et al. 2017).

Another advantage of BSA-Seq over MutMap is that even if the
lesion is not captured, or if there are many candidate lesions in a
mapping interval, a researcher is immediately poised to design indel
markers and commence fine-mapping in an identified genomic
interval. Numerous candidate lesions are more likely when the
mutant under study is not from an EMS mutagenesis experiment,
which is fairly common in maize (Vollbrecht et al. 1991; Thompson
et al. 2009; Whipple et al. 2011). In these cases, lesions are not

necessarily of a defined type (e.g., G to A or C to T transitions),
which makes SNP filtering challenging. However, high homozygos-
ity that is polymorphic with a reference genome will still reveal the
chromosomal location of the causative lesion, and streamline sub-
sequent fine mapping.

Technical and conceptual advances will eliminate some, but not all,
sources of uncertainty when it comes to capturing the candidate lesions
underlying mutant phenotypes. With shallow read depths, causative
lesions may not be captured; but deep coverage is likely to become ever
more attainable as NGS costs drop, thus eliminating this source of
uncertainty. Theremay be a number of potentially causative lesions in a
candidate region; but as themaize pan-genome is resolved (Hirsch et al.
2014; Bukowski et al. 2018), the pool of background SNPs that can be
eliminated gets ever-deeper when cloning clear null mutations unlikely
to be present in natural variation. Other potential sources of uncer-
tainty will likely never go away. For example, filtering out all of the
HapMap and pan-genome SNPs will be less useful when trying to
identify natural modifiers. BSA-Seq and fine mapping will be particu-
larly helpful in narrowing down a candidate region for a natural mod-
ifier; when a causative lesion is not in the coding sequence of an
annotated gene; or when mutant pools are contaminated with wild-
type or heterozygous samples. Thus, BSA-Seq offers many advantages
that are likely to prove useful for mapping and cloning many maize
mutants.
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Figure 5 ten and vns encode alleles of nod and dek1,
respectively. (A) Fine mapping of ten using custom
indel markers reduced the mapping interval to a region
containing 74 genes. The approximate position of nod-
ten is marked in red. (B) The ten lesion in nod is a mis-
sense mutation. (C) The vns lesion in dek1 is a splice site
mutation. (D) ten fails to complement nod. As in nod-1
mutants (Rosa et al. 2017), the ligule and auricle are
both absent in the leaves of ten/nod-1 F1 plants (top).
The black arrow indicates the ligule in a wild-type plant
(bottom), and the lack of a ligule in a ten/nod-1 F1
plant. (E) vns fails to complement dek1.
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