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Abstract: Human DNA contains several variations, which can affect the structure and normal
functioning of a protein. These variations could be single nucleotide polymorphisms (SNPs) or
insertion-deletions (InDels). SNPs, as opposed to InDels, are more commonly present in DNA
and may cause genetic disorders. In the current study, several bioinformatic tools were used to
prioritize the pathogenic variants in the SLITRK1 gene. Out of all of the variants, 16 were commonly
predicted to be pathogenic by these tools. All the variants had very low frequency, i.e., <0.0001
in the global population. The secondary structure of all filtered variants was predicted, but no
structural change was observed at the site of variation in any variant. Protein stability analysis of
these variants was then performed, which determined a decrease in protein stability of 10 of the
variants. Amino acid conservation analysis revealed that all the amino acids were highly conserved,
indicating their structural and functional importance. Protein 3D structure of wildtype SLITRK1 and
all of its variants was predicted using I-TASSER, and the effect of variation on 3D structure of the
protein was observed using the Missense3D tool, which presented the probable structural loss in
three variants, i.e., Asn529Lys, Leu496Pro and Leu94Phe. The wildtype SLITRK1 protein and these
three variants were independently docked with their close interactor protein PTPRD, and remarkable
differences were observed in the docking sites of normal and variants, which will ultimately affect the
functional activity of the SLITRK1 protein. Previous studies have shown that mutations in SLITRK1
are involved in Tourette syndrome. The present study may assist a molecular geneticist in interpreting
the variant pathogenicity in research as well as diagnostic setup.

Keywords: SLITRK1; bioinformatical tools; pathogenic; docking

1. Introduction

Human DNA contains several variations in its sequence including single nucleotide
polymorphisms (SNPs) and insertion deletions (InDels). However, SNPs are the most
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frequently occurring variations in the human genome. These variations in the genome
may alter the protein structure and function and can affect the normal character(s) of an
organism [1–3]. InDels cause substantial genetic variation in the genome of an organism.
Many of the InDels occur at the functionally important part of the genome and hence may
also play their role in disease onset [4]. Single nucleotide substitution may either cause
missense or nonsense effect. The detailed classification of variant is shown in Figure 1. In
missense effect, one amino acid is replaced by another amino acid, while the nonsense
variants replace the coding codon with a stop codon that eventually leads to the truncation
of protein [5]. About 90% of human genome polymorphisms comprises SNPs. Through
genome wide prioritization, 0.12% of the variants out of total human genome are predicted
to be pathogenic [6]. Several SNPs do not contribute to the causation of disease, but there
are certain SNPs that are called missense SNPs or non-synonymous SNPs (nsSNPs) and
that are involved in genetic disorders [7]. In about 50% of the total known mutations,
nsSNPs are the major contributing factor [8,9].
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Figure 1. Classification of variants.

Most of the disease-causing SNPs are reported at evolutionary-conserved regions of
the human genome, which have great importance in the structure and function of proteins.
It is very important to identify the pathogenicity of specific SNP for disease prognosis. The
identification of SNPs involved in disease is a difficult job, as it requires multiple tests for
hundreds to thousands of SNPs in candidate genes. Prioritizing SNPs using bioinformatical
tools would be a possible way to overcome this problem. Bioinformatics prediction tools
help us to discriminate disease-causing variants from neutral ones.

In the current study, several bioinformatics tools were used to investigate the structural
and functional consequences of nsSNPs present in the coding region of the human SLITRK1
gene. We also predicted the 3D structure of the wildtype SLITRK1 protein and its prioritized
predicted pathogenic variants. This is the first in silico study of the human SLITRK1 gene,
which is helpful in predicting pathogenic nsSNPs in the coding region of the SLITRK1 gene.

2. Materials and Methods
2.1. Variant Recruitment

Variants of the SLITRK1 gene were recruited from the Ensembl genome browser
(https://asia.ensembl.org/index.html, accessed on 28 February 2021). Manual variant
filtration was performed on an MS Excel supported file enlisting all the variants of the
SLITRK1 gene. Only those variants were selected for further analyses, which were nsSNPs
(i.e., missense) and which fell within the coding region of the SLITRK1 gene. The nsSNPs
were analyzed through various bioinformatics tools to find putative pathogenic variants
(Figure 2).
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2.2. Predicting Pathogenicity of Missense nsSNPs

Different online bioinformatics tools were used to predict the pathogenicity of fil-
tered nsSNPs. These online tools were Polyphen2 (Polymorphism Phenotyping v2) (http:
//genetics.bwh.harvard.edu/pph2/, accessed on 20 March 2021), SNPs&Go (https://
snps.biofold.org/snps-and-go/snps-and-go.html, accessed on 15 April 2021), Meta-SNP
(https://snps.biofold.org/meta-snp/, accessed on 5 May 2021), PROVEAN (Protein Varia-
tion Effect Analyzer) (http://provean.jcvi.org/index.php, accessed on 2 June 2021), SIFT
(Sorting Intolerant From Tolerant) (https://sift.bii.a-star.edu.sg, accessed on 27 June 2021),
MutationAssessor (http://mutationassessor.org/r3/, accessed on 15 July 2021), PAN-
THER (Protein ANalysisTHrough Evolutionary Relationships) (http://pantherdb.org,
accessed on 2 August 2021), PhD-SNP (Predictor of human Deleterious SNP) (https:
//snps.biofold.org/phd-snp/phd-snp.html, accessed on 17 August 2021), SNAP2 (https:
//rostlab.org/services/snap/, accessed on 5 September 2021) and PMut (http://mmb.
irbbarcelona.org/PMut/, accessed on 28 September 2021).

2.3. Variant Frequency

The frequency of variants that are commonly predicted to be pathogenic by all the
bioinformatics pathogenicity predictor tools was checked using dbSNP (https://www.ncbi.
nlm.nih.gov/snp/, accessed on 2 October 2021).

2.4. Secondary Structure Prediction

The secondary structures of a normal SLITRK1 protein and common predicted
pathogenic variants were analyzed through an online tool PSIPRED (http://bioinf.cs.
ucl.ac.uk/psipred/, accessed on 4 October 2021).

2.5. Protein Stability Analysis

Protein stability of variants was checked using I-Mutant (http://gpcr2.biocomp.unibo.
it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi, accessed on 8 October 2021) and MUpro
(http://mupro.proteomics.ics.uci.edu, accessed on 9 October 2021). These are web-based
tools that predict the stability of a mutated protein.

2.6. Conservation Analysis

Conservation analysis was performed using Clustal omega (https://www.ebi.ac.uk/
Tools/msa/clustalo/, accessed on 20 October 2021) and ConSurf (http://consurf.tau.ac.il,
accessed on 18 January 2022). The amino acid sequence of the SLITRK1 protein of hu-
mans and some other species was obtained from the HomoloGene sub-database of NCBI
(https://www.ncbi.nlm.nih.gov, accessed on 20 October 2021) and submitted to Clustal
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed on 20 October 2021). Mul-
tiple sequence alignment was performed on Clustal omega to check the conservation of
amino acids of the SLITRK1 protein among different species including Xenopus tropicalis
(western clawed frog), Gallus (red jungle fowl), Bos Taurus (domestic cow), Canis lupus
familiaris (domestic dog), Macaca mulata (rhesus macaque), Pan troglodytes (chimpanzee),
Mus musculus (house mouse) and Rattus norvegicus (brown rat).

The ConSurf web server [10] demonstrates the evolutionary pattern of the amino acids
and nucleic acids by predicting the structural and functional areas. The results are predicted
based on conservation scores that range from 1 to 9, where 1 indicates variable regions,
5 indicates mild conserved regions and 9 indicates highly conserved regions. However,
exposed residues with high scores are considered functional residues, whereas buried
residues with high scores are considered structural.

2.7. Protein 3D Structure Prediction

I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/, accessed on 1 Decem-
ber 2021) tool was used to predict the 3D structure of SLITRK1 protein and its commonly
predicted pathogenic variants. Missense3D (http://missense3d.bc.ic.ac.uk/missense3d/,
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accessed on 10 January 2022) was used to predict structural changes in protein by substitu-
tion of an amino acid. UCSF Chimera (candidate version 1.15) was used to visualize the 3D
structures of proteins retrieved from I-TASSER. 3D structure of normal and variant proteins
was overlapped in UCSF Chimera to observe structural changes.

2.8. Protein–Protein Interactions

The interaction of SLITRK1 protein with other proteins was studied using online tool
STRING (https://string-db.org, accessed on 20 January 2022), which predicts the top ten
proteins that show interactions with the query gene. STRING predicts the interactors of
a protein on the basis of gene fusion, co-expression, function and experimental data. It
shows combined scores for each interacting protein, ranging from 0 to 1, where 0 shows the
lowest interaction and 1 indicates the highest interaction [11].

2.9. Protein-Protein Docking

The online tool Cluspro was used for docking of the normal and mutant SLITRK1
proteins with its close functional interactor [12].
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3. Results
3.1. Variant Recruitment

The total identified variants in SLITRK1 include 07 indels, 321 5′UTR and 624 3′UTR
variants, and 5 nonsense variants. A total of 2255 variants were recruited from the Ensembl
genome browser, which consisted of synonymous, non-synonymous, intronic, 3′UTR and
5′UTR variants. Out of the nonsynonymous variants, 7 were indels and 447 were SNPs. Of
these nsSNPs, 442 variants were missense, i.e., causing change in amino acid, and 5 variants
resulted in the formation of a stop codon, causing truncation of the protein. Only missense
nsSNPs were selected for further bioinformatical analysis.

3.2. Pathogenicity Prediction of Variants

All the missense nsSNPs were subjected to ten bioinformatical tools to predict their
biological pathogenicity. The proportion of pathogenic variants predicted by different
software include 146 by Polyphen2, 101 by SNPs&Go, 102 by Meta-SNP, 103 by PROVEAN,
177 by SIFT, 104 by MutationAssessor, 395 by PANTHER, 141 by PhD-SNP, 160 by SNAP2
and 387 by PMut. Among all the variants, 16 were commonly predicted to be pathogenic
by all the ten bioinformatical tools (Table 1). These 16 variants were then finally selected
for further analysis due to their high susceptibility for being pathogenic.

https://string-db.org


Genes 2022, 13, 672 5 of 14

Table 1. List of variants commonly predicted to be pathogenic by all tools.

S.No Chr:bp Alleles AA AA
Coord

Polyphen2 SNPs&Go MetaSNP Provean SIFT Mutation
Assessor Panther PHD SNP SNAP2 PMut

Pred Prob Pred Prob Pred Score Pred Score Pred Score F I FI
Score Pred Preservation

Time Pred Score Pred Score Pred Score

1 13:83879772 G/A Pro/Leu 579 ProD 0.997 D 0.736 D 0.657 D −8.14 D 0 M 2.995 ProD 750 D 8 E 5 D 0.6827

2 13:83879921 G/T Asn/Lys 529 ProD 1 D 0.853 D 0.81 D −5.77 D 0 M 3.065 ProD 456 D 8 E 82 D 0.7961

3 13:83879932 G/A Leu/Phe 526 ProD 0.997 D 0.673 D 0.603 D −3.85 D 0 M 2.74 ProD 750 D 7 E 71 D 0.7852

4 13:83879997 T/A Asn/Ile 504 ProD 0.999 D 0.907 D 0.825 D −8.14 D 0 H 4.565 ProD 750 D 8 E 85 D 0.8016

5 13:83880021 A/G Leu/Pro 496 ProD 1 D 0.834 D 0.786 D −6.15 D 0 H 4.75 ProD 456 D 6 E 90 D 0.8058

6 13:83880024 G/C Ser/Trp 495 ProD 0.985 D 0.616 D 0.72 D −4.2 D 0.01 H 4.165 ProD 456 D 1 E 65 D 0.7634

7 13:83880354 T/C Asn/Ser 385 ProD 0.999 D 0.812 D 0.721 D −4.37 D 0 M 2.995 PosD 361 D 8 E 72 D 0.5334

8 13:83880432 C/T Cys/Tyr 359 ProD 0.999 D 0.922 D 0.816 D −9.47 D 0 M 2.62 PosD 361 D 4 E 82 D 0.8359

9 13:83880435 T/A Asn/Ile 358 PosD 0.775 D 0.636 D 0.761 D −6.24 D 0 M 2.3 PosD 361 D 3 E 58 D 0.7522

10 13:83880469 A/C Cys/Gly 347 ProD 1 D 0.757 D 0.733 D −9.53 D 0 M 2.62 ProD 750 D 6 E 86 D 0.7549

11 13:83880930 G/A Pro/Leu 193 ProD 0.949 D 0.767 D 0.676 D −6.7 D 0 M 2.93 ProD 750 D 8 E 17 D 0.6558

12 13:83881017 T/C Asn/Ser 164 ProD 1 D 0.833 D 0.766 D −4.75 D 0 M 3.375 ProD 750 D 8 E 66 D 0.7106

13 13:83881162 T/A Asn/Tyr 116 ProD 1 D 0.907 D 0.865 D −7.59 D 0 H 4.72 ProD 750 D 7 E 83 D 0.7989

14 13:83881226 C/A Leu/Phe 94 ProD 0.98 D 0.744 D 0.532 D −2.96 D 0.01 M 3.18 ProD 456 D 7 E 46 D 0.8303

15 13:83881276 A/G Phe/Leu 78 PosD 0.831 D 0.741 D 0.511 D −4.8 D 0.02 M 2.035 ProD 750 D 8 E 52 D 0.5225

16 13:83881305 T/C Asn/Ser 68 ProD 0.985 D 0.753 D 0.69 D −4.72 D 0 H 3.555 ProD 750 D 1 E 64 D 0.8179

Key: Chr: Chromosome, bp: Base pair, AA: Amino Acid, AA coord: Amino Acid Coordinate, Pred: Prediction, Prob: Probability, FI: Functional Impact, Pro D: Probably damaging, Pos D:
Possibly damaging, D: Damaging, M: Medium, H: High, E: Effect.
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3.3. Variant Frequency

dbSNP (https://www.ncbi.nlm.nih.gov/snp/, accessed on 2 October 2021) was used
to check the frequency of commonly predicted pathogenic variants. The frequency of all
the variants was very low (<0.0001) in the global population. This supported the findings
produced by pathogenicity prediction tools.

3.4. Secondary Structure Prediction

The secondary structure predictions indicated that all the selected variants lie in the
coil of the SLITRK1 protein and only one lies in the helix. There was no structural change
observed at the point of change. However, some upstream and downstream changes
were observed.

3.5. Protein Stability Analysis

I-Mutant and MUpro tools were used to check the stability of the SLITRK1 protein
for selected amino acid substitutions. Among 16 commonly predicted pathogenic variants,
10 of the variants were commonly predicted to show decreases in the stability of the protein,
which suggestively may cause greater loss to the SLITRK1 protein (Table 2).

Table 2. List of variants showing decreases in the protein stability.

Variant No. rs ID AA AA Coord
I-Mutant MuPro

Stability RI Stability Score

I rs1048143268 Asn/Lys 529 Decrease 4 Decrease −0.86

II rs1219903976 Leu/Phe 526 Decrease 8 Decrease −0.99

III rs1226852299 Leu/Pro 496 Decrease 6 Decrease −0.992

IV rs1472728808 Asn/Ser 385 Decrease 5 Decrease −0.971

V rs1277399796 Cys/Gly 347 Decrease 7 Decrease −0.994

VI rs1429907885 Pro/Leu 193 Decrease 6 Decrease −0.778

VII rs774612607 Asn/Ser 164 Decrease 5 Decrease −0.999

VIII rs1410244448 Leu/Phe 94 Decrease 8 Decrease −0.999

IX rs954218528 Phe/Leu 78 Decrease 7 Decrease −0.661

X rs1228122404 Asn/Ser 68 Decrease 2 Decrease −0.751

3.6. Amino Acid Conservation
3.6.1. Clustal Omega

The Clustal Omega tool was used for multiple sequence alignment of the SLITRK1
protein of humans with other species. The results revealed that all the amino acids at the
point of variations were highly conserved in all other species, indicating the evolutionary
and functional importance of selected amino acids (Figure 3).

3.6.2. ConSurf

The ConSurf tool was used to identify the evolutionary conservation of amino acids
of the SLITRK1 protein. ConSurf predicts which amino acids play structural or functional
roles based on conservation and solvent accessibility. Residues are predicted as being
functional when they are highly conserved and exposed and as structural when they are
highly conserved and buried. The results indicate that all 10 nsSNPs that are predicted to
be damaging are highly conserved i.e., nine variants having a conservation score of 9 and
1 showing a conservation score of 8. Of the above 10 amino acids, half were buried and
predicted as structural residues while the rest were exposed and predicted as functional
residues (Figure 4).

https://www.ncbi.nlm.nih.gov/snp/
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3.7. 3D Structure Predictions

Three-dimensional models of all SLITRKI variants were designed and superimposed
with the 3D structure of wild SLITRK1 (Figure 5). The Missense3D tool was used to
detect the structural changes that were caused due to substitution of the amino acids. The
Missense3D tool predicted structural damage in variants I, III and VIII, while no structural
damage was detected in the other variants. Hence, we selected variants I, III and VIII
for further analysis. By manual comparison of all the structures, different changes in the
folding pattern of protein were absorbed. The highest similarity index of 71.12% was shown
in the 3D model of the mutant Asn529Lys with the wildtype 3D model of the SLITRK1
protein, while the lowest similarity index was shown in the 3D model of mutant Leu94Phe
with the wildtype 3D model of the SLITRK1 protein. The similarity index of the 3D model
of mutant Leu496Pro with the wildtype SLITRK1 protein was 31.32%.
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3.8. Protein–Protein Interactions

The String tool was used to predict the close interactor protein of SLITRK1. The results
showed that SLITRK1 has close interactions with the PTPRD, PTPRS, PTPRF, OPCML,
PTPRA, PTPRE, DLGAP3, PTPRT, IGHMBP2 and SGCE proteins. However, the SLITRK1
protein determined PTPRD as being the closest functional interactor (Figure 6).

3.9. Protein–Protein Docking

The wildtype SLITRK1 protein and all its variants were docked with the close interactor
PTPRD protein and notable differences were observed in the interacting sites of wildtype
SLITRK1 and its variants with PTPRD. The results showed that wildtype SLITRK1 has
interactions with PTPRD at eight amino acid residues, i.e., Ala680, Lys647, Phe641, Arg584,
Thr604, Tyr582, Glu550 and Ser616. These interactions are through 8 interactive forces
including 7 H-bonds and 1 unfavorable bond.

Variant Leu94Phe showed the lowest interaction with PTPRD, i.e., interacting at five
different residues via four H-bonds and one unfavorable bond, while variant Leu496Pro
showed the highest interaction with PTPRD, interacting at 14 different residues via 15 bonds,
including 12 H-bonds and 3 unfavorable bonds. The interactions of SLITRK1 (normal and
all variants) with close interactor PTPRD are diagrammatically shown in Figure 7.
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4. Discussion

SNPs, also known as single nucleotide variants (SNVs), are the most commonly found
variants in the human genome. According to an estimate, the human genome contains at
least 11 million SNPs (1 per 300 bp on average) [13]. SNPs are found in protein coding
as well as in non-protein coding regions [14,15]. Research has shown that variations in
non-coding elements may also be the cause of several genetic conditions [16]. Numerous
evidence has shown that there are some variants that are found in functional non-coding
regions including chromatin marks, DNase hypersensitivity and enhancer elements [17,18].
The role of variations in non-coding regions including intergenic sequence, non-coding
RNAs and non-coding elements in protein coding gene, is challenging to determine and
needs to be better understood. The non-coding variants involved in causation of different
disorders may be found in enhancer regions, promoter sites, or 5′UTR or 3′UTR of the
gene [19]. Another important role of the non-coding variant is in the regulation of gene
expression, which is a challenging task when identifying the effect of variation in molec-
ular mechanism of gene regulation [20]. Studies have also demonstrated that the role of
variations in non-coding regions are associated with the timing of DNA replication [21].
Variations in the non-coding genome are associated with various diseases, but to fully
understand their functional effects, much research is still required.

In the human genome, around 24,000 to 60,000 coding SNPs are estimated [22,23].
nsSNPs are more significant because they have the potential to affect the structure and
function of expressed proteins and are, therefore, likely to represent modifiers of inherited
susceptibility to disease [24]. nsSNPs alter cellular functions in many ways. Indeed, nsSNPs
often influence normal protein function through a combination of effects on protein stability,
protein–protein interactions and many other features [25]. Numerous studies in the past
have shown that nsSNPs are responsible for about 50% of mutations that are involved in
various genetic disorders [9]. This information confirms that nsSNPs, especially missense
SNPs, are associated with various human diseases. Recent studies on the nsSNPs using
computational approaches reveal the potential impact of mutation on understanding the
molecular mechanisms of various diseases [26–28].

SLITRK1 is a member of the SLITRK family and, similar to other members of the
SLITRK family, is an integral membrane protein with the domain ‘2 N-terminal leucine rich
repeat (LRR) [29]. SLITRK1 has the LRP1 domain, through which they interact with LAR
receptor protein tyrosine phosphatases (PTPs) and control synapse formation [30–32].

The SLITRK1 gene was mapped to a region of chromosome 13q31 [29–33]. The
SLITRK1 gene is highly expressed in adult and fetal brains; moderately expressed in lungs
and pancreas; and has very low expressions in the ovaries, kidneys, heart and liver [33].
Mouse Slitrk1 cDNA was cloned by Aruga and Mikoshiba (2003), who discovered that the
protein contains a signal peptide at N-terminus, which was followed by LRR domains and
a transmembrane domain at the C-terminus [29]. Aruga and Mikoshiba (2003) performed a
Northern blot analysis of various mouse tissues and found a very high expression of Slitrk1
only in the brain [29]. Until now, 14 different types of mutations have been identified in the
SLITRK1 gene (HGMD). Mutations in the SLITRK1 gene have been reported to be involved
in Tourette Syndrome (TS; OMIM No# 137580) [34]. TS is a neuropsychiatric disorder with
an estimated onset in early childhood. It is characterized by vocal and motor tics. It prevails
in 1 out of every 100 individuals worldwide. TS patients often have obsessive compulsive
disorder (OCD) as well as attention deficit hyperactivity disorder (ADHD) along with
some disorders of mood, sleep, depression and anxiety [35,36]. Many genes (such as NTN4,
SLC6A4, IMMP2L, CNTNAP2, NLGN4, HDC and SLITRK1) and some chromosomal loci
have been known to date to be involved in TS [37]. The dysfunction of serotonin and
dopamine neurotransmitters and defects of cortico-striatal-thalamic-cortical pathways are
considered to have an association with TS. Despite extensive research in genetics, the
pathogenetic mechanism of TS is still largely lacking and the number of variants likely to
cause TS is extremely small [38,39].



Genes 2022, 13, 672 12 of 14

Here, in the current study, we performed a bioinformatical approach to predict the
probably harmful nsSNPs and their possible consequences on the structure and function of
SLITRK1 proteins. The total identified variants in SLITRK1 include 07 indels, 321 5′UTR and
624 3′UTR variants, and 05 nonsense variants. The analysis initially identified 442 missense
variants out of 2255 total variants. Different pathogenicity prediction tools commonly
predicted 16 variants to be presumably harmful for protein structure and function. The
frequency of all 16 variants was very low. The secondary structure of these 16 variants did
not show any change at the site of variation. A protein stability analysis is necessary to
assess the structural and functional activity of a protein [40]. Protein stability governs the
conformational structure of the protein and thus determines the function. Any alteration
in protein stability may cause miss-folding, degradation or aberrant accumulation of
proteins [41]. Out of 16 variants, 10 variants showed decreases in the protein stability
based on the I-Mutant and MuPro tools. The conservation of amino acids at the points
of substitutions was checked in nine different species including Homo sapiens using the
Clustal Omega tool. The results showed that all the amino acids at the site of variations
were highly conserved, indicating their structural and functional importance. The Missense
3D tool was used to check the possible loss in the 3D structure of the SLITRK1 protein,
which is caused by a substitution of amino acids. The results showed that variants I, III
and VIII affect the structural confirmation of SLITRK1 protein. Hence, variants I, III and
VIII were selected for further in silico analysis. The wildtype SLITRK1 protein and its three
variants i.e., Leu94Phe, Leu496Pro and Asn529Lys were docked with the close interactor
protein PTPRD. Molecular docking analysis revealed that the aforementioned variants can
possibly affect the functional activity of the SLITRK1 protein.

The limitation of current study is that the analysis was conducted without considering
the disease model because a single gene may independently cause different diseases with
different segregation patterns. Further to this, the alleles (obtained from genome browser
for current analysis) exists in real form; however, until now, it was not associated with any
disease onset due to several reasons, such as the allele being associated with some recessive
condition where the presence of homozygous genotype would be necessary for disease
onset. Nevertheless, the allele floats in the population, which may coincidently or due to
extensive consanguinity, unite in a single individual (i.e., homozygous genotype) and cause
the disorder. Therefore, in this study, we tried to focus on predictions of the detrimental
effect of the allele regardless of disease inheritance pattern or disorder type. Hence, it is
speculated that, if this allele segregates in an individual or family, it may have a negative
impact. Moreover, the study also did not include the non-coding variants in spite of their
significant role in the spatio-temporal gene expression pattern.

Conclusively, the present bioinformatic study would assist a molecular geneticist in
interpreting the variant pathogenicity in research as well as diagnostic setup.
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