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Abstract: Machine learning approaches are widely used to
evaluate ligand activities of chemical compounds toward
potential target proteins. Especially, exploration of highly
selective ligands is important for the development of new
drugs with higher safety. One difficulty in constructing well-
performing model predicting such a ligand activity is the
absence of data on true negative ligand-protein interac-
tions. In other words, in many cases we can access to plenty
of information on ligands that bind to specific protein, but
less or almost no information showing that compounds
don’t bind to proteins of interest. In this paper, we
suggested an approach to comprehensively explore candi-
dates for ligands specifically targeting toward proteins
without using information on the true negative interaction.
The approach consists of 4 steps: 1) constructing a model
that distinguishes ligands for the target proteins of interest
from those targeting proteins that cause off-target effects,
by using graph convolution neural network (GCNN); 2)
extracting feature vectors after convolution/pooling proc-

esses and mapping their principal components in two
dimensions; 3) specifying regions with higher density for
two ligand groups through kernel density estimation; and
4) investigating the distribution of compounds for explora-
tion on the density map using the same classifier and
decomposer. If compounds for exploration are located in
higher-density regions of ligand compounds, these com-
pounds can be regarded as having relatively high binding
affinity to the major target or off-target proteins compared
with other compounds. We applied the approach to the
exploration of ligands for β-site amyloid precursor protein
[APP]-cleaving enzyme 1 (BACE1), a major target for
Alzheimer Disease (AD), with less off-target effect toward
cathepsin D. We demonstrated that the density region of
BACE1 and cathepsin D ligands are well-divided, and a
group of natural compounds as a target for exploration of
new drug candidates also has significantly different distri-
bution on the density map.
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1 Introduction

Current machine learning approaches using sophisticated
methodologies and advanced computational techniques
are highly developed. In cheminformatics, various applica-
tions of machine learning have been proposed for the
construction of useful models to predict the chemical
properties of compounds. One fascinating challenge is the
prediction of the binding specificity of compounds to
specific proteins. Such research is highly beneficial for the
field of drug discovery, as many new drug candidates are
withdrawn from nonclinical or clinical trials because of
safety issues. One major cause of such safety issues is the
nonspecific interaction of the drug with proteins other than
the treatment target, i. e., off-target effects. One example of
such off-target effects has been observed during the
development of drugs to treat Alzheimer’s disease (AD), the
most common type of dementia, which causes neuro-
cognitive disorders such as memory loss and loss of
thinking ability. In AD, β-secretase (β-site amyloid precursor
protein [APP]-cleaving enzyme 1, abbreviated as BACE1) is
considered a possible target for treatment.[1] BACE1 is an
enzyme that initiates the synthesis of amyloid β peptides
(Aβ), a cause of AD. Although BACE1 inhibitors have been

investigated, and some have been the subject of clinical
trials, none has yet received approval from Food and Drug
Administration. Safety concerns seem to be a major cause
of these withdrawals, and some BACE1 inhibitors have been
found to have ocular toxicity in preclinical animal models.
The mechanism of this toxicity had been unclear, but a
recent study implied that cathepsin D is an off-target ligand
of some BACE1 inhibitors, and that this undesirable binding
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is the cause of ocular toxicity.[2] Therefore, improving the
specificity of drugs for the target protein is a key factor in
drug development. Quantum chemistry allows the quantita-
tive prediction of a drug’s binding affinity for a target
protein, but requires a huge number of calculations, which
imposes a large time and cost burden. Moreover, this
approach requires high-resolution information about the
three-dimensional (3D) structure of the target protein. A
majority of targets is membrane proteins, and obtaining
information about the 3D structure of membrane proteins
is challenging because of technical difficulties in their
crystallization. By contrast, a machine-learning approach
does not necessarily require information about the 3D
structure of target proteins, provided that information is
available about whether and/or how strongly each ligand
binds to the target protein. By taking these factors into
consideration, machine-learning techniques make it possi-
ble to predict the binding specificity of ligand compounds.

When applying machine-learning methods to chemical
compounds, a major interest is how to extract the
compound features and process them as vectors. One
traditional way to do this is to construct vectors using
molecular properties such as molecular weight, the number
of atoms, octanol/water partition coefficient called logP,
and polar surface area. However, model construction using
such molecular properties does not always result in better
predictive ability. As an alternative, researchers have
investigated the extraction of structural properties directly
from chemical structures, i. e., chemical fingerprints, to
evaluate the existence of structural fragments. There are
various types of chemical fingerprints depending on
divergent definitions of structural fragments of interest
(e.g., circular fingerprints [CF]). Using fingerprints as
descriptors of ligands, machine learning can be applied to
classify compounds or predict their properties (e.g., a neural
network using fingerprinting dramatically improved per-
formance for predicting quantitative structure–activity
relationships[3]). Moreover, the use of graph theory for
highlighting chemical structures using a graph convolu-
tional neural network (GCNN) has been suggested. GCNNs
enable the direct incorporation of the overall structural
features of the compounds as input data, as in image
processing. Compared with other machine-learning meth-
ods, GCNNs have shown a better ability to predict drug
absorption, distribution, metabolism and excretion (ADME)
based on the chemical structure[4,5] and binding affinity of
ligand compounds to specific target proteins.[6] Similar to
image processing, GCNNs consist of feature extraction
layers, i. e., convolution and pooling layers and fully
connected layers for classification/regression. Input data as
graphs pass through the feature extraction layers, which
results in decomposition of the vector dimensions used in
fully connected layers. GCNNs seem to allow more efficient
featurization, and perform well compared with chemical
fingerprints such as CF.

To construct a classification model for the exploration of
ligand candidates with higher specificity, it is not sufficient
to prepare datasets for groups of selective and nonselective
ligands, because the compounds used for exploration must
be neither selective nor nonselective ligands; datasets for
“nonligands” are also needed to allow construction of
classification models that distinguish them from selective
and nonselective ligands. In many cases, we can obtain
plenty of information about ligands that bind to the target
proteins of interest, but little or almost no information
about ligands that do not bind to the proteins; i. e., true
negative ligand–protein interactions are missing. To avoid
this problem, ligands for entirely different proteins can be
used as negatives, but even these ligands may have some
binding affinity for the proteins of interest. Considering
these factors, we proposed the development of a method-
ology using a GCNN to evaluate ligand-binding specificities
without requiring data for true negatives. The method
developed in the present study consists of the following
four steps: 1) constructing a model that distinguishes
ligands for the target proteins of interest from those
targeting proteins that cause off-target effects; 2) extracting
feature vectors after convolution/pooling processes and
mapping their principal components in two dimensions; 3)
specifying regions with higher density for two ligand
groups through kernel density estimation; and 4) investigat-
ing the distribution of compounds for exploration on the
density map using the same classifier and decomposer. If
compounds for exploration are located in higher-density
regions of ligand compounds, these compounds can be
regarded as having relatively high binding affinity to the
major target or off-target proteins compared with other
compounds. We can evaluate the selectivity of these
compounds toward target proteins using the developed
GCNN classifiers. Because the GCNN can only classify
between ligands with one target and the other, the subject
of classification should be either of them. Our approach
using principal component map enables us to remove other
compounds in advance.

In this study, we constructed a classifier using BACE1
and cathepsin D ligands as examples, extracted their feature
vectors, and visualized them in a two-dimensional (2D)
principal component map. Using the classifier and decom-
poser, we developed feature vectors for the dataset of
natural compounds from the KNApSAcK database[7] and
mapped their first and second principal components. We
then evaluated whether the distributions of ligands and
natural products were clearly separated.
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2 Methods

2.1 Assessment of Strength of Binding of Compounds to
BACE1 and Cathepsin D

We constructed a dataset of binding information for BACE1
and cathepsin D ligands through referencing Binding DB
(https://www.bindingdb.org/). We collected 10,084 records
for BACE1 ligands and 3,042 for cathepsin D ligands. The
database includes information on different measures of
binding affinity, e.g., inhibition constant (Ki) and IC50. These
properties cannot be compared directly, so was difficult to
rank the ligands’ binding affinity strictly for the target
proteins. To solve this problem, we ranked their binding
affinity in two categories: “1: higher or moderate binding
affinity” for compounds for which the minimum values of
Ki, Kd, IC50, and EC50 were less than 1 μM, and “0: lower or
no binding affinity” for compounds that did not satisfy the
above criterion, which is commonly used to evaluate the
strength of ligand binding to target proteins.[8] From this
process, we obtained a dataset containing label information
for both BACE1 and cathepsin D in each record. Binding DB
includes some duplicated records that have the same
simplified molecular-input line-entry system (SMILES) ID,
but different Binding DB ID, so we removed one of each of
the duplicated records using the following process: 1)
duplicated records with exactly the same information on
binding affinity were removed; and 2) for records in which
the SMILES were duplicated but the values for binding
affinity differed, only the record with the lowest Ki, Kd, IC50,
and EC50 values was retained. Through these processes, we
obtained a dataset with 4,603 compounds that had higher
binding affinity only for BACE1, 471 only for cathepsin, 268
for both, and 2,851 for neither. As the purpose of this study
was to classify compounds with higher affinity for BACE1 or
for cathepsin D based on their structural properties, we
removed the 268 records that had higher affinity for both
proteins and the 2,851 records that had lower/no affinity
for both. Moreover, to eliminate the imbalance of sample
size between the subsets with higher affinity for BACE1 and
for cathepsin D, the former subset was reduced to one-
ninth its size by random sampling. Eventually, we obtained
a dataset containing 1,004 records, including 533 and 471
compounds that have higher binding affinity for BACE1 and
cathepsin D, respectively.

2.2 Graph Convolution Neural Networks

The GCNN consisted of two main steps: feature extraction
and classification.[5] The feature extraction step included
repeated convolution and pooling layers. Vectors processed
by the feature extraction step were transferred to gathering
and dense layers in the classification step. Figure 1 shows a
schematic of the GCNN, in which molecular structures are
regarded as graphs. Atoms and chemical bonds correspond

to vertices and edges of graphs, respectively. Information
about each atom was translated to feature vectors with a
size of 75, and information on the linkage of atoms was
represented as an adjacency matrix. The feature vectors
were used as input data and processed by convolution and
pooling layers. In the convolution process, the neighboring
atoms of each atom were taken into consideration. The
details of the convolution and pooling filter are defined by
Eq. (1):

Convolution : vP
i ¼ f ReLU

X

j2Adj ið Þ

Wc dð Þvc
i

 !

;

Pooling : vcþ1
i ¼ maxj2Adj ið Þ vP

j

� �
(1)

where vc
i is the vector of the ith vertex as the input from

the cth layer, Wc dð Þ is the weight of the cth convolution
layer, which depends on the distance d between the ith
and jth vertices, Adj ið Þ gives a set of adjacent vertices of ith
vertex (including the ith vertex itself), and f ReLU is the
activation function known as the rectified linear unit
function.[9] In the pooling process, the output value of the
ith atom in the cth layer is replaced with the maximum
value for the neighbor atoms of the ith vertex (including
the ith vertex itself), using so-called max pooling. In this
study, we constructed feature extraction with three sets of
convolution/pooling layers, resulting in the generation of
feature vectors with a size of 128.

The outputs generated by the feature extraction step
were calculated for each atom. Therefore, the results were
summed for each molecule in a gather layer. In addition to
the summed value, the maximum value of atoms was used
to represent the features of the molecules. Thus, a single
vector with a size of 256 was obtained for each molecule
and used as input data for the classification process. In this

Figure 1. The scheme of the GCNN for molecular feature extraction.
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process, a fully connected layer called the dense layer was
prepared to generate output channels. In this study, we
needed to classify ligands of either of two proteins, BACE1
or cathepsin D; thus, two variables were set for the outputs.
The softmax function was applied to the output values to
convert them to probabilistic values, so that each com-
pound could be classified to one or other of the ligand
groups. The converted output vectors are denoted with
by ¼ ðby1; by2Þ. The corresponding training label data, de-
noted with y ¼ ðy1; y2Þ, are given by (1, 0) for BACE1
ligands and (0, 1) for cathepsin D ligands. The loss function
to evaluate the classification performance of the neural
network is defined by Eq. (2) using the softmax cross
entropy function:

L y; byð Þ ¼ �
XK

k¼1

yk1log byk1ð Þ þ yk2log byk2ð Þf g (2)

We trained the weights from the convolution layers and
fully connected layers using the gradient descent method
to optimize the loss function L. In detail, we minimized L by
repeated updating of weights in accordance with the
following process: when prediction result by was obtained
by applying the set of weights W ¼ W1; ; WC in the tth
updating, the weights were updated using Eq. (3):

Wtþ1 ¼ Wt � at @L
@W

where

@L
@W ¼

@L
@W1

;
@L
@W2

; ;
@L
@WC

� �T

(3)

where α gives a learning rate that controls how much the
weights would be adjusted with respect to the loss
gradient. In this study, adaptive moment estimation
(Adam)[10] was used to update α because it is well known to
work best in many situations. We set the actual number of
updates to the point where the loss value was saturated
and the model performance seemed adequate. To train the
neural network, 80% of the dataset was randomly extracted
from the overall dataset. The remaining 20% of the overall
dataset was used for testing the performance of the
classifier. The classification performance was compared with
that of other traditional machine learning approaches such
as random forest and support vector machines (SVMs).

2.3 Mapping of Extracted Feature Vectors

Through the GCNN described above, feature vectors with a
size of 256 were extracted. PCA was applied to these
vectors to decompose their dimension. Then, the first and
second principal components were plotted on a 2D map. In

addition, the cumulative contribution of total variance was
calculated for the two components. The distribution of the
plots was estimated by applying kernel density estimation
and visualized on the 2D map. Scott’s rule was applied for
bandwidth selection.

3 Results

3.1 Constructing a Model for Classifying BACE1 and
Cathepsin D Ligands

We started by constructing a classifier to distinguish ligands
for BACE1 from those for cathepsin D using the GCNN.
Figure 2 shows that the algorithm successfully classified the

Figure 2. Learning curves for the classification algorithm with the
GCNN. Upper: Accuracy; Lower: Loss function.
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compounds into two groups with an approximate accuracy
of 0.999 for the training and 0.999 for the test dataset after
160 epochs. The classification performance was higher than
those of the other traditional machine learning methods,
random forest (0.877 for the training and 0.881 for the test
dataset) and SVMs (1 for the training and 0.965 for the test
dataset). The loss function defined by softmax cross entropy
also saturated after 160 epochs.

3.2 Extracting Feature Vectors and 2D Mapping

Successful discrimination between ligands binding to
BACE1 and those binding to cathepsin D means that the
output vectors from feature extraction layers should also be
in a space dividing the two ligand groups. To confirm this,
the feature vectors were decomposed using PCA and
components (Figure 3a). The contribution to total variance
by the two components was 55%. The two groups of

ligands were located in separate areas in the map,
indicating that feature vectors for each group were also
transferred to the space dividing the two ligand groups.

Next, the probability density was calculated for the
training dataset for BACE1/cathepsin D ligand classification
through kernel density estimation and visualized on the
map (Figure 3b), from which we can identify approximately
two regions with higher probability density. The region
with the highest density (range of PC1 from � 6 to � 2 and
PC2 near 0) seemed to demonstrate the chemical space for
BACE1 ligands, as estimated from the results of PCA
(Figure 3a). Similarly, it was estimated that the right region
with high density (PC1 from 3 to 6 and PC2 from 0 to 2)
was the chemical space for cathepsin D ligands. There
seemed to be another space for cathepsin D ligands in the
range of PC1 from 2 to 4 and PC2 from � 4 to � 2, implying
that ligands for cathepsin D have a broader chemical space
than those for BACE1.

3.3 Application of the Classifier/Decomposer for new
Dataset

As seen in Figure 3a and Figure 3b, BACE1 and cathepsin D
ligands were separately distributed in 2D space. Next, we
wanted to understand how the mapping methodology
functioned when applied to new datasets as subjects for
the exploration of new ligand candidates. We used two
datasets as input data to the GCNN model: one was a
validation dataset for BACE1/ cathepsin D ligands, and the
other was a dataset for natural compounds collected from
the KNApSAcK database.[7] We had no information about
the binding properties of these natural compounds for
BACE1/cathepsin D. Next, extracted feature vectors were
decomposed using the same PCA model constructed for
the training dataset as described above. The distributions of
the components were visualized by scatterplots on the
density map. As shown in Figure 4a, points for BACE1 and
cathepsin D ligands accumulated in each chemical space.
By contrast, Figure 4b shows that a majority of the points
from natural compounds were distributed in the lower
density space. Although some natural compound points
were within the chemical space of cathepsin D ligands, few
were within the space of BACE1 ligands.

Therefore, the distributions of BACE1/cathepsin D
ligands with high density differed significantly from those
of the natural compounds. These results suggest the
possibility that this process can be used to explore new
candidate compounds that may have highly selective
binding affinity to each protein. When data for new
compounds are used as input data, and some are located
near the distribution of a protein’s ligand group in the
probability density map, the probability is high that the
new compounds belong to the ligand group of that protein.
As discussed earlier, BACE1 is considered to be a good
candidate treatment target for AD; therefore, we inves-

Figure 3. a(upper): Map of first (PC1) and second (PC2) principal
components; b(lower): heatmap of the kernel density estimation
the probability distribution.
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tigated the distribution of compounds in the KNApSAcK
database on the probability density map generated from
BACE1/cathepsin D (Figure 5) and counted the number of
compounds located in the region where BACE1 ligands
were concentrated (PC1 from � 5 to � 3 and PC2 from � 0.5
to 1). As a result, 368 natural compounds were selected as
potentially having highly selective binding affinity for
BACE1. By contrast, 3,845 compounds were located in the
chemical spaces where cathepsin D ligands exist at a higher
density.

4 Discussion

In the present study, we constructed a classification model to
distinguish between ligands for a major target protein and
those for an off-target protein using a GCNN, selecting BACE1

and cathepsin D as example proteins. Feature vectors
generated through the convolution/pooling processes were
visualized in 2D maps after decomposition by PCA, and their
probability density was calculated by kernel density estima-
tion. This process could be expected to allow visualization of
the localized distribution of both ligand groups, and may be
useful for the evaluation of the ligands’ selectivity. In case of
just using the GCNN model for classification, the output
should indicate that the compounds are BACE1-specific or
cathepsin D specific. However, most compounds in the world

Figure 4. Map of principal components of known ligands overlaid
on the probability density heatmap. a(upper): BACE1 (white) and
cathepsin D (black) ligands; b(lower): 200 randomly selected natural
compounds whose data are available in KNApSAcK database. The
density map is the same as Figure 3b.

Figure 5. Map of principal components of natural compounds. a
(upper): Estimated probability density map of the distribution of the first
and second principal components of 50,000 natural compounds; b
(lower): Location of feature vectors from natural compounds after
decomposition through PCA on the probability (right) density map
showing the chemical space of the BACE1/cathepsin D ligand groups.
Scatterplots in white show the location of natural compounds. The
density map was generated from the training dataset for BACE1/
cathepsin D ligand classification. The number of compounds located in
the chemical spaces of BACE1, PC1 [� 5, � 3] and PC2 [� 0.5, 1], was 368.
For the chemical spaces of cathepsin D ligands, 3,583 compounds were
in the region with PC1 [3, 5] and PC2 [1,2], and 262 were in the region
with PC1 [2.5, 3.5] and PC2 [� 3.5, 2.5]. (right). For both (a) and (b), a
probability density map was generated from the training dataset for
BACE1/cathepsin D ligands
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must be none of them. That is why we suggested the
approach to clarify chemical space of compounds feasible for
evaluation in advance. We chose Binding DB as a good
candidate dataset for use in the model construction and
performance testing because it includes many types of
molecular properties of various protein ligands. Some may
wonder why we did not use the binding scores as objective
variables and construct models that directly predicted the
binding affinity to both BACE1 and cathepsin D. One problem
we face when using an open-source database such as Binding
DB is that values relating to the binding affinity of ligands for
proteins, e.g., inhibition and dissociation constants, are not
consistent, and are difficult to compare directly. In such cases,
it is not appropriate to use these values as objective variables
to predict the binding properties by regression. Instead, we
can consider categorizing these ligands in accordance with
their binding affinity, and dealing with them as classification
problems. That is why we set the classification processes
described above instead of using regression.

The GCNN functioned very well for constructing the
classification model to distinguish between ligands for
BACE1 and those for cathepsin D. The classification
performance was remarkably better than that of the other
traditional classifiers, such as random forest and SVMs.

A scatter plot of principal components and a probability
density map generated from the extracted feature vectors
through the GCNN indicated that we successfully extracted the
structural properties that clearly separated the distributions of
BACE1 and cathepsin D ligands on the 2D map. We used only
the first and second principal components for the mapping. To
ensure that the two components are enough to explain The
contribution to total variance from the first and second principal
components, 55%, was much higher than the 31% from the first
and second principal components of feature vectors in CF
(radius=3, count vector without hash function). In addition, the
dimension of the feature vectors generated from GCNN was
apparently less (256) than that from CF (7,709), implying that
feature extraction through a GCNN is efficient enough to
represent significant variance of the compound groups. Ligands
for cathepsin D had a broader distribution than those for BACE1.
This broadening was in the direction of the second principal axis,
which is orthogonal to the first principal axis. The first principal
axis is derived from the variance explaining the structural
difference between ligands related to their target proteins.
Therefore, we consider that the broadening merely indicates the
structural variety of reported cathepsin D ligands.

Using the classifier and decomposer constructed through the
training process of the GCNN, we investigated the distribution of
feature vectors from the validation dataset of BACE1/cathepsin D
ligands and the dataset of natural compounds. The distributions
of BACE1 and cathepsin D ligands were clearly reproduced for
the validation dataset, indicating the rigor of the result obtained
during the training process. However, the distribution obtained
from the dataset of natural compounds was in a significantly
different space from that of BACE1/cathepsin D ligands. Based
on the results, we were able to implement a comprehensive

exploration of candidates for BACE1 or cathepsin D ligands with
higher selectivity. To do the exploration, we extracted 368 natural
compounds located in the chemical space of BACE1 ligands in
the principal component map.

To ensure that these compounds are considered candidates
of specific ligands, we investigated the chemical space of 268
non-specific ligands, with high affinity to both BACE1 and
cathepsin D (Figure 6). Such compounds also had the distribu-

tion clearly different from specific ligands. Compounds on the
chemical space of BACE1 ligands were used as input data for
the classifier, and extracted the logit values of the output
channel. Compounds with higher values for the output channel
of BACE1 ligands and lower values for cathepsin D ligands were
considered to have potential binding affinity for BACE1. As
examples, the 10 compounds with the highest logit values in
the channel for BACE1 ligands were extracted (data in the area
highlighted in red in Figure 7). The chemical structures of these
compounds are shown in Figure 8.

In these 10 compounds, 9 compounds are purified from
plantae (Menispermaceae, Apocynaceae and Amaryllidaceae).
One common feature of these compounds is that they are 5- or
6-membered heterocyclic compounds conjugated to an aro-
matic ring. In addition, these compounds can be divided into
four groups based on their skeletal structures, implying that
such structural features may be crucial for selective binding of
compounds to BACE1. It is also possible that these compounds
might merely belong to a tail of the distribution of natural
compounds that coincidently overlaps the chemical space of
BACE1 ligands. Even in this case, we can at least dramatically
narrow down candidate ligands using this methodology.

In this study, we selected a dataset of natural compounds
as a target for comprehensive exploration. The advantages of
using natural products as targets of exploration have been

Figure 6. Map of principal components of non-specific ligands, with
high binding affinity to both BACE1 and cathepsin D, overlaid on
the probability density heatmap. The density map is the same as
Figure 3b.
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pointed out:[11] development of drugs derived from natural
compounds is beneficial because these are easily obtainable
compared with synthetic compounds, and drugs derived from
natural compounds are considered to be biodegradable and to
pose less risk of unpredictable residues in the human body and
the environment. Although there are huge varieties of natural
products because of the variety of species of plants, marine
species, sponges, mushrooms, lichen, and animals, only a
minority of these natural products have been investigated as
candidates for new drugs. One limitation has been the difficulty
in isolating natural compounds from living systems, but high-
resolution techniques of isolation and purification have been
advancing. Moreover, there are currently many libraries avail-
able that store data on natural compounds, including SMILES
information. Therefore, a convenient screening method would
be beneficial to allow evaluation of the potential of these
compounds as drugs. The methodology we suggested does
not require excess time and calculation, implying the possibility
of using it for rapid screening.

5 Conclusions

We suggested a new approach using a GCNN for the
comprehensive exploration of compounds having highly
selective binding affinity for proteins of interest. To evaluate
the effectiveness of this approach, we successfully con-
structed a GCNN classification model and extracted struc-
tural features relating to the differences between ligands
for BACE1 and those for cathepsin D. The probability
density of the extracted features decomposed to principal
components differed significantly between BACE1/cathe-
psin D ligands and natural compounds on a 2D map. This
approach is considered beneficial for two main reasons: 1)
it does not need a dataset of true negatives, which is
difficult to collect, and 2) it has lower calculation costs

compared with other methodologies, such as quantum
chemistry-based approaches to molecular dynamics simu-
lation. Moreover, using natural compounds as targets of
exploration is beneficial for many reasons. Application of
the methodology established in this study could be
expected to accelerate the exploration of new candidates
for highly selective drug compounds.
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Figure 7. Scatter plot of the output values from GCNN before
applying softmax function for 195 natural compounds, which are
located on a chemical space of BACE1 ligands in probability density
map. Compounds existing in the region highlighted with red would
be considered good candidates for BACE1 ligands.

Figure 8. Chemical structures of compounds extracted from the region highlighted in red in Figure 6. In accordance with their skeletal
structures, these can be divided into four groups, from (a) to (d). Extracted compounds are identified by C_ID in KNApSAcK database.
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