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Abstract 

Background:  The ability to approximate intra-operative hemoglobin loss with reasonable precision and linearity 
is prerequisite for determination of a relevant surgical outcome parameter: This information enables comparison of 
surgical procedures between different techniques, surgeons or hospitals, and supports anticipation of transfusion 
needs. Different formulas have been proposed, but none of them were validated for accuracy, precision and linearity 
against a cohort with precisely measured hemoglobin loss and, possibly for that reason, neither has established itself 
as gold standard. We sought to identify the minimal dataset needed to generate reasonably precise and accurate 
hemoglobin loss prediction tools and to derive and validate an estimation formula.

Methods:  Routinely available clinical and laboratory data from a cohort of 401 healthy individuals with controlled 
hemoglobin loss between 29 and 233 g were extracted from medical charts. Supervised learning algorithms were 
applied to identify a minimal data set and to generate and validate a formula for calculation of hemoglobin loss.

Results:  Of the classical supervised learning algorithms applied, the linear and Ridge regression models performed 
at least as well as the more complex models. Most straightforward to analyze and check for robustness, we proceeded 
with linear regression. Weight, height, sex and hemoglobin concentration before and on the morning after the 
intervention were sufficient to generate a formula for estimation of hemoglobin loss. The resulting model yields an 
outstanding R2 of 53.2% with similar precision throughout the entire range of volumes or donor sizes, thereby mean‑
ingfully outperforming previously proposed medical models.

Conclusions:  The resulting formula will allow objective benchmarking of surgical blood loss, enabling informed deci‑
sion making as to the need for pre-operative type-and-cross only vs. reservation of packed red cell units, depending 
on a patient’s anemia tolerance, and thus contributing to resource management.

Keywords:  Surgical blood loss, Blood management, Blood loss calculator, Blood loss formula, Anemia management, 
Machine learning

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​
mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​cdoma​in/​
zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Blood, or, more precisely, hemoglobin (Hb) loss dur-
ing surgery is a risk factor for the requirement of a red 
blood cell (RBC) transfusion; blood loss is also a quality 
indicator for medical or surgical procedures [1–12]. Sur-
gical (i.e. functional) success of a procedure provided, 
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hemoglobin loss is thus one of the most salient outcome 
parameters of the quality of an intervention, whether for 
comparison of competing techniques, of hospitals, or of 
individual surgeons. Once the typical blood loss during 
a certain intervention has been established with some 
robustness, use of that value and a specific patient’s pre-
dicted individual anemia tolerance can be used to make 
decisions with respect to perioperative anemia manage-
ment–will type and cross be required, will it be sufficient, 
or should RBC products be immediately available in the 
operating room–and can thus aid blood bank inven-
tory management. While hemoglobin management and 
hemoglobin loss as a critical quality-defining outcome 
parameter are firmly established, useful, practical tools 
for assessment of intra-operative hemoglobin loss are 
lacking [13, 14]. Methods to gauge hemoglobin loss into 
surgical gauze, using photometric methods, were already 
proposed in the 1950s [15]. A number of simple formulas 
drawing on pre- and post-operative hemoglobin or hem-
atocrit (Hct), typically incorporating total blood volume/
RBC volume/ hemoglobin mass of the respective patient, 
have been proposed since [16–22]. None of these caught 
on, presumably because the former is cumbersome and 
the latter poorly validated, and a need to provide tech-
niques for more accurate blood loss quantification was 
identified [14, 23]. The ascent of “big data” mathemati-
cal brute-force technologies as well as the ubiquity of 
handheld minicomputers which can accommodate 
complex estimation algorithms now allowed develop-
ment of a refined formula for hemoglobin loss based on 
a large cohort of healthy individuals subjected to con-
trolled hemoglobin loss. We identify a minimum dataset 
required for intraoperative hemoglobin loss calculation 
across a wide range equivalent to 0.5–4.5 RBC units, 
demonstrate insufficiency of established formulas with 
respect to accuracy and linearity, and propose a math-
ematically relatively complex new formula which is eas-
ily applied by entering the minimal data into a software 
application (web-app) or tabular calculation datasheet.

Donors and methods
The subjects of the controlled bleed were healthy alloge-
neic bone marrow donors. All had undergone extensive 
health assessment according to criteria exceeding donor 
assessment guidelines of JACIE and WMDA as well as 
European and national law as previously described [24] 
and were found healthy except for minor non-limiting 
conditions such as arterial hypertension, hyperlipi-
demia, asthma/allergies or hypothyroidism which were 
either medically controlled or did not require medica-
tion. Under general anesthesia, bone marrow was aspi-
rated as described [25]; the total hemoglobin contained 
in the bone marrow product represents the “controlled 

hemoglobin loss”. Target volume was dictated by required 
stem cell dose, although aspiration volume could be lim-
ited by donor weight where the theoretical target vol-
ume exceeded 1.5% of body weight. During the marrow 
harvest donors received crystalline replacement fluid of 
approximately 1 L/h. Collection of one liter of bone mar-
row takes approximately 45 min. Complete blood count 
(CBC) and differential were measured on the day before 
marrow collection. Bone marrow was aspirated transcu-
taneously from the posterior iliac crest, i.e. unlike during 
most surgeries the procedure is not associated with unac-
counted blood loss and can therefore be measured quite 
accurately. Bone marrow volume was gauged by weigh-
ing the product with precision scales and correcting for 
density according to hematocrit. Hemoglobin loss (g) was 
determined as the hemoglobin concentration (g/L) in 
the bone marrow product times its volume. After awak-
ing from the anesthesia donors were offered liquids by 
mouth ad  libitum and mobilized immediately. Donors 
were routinely discharged 24–28  h after the marrow 
harvest; post-procedure CBC was collected immediately 
prior to discharge. CBC in blood before and after the har-
vest and in bone marrow were measured with the same 
Sysmex XT1800 hemacytometer (Norderstedt, Germany) 
in our accredited laboratory which participates in quality 
circles; at least three daily controls ensure precision and 
accuracy of the measurements. The following data were 
collected and considered for the analyses: Donor height, 
weight, age, sex and BMI, CBC before and after in blood, 
CBC and volume in the product.

Mathematical analyses
The formula was generated by standard machine learning 
approaches. We strove to employ a broad range of super-
vised learning algorithms that would stress different 
aspects of the data, i.e. linear vs. non-linear relationships 
between independent and predicted variable, parametric 
vs. non-parametric models. Thus during a model selec-
tion phase we considered the following classical super-
vised learning algorithms.

•	 Linear regression [26]
•	 Ridge regression with penalty factor α = 5 [27]
•	 AdaBoost with decision tree base learner and 100 

estimators [28]
•	 Random Forest with 40 decision trees each with max 

depth of 4 [29, 30]
•	 Support vector regression with RBF kernel, C = 9 and 

ε = 0.9 [31, 32]
•	 K-nearest neighbors with k = 20 [32, 33]
•	 Neural network with 3 hidden layers, rectified linear 

unit (ReLU) activation function and the adam opti-
mizer [34]
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The key idea behind model selection in machine learn-
ing is to dispassionately try different models on the raw 
input data independent of the (medical) meaning of indi-
vidual values, as opposed to classical statistical analysis 
with hypothesis-driven construction of relationships 
which can, by necessity, only reinforce known or sus-
pected relationships. Not until after one or more prom-
ising models are identified, these are optimized as best 
as possible on the given data at which point knowledge 
about the meaning of the identified values can be inte-
grated. Before running the machine learning algorithms 
we (partially) log-transformed the data, de-correlated 
some variables (HB_pre and HB_post) by differentiating 
them and eventually standard scaled all variables (deduct 
mean and divide by standard deviation) since some algo-
rithms such as kNN require pre-standardization. Once 
we had settled on the regression model, we performed 
the analysis without standardization since such pre-
processing is not needed for (most) linear models and 
we wanted to ensure interpretability of the resulting 
coefficients. With respect to decision trees, while they 
are mostly used for classification problems, they can be 
readily adjusted for regression problems. We typically 
use information gain (maximum reduction in weighted 
entropy to decide on the splitting attribute) in classifi-
cation problems; by contrast, the mean squared error is 
the metric of choice for regression problems using deci-
sion trees. All necessary computations were performed 
in Python 3.8 by using the scikit learn application pro-
gramming interface (API) [35, 36]. With respect to the 
data that proved useful, the approach ended up not being 
very different than what has been used previously, calcu-
lation of Hb loss from Hb dilution in blood, i.e. the result 
of rapid correction of blood volume after a blood loss. 
Our data representing a wide range of Hb loss values, this 
uniquely facilitated modeling the function to the data and 
thus generating the coveted linearity for our formula.

Ethics statement
This non-interventional retrospective analysis leverages 
on anonymous outcome data assembled for the legally 
mandated annual product quality report of our unit. The 
Ethics Committee of Goethe University Medical School 
has confirmed that neither specific donor consent nor 
approval of the Ethics Committee is required.

Results
Donors, blood loss
478 healthy donors were subjected to bone marrow aspi-
ration and data were recorded in the donor database. 
Data from 77 thereof were missing post-collection CBC. 
Only complete data sets were used; the controlled bleed 
cohort thus consisted of 401 adult donors, two-thirds 

male, with a mean age of 28 years (IQR 24–40 years, max. 
60  years), mean height of 178  cm (IQR 170–184  cm), 
mean weight of 79 kg (IQR 67–89 kg) and mean BMI of 
24.7 kg/m2 (IQR 22.3–27.4 kg/m2), i.e. 2%, 33% and 14% 
were underweight, overweight and obese, respectively. 
Total hemoglobin in the product ranged from 29–233 g 
(mean 113 g, IQR 88–141 g), i.e. the equivalent of 0.5–4.5 
units of RBCs and thus representing a meaningful range 
of volumes for many procedures except some relatively 
bloodless or very large surgeries. No RBC transfusions 
were administered.

Determination of minimal data sets and development 
of optimal prediction algorithms:
The algorithm would be considered “optimal” if the least 
number of most easily available parameters yielded cor-
rect values across the entire range of blood loss volumes 
or donor sizes and inclusion of further values did not 
meaningfully improve the prediction, e.g. by narrowing 
its precision.

The raw dataset features information on the weight 
(kg), the height (cm), the sex, the age (years) and a num-
ber of measurements pre- and post-surgery of 401 donors 
with the corresponding observed HB loss (g) harvested 
into the BM product bag. To be precise, the pre- and 
post-surgery measurements encompass the hemoglobin 
concentration (g/L) (denoted HB_pre and HB_post) and 
hematocrit concentration (%) (HCT_pre and HCT_post). 
Moreover, pre-surgery thrombocytes (#/μL) (PLT_pre) 
and leucocytes (#/μL) (LEUCO_pre) were at our disposal.

We set out to develop a machine learning model to pre-
dict blood loss from the raw data by training the algorithm 
against the observed hemoglobin loss. A standard medi-
cal approach towards a problem of this nature would be to 
employ Nadler’s equation [37] to estimate a patient’s blood 
volume from the patient’s weight, height and sex. In combi-
nation with the difference of HB_pre and HB_post one can 
obtain an estimate of the hemoglobin loss which is essen-
tially what the Meunier formula suggests [17]. Regressing 
the actual blood loss against this estimate yields an R2 value 
of 47.6%. This approach, close to the Meunier formula [17], 
will serve as our reference model. Since a standard normal 
distribution of the input variables and only moderate corre-
lations between variables is desirable for certain supervised 
learning algorithms, we first investigated the distribution of 
the input variables and considered the correlation matrix. 
The former analysis suggested that weight, age, BMI and 
LEUCO_pre needed to be log-transformed. The correla-
tion matrix based on these log-transformations in Fig.  1 
indicates a particularly strong correlation between the pre- 
and post-surgery measurements (81% Pearson correlation 
coefficient between HB_pre and HB_post, 78% between 
HCT_pre and HCT_post and 95% and 97% for the pre- and 
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post-surgery Hb and Hct values respectively) and strong 
correlations between height, weight and sex. We addressed 
the former correlations by introducing the auxiliary vari-
able HB_diff defined as the difference between HB_pre and 
HB_post and in exchange dropping the variable HB_post. 
Hct values were decorrelated from Hb values and a corre-
sponding auxiliary variable HCT_diff introduced. Regard-
ing the latter correlations, we kept the variables as-is, but 
would pay close attention to potential multicollinearity 
issues in the resulting regression model. We followed a 
standard machine learning approach for model selection, 
that is, we initially split off a test dataset containing 25% of 
the samples. Subsequently, we performed a fivefold cross-
validation grid search on the remaining train dataset for 
hyperparameter tuning. For the linear regression model, 
we dropped all variables that were not significant at a 5% 
threshold on the train dataset in an effort to design a sim-
ple model. Moreover, to emulate the relationship between 
the Hb concentration difference and the blood volume in 
determining hemoglobin loss we introduced an interac-
tion term between estimated blood volume as calculated 
by the Nadler formula and HB_diff. Prediction accuracy 
was measured by the mean squared error (MSE) and the 
explained variance (EV). With n denoting the sample size, 
y = (yi)i ∈ [n] the vector of true blood loss and ŷ = (ŷi)I ∈ [n] 
the predicted blood loss, the formulas for the performance 
metrics are given by

Clearly, the smaller the MSE and the larger the EV, the 
better is the model.

MSE =

n
∑

i=1

(ŷi − yi)
2

n
EV = 1−

Var(y− ŷ)

Var(y)

Table 1 summarizes the MSE and EV for the three best-
performing supervised learning models given in the pre-
vious section and the medical reference model on the test 
dataset. The fairly simple regression models performed 
meaningfully better than more advanced techniques such 
as neural networks. As the linear regression performed 
on par with Ridge regression, but is more straightfor-
ward to analyze and check for robustness, we proceeded 
with this model. The linear model yields an R2 of 53.2% 
thereby meaningfully outperforming the standard medi-
cal model. Due to the tractability of the ordinary least-
squares-regression model, we were able to put forth 
simple formulas for women and men to predict hemo-
globin loss (coefficients rounded to 3 decimals).

(HBfemale/male [hemoglobin loss in g], height [body 
height in m], weight [body weight in kg], HBpre/post 
[hemoglobin concentration before/after controlled 
hemoglobin loss in g/L]). An excel worksheet implement-
ing these formulae is provided as  Additional file 1.

All coefficients were significant at a < 0.1% signifi-
cance level. We performed the standard diagnostic tests 
to ensure the assumptions of a linear regression model 
are satisfied and the model is robust. First, the condi-
tion number of 1.46 indicated that the model does not 
suffer from severe multicollinearity. Second, the partial 
regression and partial residual plots confirmed the linear 
relationship between the variables and hemoglobin loss. 
Third, a Bruesch-Pagan test found significant evidence 
of heteroscedasticity (p-value < 0.1%). To this end, we 
re-performed the regression model using a heterosce-
dasticity consistent covariance matrix to obtain robust 

HBfemale =42.212+

(

0.160 ∗ height3 + 0.015 ∗ weight + 0.083

)

∗
(

HBpre −HBpost

)

HBmale =61.767+

(

0.165 ∗ height3 + 0.015 ∗ weight + 0.272

)

∗
(

HBpre −HBpost

)

Fig. 1  Correlation matrix: Strength of correlations for variables 
including Hb loss to evaluate the need for transformation of the input 
data

Table 1  Prediction accuracy for different statistical models

Prediction accuracy for the different statistical models is shown. The lower the 
mean squared error (MSE) and the higher the explained variance (EV), the better 
the prediction accuracy. Linear and ridge regression outperform the alternative 
models

Model Test MSE Test EV

Reference model 696.0 0.542

Linear regression 614.2 0.601

Ridge regression 612.8 0.595

Neural networks 748.6 0.542

Support vector regression 656.9 0.548
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coefficient standard errors. Under this heteroscedastic-
ity robust model, we found that each variable remained 
significant at a < 0.1% significance level. Fourth, the Q-Q 
plot (Fig. 2a) indicated that the distribution of the residu-
als was reasonably close to the normal distribution with 
only very slightly heavier tails. Nevertheless, the Jarque–
Bera test showed that our models violated the normal 
distribution assumption for the residuals. Last, plotting 
the leverage against the normalized residuals squares 
(Fig.  2b) indicated the presence of several outliers with 
large residuals or large leverage. In order to address the 
issues of non-normality of the residuals and presence of 
several outliers, we performed a robust regression with 
MM estimators. This robust regression yielded coeffi-
cients within one standard error of our original model, so 
we conclude that our original model is reasonably robust 
against the non-normality of residuals, heteroscedastic-
ity and the presence of outliers. The prediction intervals 
of the heteroscedasticity robust model are depicted in 

Fig. 3. The code used to perform the analyses is provided 
as Additional files 2 and 3.

Several blood or hemoglobin loss estimates have been 
proposed [16–22], their development footing on reasona-
ble expectations, i.e. that blood volume would rapidly re-
equilibrate, causing Hb dilution which would be reflective 
of Hb loss. The majority of these formulas were either not 
validated in individuals with volume-controlled bleeds, 
validated for one volume [17], or in a very small num-
ber of patients and targeting an Hct representing a very 
large blood loss, namely 30% [38]. We used our dataset to 
ascertain the quality of these alternative prediction algo-
rithms, paying specific attention to the quality of the pre-
dictions at the extremes, i.e. small and large donors, small 
and large hemoglobin predicted loss, as well as linearity. 
Of note, our formula is not hypothesis-driven but gener-
ated using an unbiased “big data” approach where the use 
of any readily available observed values is permitted. The 
correlation coefficients of predicted and observed blood 

Fig. 2  Robustness indicators of the proposed new prediction 
formula: QQ plot, displaying stringent linearity for theoretical (X-axis) 
over sample (Y-axis) quantiles (a) and leverage vs. normalized 
residuals squared plot, showing–as desired–significant clustering 
of values around the origin of the graph (b). Numbers in the figure 
are the tuple of the leverage of the data point and the normalized 
squared residual

Fig. 3:  90% Prediction intervals for the heteroscedasticity robust 
model for the subgroups of male (a) and female (b) donors. The X-axis 
shows the product of the blood volume determined via the Nadler 
formula and the difference in Hb concentration before and after the 
bloodletting
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loss for the individual formulas are displayed in Table 2. 
Figure 4 features the plots of residual (actual versus pre-
dicted loss) against predicted loss. As is apparent, at the 
Hb dilution caused by a blood loss of 500 mL, all formulas 
calculate approximately the correct blood loss volume or 
the equivalent loss of Hb mass or RBC volume (residuals 
of approximately zero). Across all volumes, however, the 
fit of all the formulas is modest. In particular, depending 
on the model the average prediction is 10–30% below the 
actual loss. Moreover, all formulas systematically under-
estimate blood loss in low-prediction and overestimate 
blood loss in high-prediction intervals.

Discussion
The ability to determine intra-operative blood, RBC or 
hemoglobin loss is a highly meaningful measure for many 
quality management exercises, whether for comparison 
of surgical techniques [1–12], of different hospitals or of 
individual surgeons. For such exercises, linearity is the 
most important criterion, so that twice as high actual 
blood loss is reflected by twice as high a calculated value, 
importantly also at smaller blood volumes which do not 
change Hb much. “Linearity” is here used not to describe 
the mathematical transaction of observed values, but 
instead to indicate the correlation between observed 
and calculated blood loss. The existing formulas on aver-
age correctly calculate a blood loss of 500 mL as 500 mL, 
but a reduction of the blood loss by half (to 250 mL) is 
predicted as no blood loss at all. Using these formulas to 
calculate blood loss associated with a novel surgical tech-
nique will thus exaggerate the improvement brought on 
by the new technique. A formula which in addition to 
being linear is also accurate can serve to generate bench-
marking data for certain surgical interventions, particu-
larly if the precision is also quite good. For patients with 

Table 2  Correlation coefficient and precision of prediction 
formulas

The novel formula as well as existent prediction formulas were validated against 
the controlled blood loss cohort, each for the parameter they are supposed to 
predict. The novel formula is characterized by the highest correlation coefficient 
and smallest mean absolute error (Hb equivalent MAE; 1 g of Hb ≈ 2.87 mL RBC 
≈ 6.79 mL blood loss), i.e. is markedly more accurate than available formulas 
with approximately equal precision

Model Prediction Correlation 
coefficient

Hb equivalent mean 
absolute error (MAE)

Our formula HB loss (g) 72.9% 19.6

Mercuriali RBC loss (mL) 67.7% 20.8

Lisander RBC loss (mL) 67.7% 20.8

Bourke Blood loss (mL) 60.5% 20.0

Ward Blood loss (mL) 58.9% 20.5

Gross Blood loss (mL) 59.0% 20.5

Meunier Blood loss (mL) 57.5% 21.0

Residuals vs. RBC blood loss (mL) 

Residuals vs. predicted blood loss (mL) 

Residuals vs. predicted Hb loss (g)

Predicted RBC loss (mL) 

Predicted blood loss (mL) 

Predicted Hb loss (g)

Re
sid

ua
ls

Re
sid

ua
ls

Re
sid

ua
ls

a

b 

c 

Fig. 4  Residuals versus predicted values for the formulas of Mercuriali/ 
Lisander (same formula, so long as no blood is transfused; RBC loss in 
mL) (a), Gross, Bourne, Meunier and Ward (blood loss in mL) (b) and 
for the new formula presented here (Hb loss in g) (c). The significant 
slope of all formulas in a and b is apparent, indicating systematic 
underestimation of small and overestimation of large blood loss, as 
well as the mean of residuals for all formulas is markedly below zero, i.e. 
in the mean, blood loss is systematically underestimated by all these 
formulas. By contrast, the mean value of residuals and the gradient with 
the new formula (c) are zero, i.e. the predicted Hb loss is equally precise 
and accurate throughout the entire range of observations
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reduced compensatory capacity, such data could then 
support decision making with respect to ordering of 
transfusion products and thus improve inventory man-
agement and reduce costs.

Surgeon- or anesthesist-estimated blood loss is highly 
imprecise, highly subjective and systematically much 
too low, i.e. of modest usefulness [13]. For many dec-
ades this problem has been recognized, and a number 
of more objective solutions have been proposed, namely 
simple mathematical formulas using pre- and post-sur-
gical measures of hemoglobin or hematocrit [16–22]. 
Although the laboratory values needed for their appli-
cation are readily available, none of the formulas have 
caught on, indicating their limited usefulness. And 
indeed as we are showing by comparing predicted and 
observed blood loss based on our controlled blood loss 
cohort, none of the formulas make predictions which 
are linear across a relevant range, let alone accurate or 
precise, as was expected based on their mathematical 
simplicity.

We therefore present a novel formula for hemoglobin 
loss calculation which was generated using modern 
mathematical tools. The formula is based on and was 
validated against a cohort of > 400 individuals subjected 
to controlled bloodletting across volumes equivalent to 
between 0.5 and 4.5 RBC units. The formula incorpo-
rates sex, height, weight and hemoglobin concentration 
in blood immediately before and 24–28 h after the con-
trolled bloodletting. At a first glance rather surprisingly, 
of the different mathematical approaches applied, the 
fairly simple regression models performed much better 
than more advanced techniques such as neural networks, 
an observation we attribute to the limited size of the data-
set. The precision of the novel formula is such that across 
the entire range of volumes–the equivalent of 29 to 233 g 
of hemoglobin–the hemoglobin loss was predicted with 
an average absolute error of 19.6 g (Table 2), the corre-
lation between predicted and observed hemoglobin loss 
was strictly linear and the mean difference between pre-
dicted and observed hemoglobin loss for all donors was 
zero throughout the entire range of observed values. 
The accuracy of the determination is also not affected by 
donor body mass (not shown), likely due to the relatively 
modest effect of body mass on blood volume [39] com-
pared to the modest precision of our formula. Whether 
blood loss in mL, RBC loss in mL, or hemoglobin loss in 
g is predicted is relatively immaterial due to the relatively 
tight correlation of the values and the ease with which 
they can be converted. Since the parameter primarily 
determining the need for “blood transfusion” treatment 
(together with the clinical picture) is hemoglobin, and 
since the remedy for severe anemia, packed red cells, 
comes in units of 50 g hemoglobin, we opted to generate 

a formula predicting hemoglobin loss. Pre-surgical Hb 
concentration can be used to translate hemoglobin loss 
to blood loss, multiplication of Hb loss with 2.87 roughly 
translates it to lost RBC volume except in patients with 
relevant micro- or macrocytic anemia.

While Hb loss from intra- and extravascular Hb stores 
during a bone marrow harvest can be very precisely 
ascertained, whether it appropriately models surgi-
cal blood loss is not self-evident. Several pieces of evi-
dence suggest, however, that it is. First, where marrow 
(extravascular blood) is removed, it is replaced by blood. 
Second, if we look at Fig.  4b we see that the Meunier 
formula [17] which was developed and validated on the 
500 mL blood loss of a blood donation had zero residuals 
at the 500 ml marrow aspiration volume. Thus for the one 
volume where data are available the effect of controlled 
bloodletting and marrow aspiration on Hb dilution is the 
same.

The price for the improved precision and linearity of 
the hemoglobin loss calculator is a formula too complex 
for mental arithmetic. To facilitate use of the formula in 
the clinic, we therefore generated a worksheet into which 
the relevant variables are entered and the predicted 
median and 90% range are calculated. The worksheet is 
included with the paper as Additional files 1, 2 and 3. 
For not Hb-relevant blood loss the formula will predict 
a range for Hb loss which includes zero. This is in con-
sequence of the fact that significant blood loss can occur 
before Hb will begin to drop, but obviously unchanged 
Hb may also indicate the absence of a blood loss. Accord-
ingly, for very minor blood loss as occurs during smaller 
surgical procedures like tonsillectomy [40] our tool is not 
going to be useful. The precision of the prediction being 
similar for all prediction algorithms is unsurprising since 
all are based on pre- and post-surgical Hb concentration.

Limitations of our study include that the formula will 
not be useful for estimation of minor, not Hb-relevant 
hemorrhage, and it was not validated for individuals 
with pre-existing anemia or not normovolemic patients, 
such as pregnant women. Minor Hb loss into connec-
tive tissue overlying the spina iliaca posterior superior 
from where bone marrow is aspirated will remain unac-
counted for but is unlikely to relevantly affect the out-
come of the analyses. Although the very refined study of 
Meunier et al.[17] teaches that normovolemia is not yet 
achieved within one day even after an incurred blood loss 
of only half a liter, a single blood draw after 24 h guided 
the development of our algorithm. It is possible that the 
timing of this blood draw is responsible for the modest 
precision of our algorithm. We did not test whether a 
blood draw immediately after the end of the procedure 
or at some much later time point could have improved 
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prediction. We believe, however, that the morning-after 
blood draw is most easily integrated into clinical routines.

In summary, we have developed a calculator for esti-
mation of surgical hemoglobin loss. Its strict linearity, 
high accuracy (mean error being zero) and reasonable 
precision predispose its use for intra- and inter-hospital 
benchmarking of surgical procedures and blood inven-
tory management. Until the algorithm has been validated 
in an independent cohort it should not be used for medi-
cal decision-making.
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