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Abstract: Over hundreds of years, humans have faced multiple pandemics and have overcome many
of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has
challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a
general sense of uncertainty among everyone. Although several risk profiles, such as the severity of
the disease, infection rate, and treatment strategy, have been investigated, new variants from different
parts of the world put humans at risk and require multiple strategies simultaneously to control
the spread. Understanding the entire system with respect to the commonly involved or essential
mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any
treatment for COVID-19 may alter the redox profile, which can be an effective complementary method
for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication.
Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of
COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities.
However, access to these components as support elements against COVID-19 is limited. Therefore,
understanding redox-derived species and their nodes as a common interactome in the system will
facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire
system during COVID-19 infection, including how redox-based molecules impact the accessibility of
SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable
approach, we discuss the current challenges in redox-based treatment options for COVID-19.
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1. Introduction

The selective life-forming elements in the periodic table lose or accept the electrons in
earlier life formation which are said to be oxidized or reduced (redox reaction), as oxygen
is the final electron acceptor in biology [1]. However, earlier redox reactions used methane
and hydrogen as the primary life-forming molecules, which delayed ancient organisms
from evolving to aerobic life until the rise of cyanobacteria-like microbes, which split water
to produce oxygen [1,2]. Consequently, this scenario introduced oxygen as metabolic waste.
Moreover, this produced partially oxidized intermediates such as superoxide, hydrogen
peroxide, and hydroxyl radical, which are collectively called reactive oxygen species (ROS)
and can cause damage to cellular components, including DNA, proteins, and lipids. Al-
though this review focuses on the oxygen-related redox reaction and its physiopathological
functions, ancient anaerobic life depended on sulfur redox chemistry. This generated
more S/N hybrid species when interacting with reactive sulfur species (RSS) and reactive
nitrogen species (RNS) [3,4], which put the sulfur-based metabolism at high risk for rapid
oxidation. All these consequences led the organisms to have controlled electron transfer
during the evolutionary process [5]. This occurred within the set point of redox potential
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inside the same cell at different sites [6]. Unilateral oxidation disrupts the redox process if
it is not contained by specialized molecules called antioxidants. The employment of enzy-
matic and non-enzymatic antioxidants has restored the redox status of the cells, warranting
the application of these molecules in treating various redox diseases [6].

Although human populations have effectively overcome several pandemics, anthro-
pogenic activities and the consequent impact on the ecosystem could increase the likelihood
of other pandemics [7,8]. Indeed, the perplexities of the ecosystem alter microbial life more
deeply than ever by changing the virulence and survival patterns of the microbes [9]. This is
pertinent to the novel strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), which caused a recent pandemic named “coronavirus disease 2019” (COVID-19) [10,11].
Accommodating human life to COVID-19 requires the synchronization of various molecules,
including proteins, enzymes, and hormones that have been activated, modified or regulated
by redox-active molecules [12]. Nevertheless, humans and microbes, including viruses,
are symbiotically co-evolved; both may use these redox-active molecules for fundamental
biochemical reactions that regulate cellular redox homeostasis, metabolism, signaling, and
mitochondrial function. More ROS and increased oxidative stress disrupt redox-mediated
cellular functions in favor of virus survival (Figure 1). For example, at the initial stage of any
infection, including viral infection, the host system increases oxidative stress strategically
to disrupt redox signaling; at the later stages, the host’s antioxidant system is activated to
prevent damage [13]. However, the timeline of this scenario is a dilemma, suggesting that
putting forward current knowledge gained in this field can help to establish underlying
oxidative stress-induced pathophysiological mechanisms. Otherwise, proposing redox
therapy as the most suitable one for COVID-19 may be a daunting challenge. In addition,
the risk factors associated with COVID-19 commonly induce oxidative stress, suggesting
that COVID-19 can be considered a redox disease [14]. This has been established with
increased oxidative stress in COVID-19 patients [15]. However, it is difficult to recommend
or formulate redox therapy for COVID-19, as every cell and tissue has a different redox
setup in inducing oxidative stress (toward physiological functions) and oxidative damage
(toward pathological conditions). For example, the redox potentials of NADH and NADPH
are varied in the cytosol and mitochondria [16], which either induce oxidative stress or
oxidative damage in the two compartments of the same cell. Therefore, this review ad-
dresses how redox-active molecules act as the mainstay of drawing up redox medicine for
COVID-19.
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Thus, the review starts with ROS sources during COVID-19. Identifying specific ROS
sources may be a prognostic factor in determining COVID-19 disease severity. Next, this
review will address how SARS-CoV-2 redesigns the redox system in the host in favor of
its survival. This can prevent recommend unsuitable antioxidant therapy as it tilts the
redox status. Finally, this review discusses all the challenges associated with oxidative
stress-mediated pathophysiological mechanisms during COVID-19.

2. Sources of ROS during COVID-19

Respiratory viruses, including SARS-CoV-2, can induce ROS-generating sources such
as nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases) [17], xanthine
oxidase (XO) [18], and mitochondria [19] (Figure 2). For instance, the activation of NOX2
and a consequent increase in ROS promote the setting of thrombotic-linked ischemic events
in COVID-19 patients [20,21]. Although there is no direct evidence of XO as a source of ROS
in COVID-19, a study showed that COVID-19 patients had hypouricemia (<2.5 mg/dl),
which is implicated with the specific dysfunction of the proximal tubule [22]. As uric acid is
an antioxidant, a decrease in uric acid might increase ROS and oxidative stress in the renal
artery and further dysfunction in the kidney of COVID-19 patients [23], indicating the role
of XO as an important source of ROS in COVID-19 [23]. Mitochondria are crucial sources
of ROS, and mitochondrial-triggered ROS induces hypoxia-inducible-1 alpha factor (HIF-1
alpha) for improving glycolysis in the monocytes and macrophages [24]. This could directly
inhibit the immune response, specifically, T-cell response [25], and decrease epithelial cell
survival in COVID-19 [24]. Peroxisomes are another detoxifying source of ROS that have
close contact with mitochondria as they are involved in the oxidative metabolism of amino
acids and fatty acids [26]. Alterations in the peroxisome structure and loss of matrix content
can increase ROS generation [27]. SARS-CoV-2 ORF14 protein altered the morphology of
peroxisomes and their biogenesis by interacting with human PEX14 [28]. This could tilt the
ROS balance in the host cells and increase lipid peroxidation, consequently inducing an
inflammatory lipid storm in the lungs of COVID-19 patients by altering the leukotrienes
and prostaglandins [29,30]. A double-center retrospective study reported that COVID-19
patients with severe conditions had hypoxemia [31], which may be from the ER stress
response induced by ROS generation in the ER through protein-folding oxidation [32].
Notably, proteins such as serum albumin bind with several transition metals, such as iron
and copper, called a “sponge” or a “tramp steamer” [33], to decrease ROS generation. The
ligand-binding capacities of albumin are the reason for its antioxidant properties [33–36].
A low albumin level could increase the ROS level in COVID-19 patients, and retrospective
studies have shown that hypoalbuminemia indicates the COVID-19 severity independent
of age and co-morbidity [37,38].
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Figure 2. Sources of ROS during COVID-19 (pink arrow mark). NOX2-induced ROS increases
the thrombotic-linked ischemic events in COVID-19. Mitochondrial-triggered ROS reprogram the
metabolism for inhibiting immune response through hypoxia-inducible-1 alpha factor (HIF-1 alpha).
SARS-CoV-2 altered the peroxisome morphology, consequently increasing ROS generation.

3. SARS-CoV-2 Controls ROS Levels for Its Survival

An increase in ROS could cause damaging outcomes to SARS-CoV-2. To overcome
this, viruses could naturally evolve to counteract ROS-induced oxidative damage in the
cellular environment [39]. Possibly, this could increase the antioxidant capacity of the host
to control the ROS environment. This concept was established with Huh7 cells, which
underwent genetic reprogramming to permit hepatitis C virus (HCV) subgenomic replicon,
induce oxidative stress by altering iron homeostasis, and activate manganese superoxide
dismutase (MnSOD) and glutathione peroxidase 4 (GPx4) [40,41]. Regarding SARS-CoV-2,
an observational study showed an increase in antioxidant capacity by inducing SOD and
CAT in COVID-19 patients [42]. However, this was inconsistent with other COVID-19
patients [43]. This warrants additional studies to establish the link between SARS-CoV-2
and the host antioxidant system’s activation. Next, SARS-CoV-2 probably controls the
excess ROS for survival through a metabolic switch. For example, SARS-CoV-2 may
increase glycolysis to divert fuel to generate anabolic intermediates, similar to the Warburg
effect [44,45]. This scenario prevents mitochondrial ROS. Supporting this idea, increased
lactate dehydrogenase activity (LDH) was reported in COVID-19 patients [45]. Additionally,
the knockdown of LDH increases pyruvate and promotes oxidative stress [46], suggesting
that SARS-CoV-2 controls ROS using metabolic shifts [37]. Establishing this concept could
form a new therapeutic approach to support redox-based treatment options. Next, SARS-
CoV-2 induces mitochondrial dysfunction by decreasing mitochondrial membrane potential
and causing mitochondrial permeability transition pore opening (MPTP), resulting in
increased ROS release [47,48]. Studies have shown that viruses can induce apoptosis
mechanisms for tissue injury or disease progression [49–51]. For example, SARS-CoV-2
ORF3a can induce an extrinsic apoptotic pathway by activating/cleaving caspase-8 [52];
targeting SARS-CoV-2-induced apoptosis could offer a promising target for SARS-CoV-2
treatment. Furthermore, SARS-CoV-2 fabricates intracellular signaling for survival, mainly
through increasing H2O2. For instance, SARS-CoV-2 may decrease the accumulation
of selenoprotein transcripts that regulate the phospholipid hydroperoxide glutathione
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peroxidase (GPX4) and mitochondrial functions [53], resulting in an increase in H2O2 in the
host cells. This scenario alters redox-sensitive proteins such as mitogen-activated protein
kinase (MAPK), signal transducer and activator of transcription proteins (STATs), Toll-like
receptors (TLRs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB),
and nuclear factor erythroid 2-related factor 2 (Nrf-2) [53]. In addition, the hyperactivation
of TLR 3 and 4 could induce pro-inflammatory cytokines, including IL-1 and IL-6, and
cause a cytokine storm for SARS-CoV-2 survival [54–56].

4. Redox Chemicals Coordinate Local and Systemic Redox Networks in COVID-19

Redox-active molecules coordinate the systemic redox network (nonlinearly) locally
first (beginning of the redox disequilibrium), and then turn to the entire system [57], which
collapses the systemic redox equilibrium. Consequently, changes in the redox tones in the
cells induce an “oxidative storm” in place of the “cytokine storm” [14], which could allow
SARS-CoV-2 (probably a secondary exposure) to bypass redox-mediated immune vigilance
(respiratory burst). This scenario can encourage virus fusion and viral loads to increase
within the infection (Figure 3) [58,59].

Antioxidants 2022, 11, x FOR PEER REVIEW 5 of 11 
 

induce apoptosis mechanisms for tissue injury or disease progression [49–51]. For exam-

ple, SARS-CoV-2 ORF3a can induce an extrinsic apoptotic pathway by activating/cleaving 

caspase-8 [52]; targeting SARS-CoV-2-induced apoptosis could offer a promising target 

for SARS-CoV-2 treatment. Furthermore, SARS-CoV-2 fabricates intracellular signaling 

for survival, mainly through increasing H2O2. For instance, SARS-CoV-2 may decrease the 

accumulation of selenoprotein transcripts that regulate the phospholipid hydroperoxide 

glutathione peroxidase (GPX4) and mitochondrial functions [53], resulting in an increase 

in H2O2 in the host cells. This scenario alters redox-sensitive proteins such as mitogen-

activated protein kinase (MAPK), signal transducer and activator of transcription proteins 

(STATs), Toll-like receptors (TLRs), nuclear factor kappa-light-chain-enhancer of acti-

vated B cells (NF-kB), and nuclear factor erythroid 2-related factor 2 (Nrf-2) [53]. In addi-

tion, the hyperactivation of TLR 3 and 4 could induce pro-inflammatory cytokines, includ-

ing IL-1 and IL-6, and cause a cytokine storm for SARS-CoV-2 survival [54–56]. 

4. Redox Chemicals Coordinate Local and Systemic Redox Networks in COVID-19 

Redox-active molecules coordinate the systemic redox network (nonlinearly) locally 

first (beginning of the redox disequilibrium), and then turn to the entire system [57], which 

collapses the systemic redox equilibrium. Consequently, changes in the redox tones in the 

cells induce an “oxidative storm” in place of the “cytokine storm” [14], which could allow 

SARS-CoV-2 (probably a secondary exposure) to bypass redox-mediated immune vigi-

lance (respiratory burst). This scenario can encourage virus fusion and viral loads to in-

crease within the infection (Figure 3) [58,59]. 

 

Figure 3. SARS-CoV-2 infection perturbs redox homeostasis in supporting viral fusion and replica-

tion (red color). Local redox disequilibrium causes systemic redox disequilibrium, which favors the 
Figure 3. SARS-CoV-2 infection perturbs redox homeostasis in supporting viral fusion and replication
(red color). Local redox disequilibrium causes systemic redox disequilibrium, which favors the entry
of SARS-CoV-2 and consequent viral loads (secondary exposure). Redox molecules act as redox codes
for proper redox communication, which induces an adaptive response by causing redox equilibrium
in the host (blue color). This supports viral inhibition.
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Although redox byproducts such as H2S, nitroxyl, beta-hydroxybutyrate, and dif-
ferent mixed sulfide compounds rebalance the entire redox network by acting as redox
codes [4,59], active disulfides in the host contribute to spike protein binding and ACE2 by
allosteric regulation (Figure 4) [60]. Perhaps GSH could negatively mediate this effective
binding process by reducing active disulfides, which is confirmed by the decrease in GSH
and increase in oxidative stress in severe COVID-19 patients [61,62], showing the therapeu-
tic value of GSH in COVID-19. This scenario could also activate various redox molecules in
the redox landscape, allowing the virus to enter the host cells by endocytosis, where ACE2
translocates to the endosomal lumen [63,64].
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Figure 4. Changes in the redox landscape (thiol-based redox mechanisms) facilitate viral fusion and
replication. Disulfide bonds induce a stronger affinity between SAS-COV-2 and ACE2, while thiol
compounds do not induce binding affinity between SARS-CoV-2 and ACE2 (red inhibitory mark).
Disulfide activation by the allosteric mechanism facilitates initial viral fusion by activating various
redox molecules (endocytosis). In contrast, redox imbalance induces lipid peroxidation to inhibit
viral replication in the ER (green inhibitory mark).

5. Antioxidant Therapy in COVID-19

The link between redox metabolism and viruses has been considered within the field
of antioxidant intervention for several years. Although the purpose of recommending
antioxidant therapy is not new, the recent pandemic brought antioxidant therapy to the
frontline, as COVID-19 lacks specific antiviral drugs. N-acetyl cysteine (NAC) is considered
to be the best-known antioxidant for alleviating SARS-CoV-2 infection [65]. There are
some possible mechanisms proposed thus far, such as interfering with angiotensin II
cleavage to angiotensin 1–7 via ACE2 and attenuating oxidative damage by increasing TLR-
7, restoring type-IFN production [66], and antagonizing proteasome inhibitors to reduce
the accumulation of the viral proteins [66,67]. NAC possibly interacts with the SARS-CoV-2
E protein by cleaving disulfide bonds of the triple cysteine motif (NH2- . . . L-Cys-A-Y-Cys-
Cys-N . . . -COOH) [66]. This protein regulates the cellular polarity and cell–cell junctions in
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the epithelial cells by binding the PALS1 PDZ domain [67]. This could reduce the infection
rate. NAC prevents the glycosylation events in SARS-CoV-2 by restoring platelet GSH,
suggesting an alteration in the GSH level could be a therapeutic approach for fighting
against SARS-CoV-2 [67,68]. Higher activation of proinflammatory cytokines is common in
patients with a level of TNF-alpha [69]. Therefore, regulating these molecules ensures the
reinstatement of the immune system. Antioxidant therapy could be the major antagonist
to these pro-inflammatory cytokines which alleviate hyperinflammation in patients with
severe COVID-19 [70]. A recent in vitro and ex vivo study reported that nanocoated CAT
downregulates pro-inflammatory cytokines to regulate immune homeostasis [71]. However,
these methods are unreliable in assessing ROS and oxidative damage, as they are vulnerable
to artifacts. Nitric oxide (NO) has another potential molecule that inhibits SARS-CoV-2
replication and enhances oxygenation in COVID-19 patients. The administration of H2S
inhibits oxidative stress by preventing platelet activation and neutrophil extracellular trap
(NET) formation. The ingestion of H2S may be an effective treatment for COVID-19. Other
antioxidants, including CoQ10 with NADH, curcumin, vitamins C, D, and E, selenium,
melatonin with pentoxifylline, ebselen, and disulfiram, can target redox imbalance in
COVID-19 [72–79]. For example, the use of antioxidants such as vitamin C, E, and NAC
with pentoxifylline decreased the lipid peroxidation and total antioxidant capacity in
COVID-19 patients at the end of the hospital stay, while pentoxifylline alone did not
decrease the oxidative stress markers [80], suggesting the use of antioxidants as a possible
adjuvant therapy for improving survival prognosis in COVID-19 patients. However,
further studies are warranted to prove the reproducibility of this data. Because noncatalytic
cysteine residues of the 3C-like protease (3CLpro) in SARS-CoV-2 can protect the virus
from oxidative damage, as current drugs such as nirmatrelvir are mainly inhibiting the
cysteine residue of 3CLpro, the use of these antioxidants may interfere with this process
and aggravate SARS-CoV-2 replication.

6. Challenges Associated with Oxidative Stress during COVID-19 Treatment

Although various vaccines and drugs are a major part of treatment support during
COVID-19, the risk profile of patients is ambiguous. Rapidly spreading variants from
different parts of the world is an additional concern that effectively overcomes the avail-
able treatments [81,82]. Furthermore, targeting localized oxidative damage (specific tissue
environment) with antioxidants perturbs the systemic redox network [14]. Furthermore,
treatment options, either with vaccines or drugs, perturb redox homeostasis and induce
oxidative stress. For example, tocilizumab and hydrocortisone provide better protection
against COVID-19 [83]. However, these drugs with ventilatory support induce oxidative
damage and alter the immune response while protecting the endothelial glycocalyx, whose
function is to maintain the redox balance in COVID-19 [83]. Dexamethasone is another drug
that can activate redox-active molecules and increase oxidative stress, enabling antioxidant
defense through KEAP1/NRF-2 activation, affecting electron transport complexes, and
increasing NOX-2, all of which dominate the redox system [84,85]. Capivasertib could
inhibit SARS-CoV-2 entry by improving glycolysis and oxidative phosphorylation through
ROS-mediated AKT inhibition [86]. Hydroxychloroquine and ivermectin can also induce
ROS production in vitro and in vivo [85,87,88]. Other drugs, such as anakinra, sotrovimab,
and ruxolitinib exacerbate ROS pathways to control COVID-19 [87,88]. Treatment with
these drugs increases oxidative stress and compromises their clinical efficacy for COVID-19
treatment [89]. Therefore, implementing redox-based therapies requires a deeper knowl-
edge of oxidative stress research. However, recent advancements in this field, from redox
imaging to redox metabolomics, will facilitate the revealing of the key molecule’s functions
in biological systems. Furthermore, advanced omics methods can support characteriz-
ing redox molecules and their functions. This will provide an opportunity to overcome
current challenges associated with COVID-19 treatment. Otherwise, using nonspecific
kits to measure oxidative damage will not provide any definite results to treat COVID-19,
because using these kits can partially reflect the oxidative stress status within the cells. For
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instance, ROS probes such as 2′,7′-dichlorodihydrofluorescein (DCFH) can be oxidized with
several ROS molecules and are not specific for any particular ROS [90]. Therefore, moni-
toring real-time changes in the intracellular redox-active molecules will help to develop a
high-throughput global profiling methodology for finding ROS molecules.

7. Conclusions

This review discussed several ROS sources that are perhaps activated by SARS-CoV-2
for its survival. This may increase local and systemic oxidative stress. However, why
this scenario does not affect SARS-CoV-2 survival in the host is unknown. Instead, it can
escape from the host oxidative stress response using its noncatalytic cysteine residues.
Using any currently available drugs with redox-based adjuvant therapies or as a main
therapy may interfere with this cysteine-mediated oxidation and could support SARS-CoV-
2 replication. Therefore, careful evaluation is required to design an integrated approach
to understand the whole body’s systemic redox status. From this perspective, we have
discussed the possible reasons for this scenario, starting from ROS sources to therapeutical
challenges in treating COVID-19. This may help to consider COVID-19 as a redox disease
and support redox-based therapies as the possible preference for COVID-19 treatment.
However, before implementing redox-based therapies, every COVID-19 patient should be
interrogated with oxidative stress parameters, as they can show different redox statuses.
Moreover, personalized approaches will require appropriate redox-based intervention, as
redox homeostasis is more susceptible to a specific intervention, which further provokes
oxidative stress. Consequently, disconnecting the redox-mediated communication between
the organs can reduce the chances of regaining COVID-19 control. Therefore, the routine
collection of clinical information with regard to the redox status of an individual may
provide new therapeutic opportunities to restore the redox balance and decrease COVID-19
mortality and possibly manage long-COVID symptoms.
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