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Sparse coding enables cor0cal popula0ons to represent sensory inputs efficiently, yet its temporal 
dynamics remain poorly understood. Consistent with theore0cal predic0ons, we show that s0mulus 
onset triggers broad cor0cal ac0va0on, ini0ally reducing sparseness and increasing mutual informa0on. 
Subsequently, compe00ve interac0ons sustain mutual informa0on as ac0vity declines and sparseness 
increases. Notably, coding efficiency, defined as the ra0o of mutual informa0on to metabolic cost, 
progressively increases, demonstra0ng the dynamic op0miza0on of sensory representa0ons. 
 
Efficient coding posits that sensory systems opFmize the representaFon of natural sFmuli by reducing 
redundancy while preserving informaFon1–4. SimulaFons have shown that opFmizing the sparse 
representaFons of natural images in a linear model leads to recepFve fields similar to those found in the 
primary visual cortex (V1)5. These findings established efficient coding as a compelling, normaFve theory 
for understanding corFcal funcFon, prompFng rigorous analyses of its properFes6–10.  
 
Subsequent experimental studies offered addiFonal support for this framework. Prior work has shown 
that individual V1 responses are sparse in response to natural images11 and that sparseness increases 
when V1 is sFmulated with patches of increasing size12, suggesFng that sparsificaFon relies on contextual 
informaFon13,14. Moreover, populaFon responses are sparser when V1 is sFmulated with natural scenes 
as compared to syntheFc sFmuli, enhancing their discriminability15. Other theoreFcal proposals, such as 
the normalizaFon model14, also reduce redundancy to produce more efficient responses3,13. MechanisFc 
models, such as soZ winner-take-all networks, have been proposed to explain how a neural network may 
dynamically refine its acFvity, progressively increasing sparseness during sensory responses16–18.  
 
To study the temporal evoluFon of efficient representaFons in corFcal populaFons, we used two-photon 
imaging to measure the response of V1 neurons to visual sFmulaFon (Fig 1a) (Methods). In the first 
experiment, the sFmulus consisted of a sequence of flashed, sinusoidal graFngs with orientaFons 
uniformly sampled between 0 and 170 deg in 10 deg increments, yielding 18 possible orientaFons (Fig 1b). 
Each graFng was flashed for 1.5 sec with no gaps between sFmuli. In the second experiment, the sFmulus 
consisted of a sequence of 1 sec, natural movie clips, randomly selected from a set of 18 disFnct segments, 
once again, with no gaps between them (Fig 1c). For both experiments, the 18 orientaFons or movie clips 
were treated as disFnct sFmulus “classes”.  
 
We aimed to determine whether the temporal dynamics of sparse coding align with the adapFve 
opFmizaFon of energy-efficient representaFons. A sparsificaFon network predicts that, at the onset of a 
new sFmulus in a sequence, populaFon acFvity will rise rapidly due to broad network acFvaFon, starFng 
from a state shaped by the late responses to the preceding sFmulus. This iniFal acFvity, driven by neurons 
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broadly tuned to various features of the new sFmulus, is expected to result in a transient decrease in 
sparseness. Concurrently, the ability to classify the sFmulus, measured by mutual informaFon, should 
increase as the signal-to-noise raFo of the response improves with the rise in acFvity. In the late phase of 
the response, compeFFve interacFons within the populaFon are expected to suppress redundant acFvity, 
increasing sparseness while maintaining high mutual informaFon and thereby opFmizing representaFon 
efficiency. This study aimed to test whether these predicted relaFonships are observed in populaFon 
responses in mouse V1. 
 
To analyze the data we derived three key metrics: metabolic cost, populaFon sparseness19, and mutual 
informaFon (Methods). Metabolic cost, 𝜇(𝑡), was defined as the total populaFon acFvity at Fme 𝑡 aZer 
sFmulus onset20. PopulaFon sparseness, 𝑠(𝑡), was quanFfied using the Gini index21, which ranges from 
zero (when all the neurons are firing equally) to one (when all but one neuron is acFve). As an alternaFve 
index of sparseness, we also used the percentage of acFve neurons, 𝑎(𝑡). Finally, adjusted mutual 
informaFon22, 𝐼(𝑡), was esFmated based on cross-validated decoders trained at different Fmes aZer 
sFmulus onset15, which ranges from zero (where there is no associaFon between sFmulus and response) 
to one (for perfect associaFon).  
 
Results from individual experiments using sinusoidal graFngs reveal consistent paderns in the relaFonship 
between these metrics (Fig. 2). The dynamics exhibit two disFnct phases. In the early phase, sFmulus 
onset triggers a rapid increase in metabolic cost, which peaks shortly thereaZer, consistent with prior 
studies23. We define the Fme-to-peak as the moment when this maximum value is reached, and the early 
phase of the response as the period from sFmulus onset to this Fme (Fig 1, blue shaded rectangle). During 
this phase, sparseness decreases, while mutual informaFon increases. In the late phase, which follows the 
Fme-to-peak, metabolic cost declines to baseline levels, sparseness returns to baseline aZer a slight 
overshoot, and mutual informaFon decreases modestly but remains consistently high throughout the 
response. The percentage of acFve neurons at any Fme is highly correlated with the sparseness measure 
as defined by the Gini index.  
 
The dynamic balance between metabolic cost and mutual informaFon can be assessed by ploeng the 
path taken by populaFon acFvity in the (𝜇, 𝐼) − plane during the response period (Fig 2). At sFmulus onset, 
the acFvity starts at (0,1) and rises during the early phase of the response to reach maximum metabolic 
cost and mutual informaFon at the Fme to peak (Fig 2, blue segment and arrow). In the late phase, the 
system follows a different trajectory: metabolic cost decreases rapidly, while mutual informaFon declines 
modestly but remains relaFvely high (Fig 2, red segment and arrow).  
 
The shape of the trajectory in the (𝜇, 𝐼) − plane over Fme demonstrates a key aspect of energy efficiency: 
there are points in the early and late phases where metabolic cost is idenFcal, while mutual informaFon 
is significantly higher in the late phase. In other words, the representaFon becomes more energy-efficient 
in the late phase compared to the early phase, achieving higher mutual informaFon for the same 
investment of metabolic cost. Indeed, the dynamics drive the state towards the top leZ of the graph, 
locaFons with high mutual informaFon and low metabolic cost. To quanFfy this effect, we define the 
efficiency of the representaFon as the raFo between mutual informaFon and metabolic cost, 𝜖(𝑡) =
𝐼(𝑡)/𝜇(𝑡). We observe that efficiency increases during the early phase, conFnues to rise beyond the Fme-
to-peak, and is largely maintained throughout the late phase of the response (Fig 2).  
 
A qualitaFvely similar outcome is observed when the sFmuli consist of natural movie sequences (Fig. 2b). 
Metabolic cost shows an iniFal dip before rising to its peak, while sparseness increases before dipping to 
a minimum at the same Fme. The iniFal dip and the delayed responses compared to graFng sFmuli likely 
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reflect the lingering effects of the previous sFmulus, as the duraFon of movies was shorter compared to 
graFngs. SFll, as with graFngs, mutual informaFon rises, peaks, and remains high throughout the 
response. The trajectory in the (𝜇, 𝐼) − plane again reveals that, for the same metabolic cost, mutual 
informaFon is substanFally higher in the late phase. Finally, the efficiency curve for natural movies shows 
a monotonic increase over Fme, mirroring the trend observed with syntheFc sFmuli. The maximum 
adjusted mutual informaFon is higher for movies than for graFngs, likely because movie clips differ 
substanFally from one another, whereas graFngs with similar orientaFons elicit comparable neural 
responses. 
 
Altogether, our findings reveal that the temporal dynamics of populaFon responses in mouse V1 align with 
predicFons from sparsificaFon networks, providing insights into the adapFve opFmizaFon of sensory 
representaFons. Following sFmulus onset, an iniFal broad acFvaFon is refined over Fme, leading to 
increased sparseness, while maintaining mutual informaFon at a high level, thereby improving coding 
efficiency. We note the response to natural movies is likely influenced by coarse-to-fine spaFal frequency 
dynamics24,25, where low spaFal frequency signals arrive at the cortex earlier than high spaFal frequency 
informaFon. However, the dynamics of efficiency followed a similar padern as that observed with graFngs 
that had a fixed spaFal frequency.  
 
These results complement earlier studies showing that sparseness increases with the size of the visual 
sFmulaFon patch12 and that populaFon responses to natural images are sparser than responses to 
syntheFc sFmuli, enhancing discriminability15. While previous work emphasized staFc sparseness and its 
dependence on sFmulus context, our findings further demonstrate how sparseness, mutual informaFon 
and coding efficiency evolve dynamically during ongoing sensory processing. These dynamics may serve 
an evoluFonary purpose26. In response to novel sFmuli, a rapid, high-fidelity response may jusFfy its 
metabolic cost, parFcularly when the sFmulus could signal a potenFal threat. Such an energeFcally costly 
signal would likely improve evoluFonary fitness by facilitaFng immediate escape responses to aversive 
sFmuli. Once an iniFal “alarm” is issued, organisms benefit from refining sensory representaFons to 
maximize efficiency, conserving metabolic resources while maintaining perceptual fidelity. 
 
One limitaFon of the study is that two-photon imaging provides limited temporal resoluFon. We are now 
using electrophysiological methods to examine the dynamics of these processes at finer temporal scales. 
Finally, future research should explore the neural mechanisms underlying these dynamics, such as 
recurrent amplificaFon, lateral inhibiFon and its spaFal extent, or synapFc plasFcity, to further elucidate 
how sparseness and efficiency are regulated in real-Fme. It will also be of interest to measure populaFon 
sparseness and efficiency of signals in the LGN to compare to its counterpart in corFcal layers 4 and 2+3, 
to understand the progression of efficient coding along the visual hierarchy.  
 
Methods 
 
Experimental model and subject details 
 
All experimental procedures were approved by UCLA’s Office of Animal Research Oversight (the 
InsFtuFonal Animal Care and Use Commidee) and were in accord with guidelines set by the U.S. NaFonal 
InsFtutes of Health. A total of 4 mice, male (3) and female (1), aged P35-56, were used. These animals 
resulted from cross between TRE-GCaMP6s line G6s2 (Jackson Lab, hdps://www.jax.org/strain/024742) 
and CaMKII-tTA (hdps://www.jax.org/strain/007004). These small numbers did not allow a meaningful 
comparison between the responses of both sexes.  
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Surgery 
 
Imaging was conducted through chronically implanted cranial windows over primary visual cortex. Pre-
operaFvely, mice received Carprofen (5 mg/kg, 0.2 mL aZer 1:100 diluFon) for analgesia. Anesthesia was 
induced with isoflurane (4%–5%) and maintained during surgery at 1.5%–2%. Core body temperature was 
kept at 37.5°C, and ophthalmic ointment was applied to protect the eyes. Mice were secured in a 
stereotaxic apparatus using blunt ear bars posiFoned in the external auditory meatus. The scalp overlying 
both hemispheres was removed to expose the skull, which was then dried and coated with a thin layer of 
Vetbond. AZer drying (15 minutes), an aluminum bracket was affixed with dental acrylic, and the margins 
were sealed with Vetbond and addiFonal acrylic to prevent infecFon. 
 
A craniotomy was performed over monocular V1 on the leZ hemisphere using a high-speed dental drill, 
taking care to preserve the integrity of the dura. Once the skull was removed, a sterile 3-mm diameter 
cover glass was placed directly on the exposed dura and sealed to the surrounding skull with Vetbond. The 
remaining exposed skull and cover glass margins were further sealed with dental acrylic. Post-surgery, 
mice were placed on a heaFng pad unFl fully awake and then returned to their home cages. Carprofen 
was administered post-operaFvely for 72 hours to ensure conFnued analgesia. Mice were allowed a 
recovery period of at least six days before the first imaging session. 
 
Two-photon imaging 
 
Mice were head-restrained on a running wheel and imaged using a resonant two-photon microscope 
(Neurolabware, Los Angeles, CA) controlled by Scanbox acquisiFon soZware and electronics (Scanbox, Los 
Angeles, CA). Imaging was performed with an Axon 920 laser (Coherent Inc., Santa Clara, CA) at an 
excitaFon wavelength of 920 nm. A 16× water-immersion objecFve (Nikon, 0.8 NA, 3 mm working distance) 
was used, Flted to align approximately normal to the corFcal surface. The microscope operated at a frame 
rate of 15.6 Hz (512 lines with an 8 kHz resonant mirror), with a field of view measuring 690 μm × 440 μm. 
Image processing was conducted using a standard pipeline, including image stabilizaFon, cell 
segmentaFon, and signal extracFon, implemented in Suite2p (hdps://suite2p.readthedocs.io/). 
 
Visual s0mula0on 
 
Visual sFmuli were presented on a Samsung CHG90 monitor posiFoned 30 cm in front of the animal. The 
screen was calibrated using a Spectrascan PR-655 spectro-radiometer (Jadak, Syracuse, NY), with gamma 
correcFons for the red, green, and blue channels applied via a GeForce RTX 2080 Ti graphics card. SFmuli 
were generated using a custom-wriden sketch in Processing 4, leveraging OpenGL shaders 
(hdp://processing.org). In the first experiment, sinusoidal graFngs with a spaFal frequency of 0.04 cycles 
per degree (cpd) and 90% contrast were presented full-screen, covering 100° × 60° of central vision. 
GraFng orientaFons were discreFzed in 10° increments from 0° to 180°, with spaFal phases at each 
orientaFon uniformly randomized from 0° to 360° in steps of 45°. In the second experiment, visual sFmuli 
consisted of 18 natural movie clips, each 1 second long, sampled from publicly available NaFonal 
Geographic documentaries. These movies were presented full-screen. SFmulus transiFons were signaled 
to the microscope via a TTL line. As an addiFonal failsafe, a small square in the corner of the screen 
flickered at the onset of each sFmulus. The flicker was detected by a photodiode, and its signal was also 
sampled by the microscope. 
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Data Analysis 
 
Denote by 𝐫!"(𝑡) an 𝑁-dimensional vector 𝐫!"(𝑡) describing the response of a populaFon of 𝑑 neurons to 
the 𝑖 − 𝑡ℎ trial of a sFmulus in class 𝑐 at a Fme 𝑡 aZer sFmulus onset. Associated with this response, we 
define 𝜇!" (𝑡) which is the total populaFon acFvity obtained by adding the entries in 𝐫!"(𝑡). Metabolic cost, 
𝜇(𝑡),	is defined as the average of 𝜇!" (𝑡) across all sFmulus trials and classes. As a measure of sparseness 
we adopted the Gini index21 of the populaFon acFvity, 𝐫!"(𝑡), which is denoted by 𝑠!"(𝑡). The sparseness 
signal, 𝑠(𝑡),	is then defined as the average of 𝑠!"(𝑡) across all sFmulus trials and classes. Sparseness ranges 
from zero (when all the entries have the same value) to one (when all but one entry are zero). Previous 
studies used 1 −𝑚#

$/𝑚$ as a measure of sparseness11,12,19, where 𝑚# and 𝑚$ represent the first and 
second moments of the distribuFon of acFvity across the populaFon. We obtain very similar results using 
this measure (data not shown), so none of our conclusions are impacted by the choice of sparseness 
measure. We preferred the use of the Gini index because, in our hands, it provides a more robust measure, 
presumably because it relies on the enFre shape of the distribuFon rather than the first two moments. In 
addiFon to the Gini index, we also computed the fracFon of acFve cells, 𝑎(𝑡), defined as the average of 
𝑎!" (𝑡) across all sFmulus trials and classes. Here, 𝑎!" (𝑡) represents the fracFon of cells in the populaFon 
acFve at Fme 𝑡, during the presentaFon of the 𝑖 − 𝑡ℎ trial of a sFmulus in class 𝑐. We declared a cell 
“acFve” if the Suite2p deconvoluFon signal was larger than zero. Finally, we esFmated the mutual 
informaFon between the sFmulus and the response at different Fmes aZer sFmulus onset, 𝐼(𝑡). To 
compute this quanFty, we built a data matrix 𝐗	where each row corresponds to one trial of a sFmulus 
represenFng the populaFon response 𝑡 sec aZer the onset of the sFmulus. A corresponding column vector 
𝐘 contained the sFmulus class for each trial. A k-nearest neighbor classifier with leave-one-out cross-
validaFon27 armed with a cosine distance metric was used to construct a confusion matrix represenFng 
the joint distribuFons of the true and predicted classes. From the confusion matrix, we can readily 
esFmate the (adjusted) mutual informaFon22, 𝐼(𝑡), which ranges from zero (where there is no associaFon 
between sFmulus and response) to one (for perfect associaFon). The opFmal value of k was determined 
by looking at the one yielding the maximum mutual informaFon. Note that this method provides a lower 
bound of the mutual informaFon of the populaFon and the sFmulus (due to the data processing 
inequality).  
 
Data availability 
 
Raw data describing the response of the populaFon in every single trial along with any ancillary data are 
available at a Figshare repository at ________________________. 
 
Code availability 
 
Sample code describing the structure of the database and the replicaFon of our analyses can be found 
along with the data at ________________________. 
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Figure 1. Experimental setup and visual s1mulus. a. Two photon imaging was used to measure the ac1vity of 
neurons in primary visual cortex. Images were registered, cells segmented, raw fluorescence extracted and 
deconvolved using Suite2p28. b, c. The visual s1mulus consisted of a sequence of sinusoidal gra1ngs or nature 
movie clips. The former was presented at a rate of one per 1.5 sec, while movie clips lasted for 1 sec. S1muli were 
presented back-to-back with no blanks in-between.  
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Figure 2. Dynamics of efficient coding using synthe1c s1muli. a. Results in two individual sessions. The panels 
illustrate, from leI to right: metabolic cost, 𝜇(𝑡); sparseness and frac1on of ac1vity neurons, 𝑠(𝑡) and 𝑎(𝑡) 
respec1vely; mutual informa1on, 𝐼(𝑡); the trajectory in the (mutual informa1on, metabolic cost) plane; and 
efficiency, 𝜖(𝑡). In the metabolic cost panel, shaded rectangles show the early (blue) and late (red) phase of the 
response, delineated by the 1me-to-peak (ver1cal dashed line). The point of the trajectory at 1me zero is indicated 
by a blue dot, with arrows indica1ng the direc1on of the trajectory. The trajectory segment in blue shows the path 
during the early phase of the response, while the segment in red shows the one in the late phase. Arrows show 
the direc1on of 1me, with the blue dot deno1ng the onset of s1mula1on. Images show the confusion matrix at 
different 1mes rela1ve to the 1me to peak at 0 ms. Rows represents the true class of the s1mulus, and the columns 
represent the predicted class. b. Popula1on data across all the experiments (n=19 sessions). Transparent curves 
show the result of individual experiments while the solid curves show the average response across sessions. The 
images show the average confusion matrices rela1ve to the 1me to peak.  
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Figure 3. Dynamics of efficient coding using natural movies. a. Results in two individual sessions. The format is the 
same as in Fig 2. b. Popula1on data across all the experiments (n=5 sessions). Transparent curves show the result 
of individual experiments while the solid curves show the average response across sessions. The images show the 
average confusion matrices rela1ve to the 1me to peak.  
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