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Abstract

The fracture behavior of bone is critically important for evaluating its mechanical competence and ability to resist fractures. Fracture toughness
is an intrinsic material property that quantifies a material’s ability to withstand crack propagation under controlled conditions. However, properly
conducting fracture toughness testing requires the access to calibrated mechanical load frames and the destructive testing of bone samples,
and therefore fracture toughness tests are clinically impractical. Impact microindentation mimicks certain aspects of fracture toughness
measurements, but its relationship with fracture toughness remains unknown. In this study, we aimed to compare measurements of notched
fracture toughness and impact microindentation in fresh and boiled bovine bone. Skeletally mature bovine bone specimens (n = 48) were
prepared, and half of them were boiled to denature the organic matrix, while the other half remained preserved in frozen conditions. All samples
underwent a notched fracture toughness test to determine their resistance to crack initiation (KIC) and an impact microindentation test using
the OsteoProbe to obtain the Bone Material Strength index (BMSi). Boiling the bone samples increased the denatured collagen content, while
mineral density and porosity remained unaffected. The boiled bones also showed significant reduction in both KIC (P < .0001) and the average
BMSi (P < .0001), leading to impaired resistance of bone to crack propagation. Remarkably, the average BMSi exhibited a high correlation with KIC
(r = 0.86; P < .001). A ranked order difference analysis confirmed the excellent agreement between the 2 measures. This study provides the first
evidence that impact microindentation could serve as a surrogate measure for bone fracture behavior. The potential of impact microindentation to
assess bone fracture resistance with minimal sample disruption could offer valuable insights into bone health without the need for cumbersome
testing equipment and sample destruction.

Keywords: indentation, fracture toughness, biomechanics, bone strength, fracture risk assessment

Lay Summary

This study determined whether impact microindentation is a good surrogate measure for bone fracture toughness. The fracture toughness test
measures the ability of a material to resist fracture, but conducting these tests require specialized equipment that destroys the sample. It is
not feasible to directly measure fracture toughness in humans to assess fracture risk. The impact microindentation approach implemented by
the Osteoprobe (Active Life Scientific) enables the measurement of bone material behavior in living animals and humans bone by creating a
controlled micrometer-sized impression on the bone surface. To evaluate how well impact microindentation discerns impairments in bone relative
to fracture toughness, we compared these measurements on fresh and boiled bovine bone samples. Impact microindentation differentiated the
changes in collagen due to boiling with excellent correspondence with low bias to the fracture toughness. In summary, the results of this study
show that impact microindentation is an effective and minimally invasive alternative to evaluating fracture toughness and bone strength in a
clinical setting.
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Graphical Abstract

Introduction

Catastrophic fractures are a significant public health prob-
lem with an alarming prevalence and substantial economic
burden. Epidemiological data indicates that around 40% of
women aged 50 and older are at risk of experiencing fractures
in the hip, vertebrae, or forearm during their lifetimes, which
is associated with an elevated risk of complications and mor-
tality.1-3 Furthermore, projections for the United States alone
suggest that the annual incidence of osteoporotic fractures will
exceed 3 million by 2025, accompanied by costs exceeding
25.3 billion dollars, with the most significant increases seen in
individuals aged 65–74 years. This surge in fracture incidence
and associated costs is largely attributed to progressive dete-
rioration in bone strength and fracture resistance associated
with aging and underlying medical conditions.4,5

The fracture resistance of bone is influenced by multiple
factors including bone geometry, density, and material
properties of the bone matrix. Clinical imaging modalities

such as X-ray and Dual Energy X-ray Absorptiometry
(DXA) can robustly measure the geometry and metrics
associated with mineral density,6 however, directly assessing
the mechanical properties of the bone matrix presents clinical
challenges. Destructive mechanical testing methods, like bend-
ing, tension, compression, shear, indentation, and fracture
toughness measurements, have been employed to characterize
the mechanical competence of the bone matrix.7-13 Each
of these methods leverage different mechanical principles
and assumptions to define material properties. Among these
approaches, fracture toughness stands out as especially
relevant and analogous to a fracture process. It involves
applying controlled loading to test samples to expand a pre-
existing flaw (notch) to simulate mechanistic failure.11,13

However, the extensive and destructive sample preparation
required to properly conduct fracture toughness tests make
them unrealistic to implement in living organisms and
humans.
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In recent years, reference point indentation has emerged
as a promising method for assessing the material behavior
of bone tissue, including the cyclic microindentation and
impact microindentation variants. Cyclic microindentation,
employs a reference probe that defines the reference position
and then applies a trapezoid waveform with equal ramping,
holding, and unramping that delivers successive indentations
as the probe progressively penetrates the material. Cyclic
microindentation provides a range of quantitative metrics
that have demonstrated correlations with various bending
behaviors observed in cortical bone tissue.14-17 In contrast,
impact microindentation utilizes a reference force (rather
than a reference position) to assess mechanical properties of
cortical bone by measuring the normalized depth of indenta-
tion. Although reference point indentation leaves a residual
impression, it is generally considered non-destructive because
the rounded probe tip does not create critically sized cracks in
bone. Impact microindentation measurements are associated
with bending toughness18 and indentation hardness (eg Rock-
well and Vickers Hardness tests)19 as well as compositional
variations in bone tissue such as mineralization, collagen cross
linking, and cortical porosity.14,20,21 Yet, whether impact
microindentation is associated with fracture toughness has not
been systematically investigated. To evaluate the relationship
of these measures, this study aims to determine the agreement
between the measurements of notched fracture toughness
and impact microindentation in fresh and denatured bovine
bone.

Materials and methods

Sample collection and preparation

Six bovine femurs were locally sourced from individual cows
aged 12–18 months of age. The bones were wrapped in saline-
soaked gauze and stored at −20 ◦C prior to experimenta-
tion. From each femur, 2 beams were obtained per quadrant
(anterior, posterior, lateral, and medial) along the longitudinal
axis resulting in a total of 48 beams (Figure 1). The beams
were cut and machined into rectangular parallelepipeds using
a low-speed sectioning saw under constant water irrigation
(UKAM, Valencia, CA, USA). The dimensions of the beams
were as follows: Width (W) = 6 mm, Length (L) ∼50 mm, and
thickness (B) = 3 mm.

For fracture toughness measurements, a single-edged V-
notch and a pre-crack were introduced on the periosteal side
of each beam. A diamond-wafered blade with a 30◦ taper was
employed to create a 3 mm notch (the “a” parameter) at the
center of the beam. A pre-crack of 0.1 mm was introduced
on each beam using a single-edge box cutter and Alumina
suspension polish (0.3 μm particle size; Allied High Tech,
Compton, CA, USA). The dimensions of the notch and pre-
crack combined approximated an aspect ratio of a/W = 0.5.

Following machining and preparation, the beams from each
animal were paired by quadrant and then divided into 2
groups, with 1 bone of each pair assigned to be boiled and
the other served as the control group. The boiled group was
immersed in boiling water for a duration of 3 h, while the
control group remained stored at −20 ◦C until mechanical
testing. Boiling the bone aimed to denature the organic matrix
network components without impacting the mineral phase.
All mechanical testing was conducted at standard room con-
ditions (20 ◦C, 50% humidity).

Fracture toughness test

In accordance with ASTM E399,22 the fracture toughness
test was conducted in a 3-point bending configuration (Span
“S”= 30 mm, 1.5 mm support radius) using a Instron 5866
load frame (Instron Co, Norwood, MA). The samples were
pre-loaded with 10 N, similar to the 10 N reference force
of the impact indentation device, and then subjected to a
loading rate of 0.2 mm/min until complete fracture, during
which force-displacement data were collected. The critical
stress intensity factor (KIC) of each beam was subsequently
calculated using the following equation22:

KIC = PQ.S
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PQ: The maximum load of the linear region of load–
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Impact microindentation test

Impact microindentation was performed on the periosteal
side of each beam at least 20 mm away from the notch
using OsteoProbe (Active Life Scientific, Santa Barbara, CA),
a handheld device that is designed to measure the resistance
of cortical bone to the indentation.19 A reference load of 10 N
was manually applied by the operator using the measurement
probe, and followed by application of a 30 N (total of 40 N)
load to the measurement surface at a rate of 120 000 N/s.
The depth of penetration (aka penetration distance) into the
bone is recorded, and the outcome was reported as a singular
scalar value, known as the Bone Material Strength index
(BMSi).19,23,24 To calculate the BMSi value, 8 indentations
are made on the bone and the harmonic mean of the measured
penetration distances into the bone is divided by the harmonic
mean of ten penetration distances into a polymethylmethacry-
late reference material and then multiplied by 100.

Measurement of cortical porosity and tissue

mineral density

The 48 bovine beams were wrapped in gauze that is soaked
in phosphate-buffered saline and scanned using the μCT50
microCT scanner (Scanco Medical, Wangen-Brüttisellen,
Switzerland) to evaluate tissue mineral density (TMD),
cortical porosity, and resultant fracture surface. One of the
fractured halves of the beam from each bone sample was
scanned. The cortical bone analyses were obtained at a voxel
size of 20 μm, while the fracture surface and indentation site
visualization were obtained at 3 μm voxel size. The X-ray
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Figure 1. Experimental design overview (created with BioRender.com): 48 beams were extracted from 6 bovine femurs and paired by quadrant. All beams
were standardized to measure 50 mm × 6 mm × 3 mm. The boiled group underwent 3 h of boiling, while the control (fresh) group was stored at −20 ◦C
until testing. Indentation measurements were performed using the OsteoProbe device to obtain the BMSi measurement. A single 3-mm notch, followed
by a pre-crack at the chevron, was created on the periosteal side of the beam. Subsequently, 3-point bending tests were conducted with a preload of 10 N
and a loading rate of 0.2 mm/min until failure. MicroCT scans were carried out to assess crack surfaces, indentation sites, TMD, and cortical porosity.
Finally, the beams were processed for collagen denaturation assay to quantify changes in the organic phase.

tube potential was 70 kVp with an intensity of 57 μA 500
projections and a 700 ms integration time.

TMD and cortical porosity values were derived from the
cortical analysis module in the Scanco Evaluation software
(v 1.2.30.0). Cortical porosity was calculated as the per-
centage of voxel bone volume divided by the total volume,
enclosed by the outer boney boundary of the scan volume
following thresholding, subtracted from 100. 3D renderings
of the bovine beams were generated by importing the CT
image DICOMs into the 3D Slicer image analysis software
(v 5.3.1, National Alliance for Medical Image Computing).
The segment editor module was used to apply a threshold,
equivalent to the attenuation of 400 mg hydroxyapatite/cm3,
to segment the bone tissue from its surrounding, and then
the fracture surfaces were rendered accordingly. The Scanco
Visualizer software (v 1.2.13.0) was employed to visualize
and qualitatively assess the crack surface, encompassing the
region from the notch to the endosteal side of the beam.25

The indentation regions were viewed from cross-sections that

were created by aligning the virtual axis with the physical axis
of the beam, and then successively sectioned until the largest
indentation impression depth has been reached.

Measurement of denatured collagen

The amount of denatured collagen in a subgroup of bone
specimens (n = 6 in each group) was quantified using pre-
viously described protocol.26 Bone samples measuring 2 ×
2 × 2 mm were collected from both the fresh and boiled
groups and subjected to demineralization with Immunocal
solution (Statlab, McKinney, TX). Each sample was then
treated twice with extraction buffer containing 1 mL of 4 M
Guanidine hydrochloride in incubation buffer (0.1 M Tris
HCl, pH 7.3) containing protease inhibitors, iodoacetamide
(1 mM), and EDTA (1 mM) for a duration of 48 h at 4
◦C on a roller plate. This step ensured removal of proteo-
glycans and soluble collagen, and irreversibly denatures any
crosslinked collagen molecules that have suffered proteolysis
or destruction due to excessive mechanical loading. Following
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the extraction, the bone samples were washed 3 times with
incubation buffer for 3–6 h at 4 ◦C. The insoluble matrix,
which contained the denatured collagen, was subjected to an
overnight digestion at 37 ◦C with incubation buffer contain-
ing 1 mg/mL of alpha chymotrypsin. The resulting super-
natant containing the alpha chymotrypsin-solubilized col-
lagen fragments was quantitatively collected and mixed at
a 1:1 ratio with 6 N HCl. Simultaneously, the remaining
bone tissue was immersed in 6 N HCl. Both the supernatant
and the residual tissue were hydrolyzed at 110 ◦C for a
period of 20–24 h. Following hydrolysis, the excess HCl was
evaporated from the hydrolysates. The samples were then
reconstituted with 500 μL of 0.1X PBS. Collagen content
was quantified using the hydroxyproline assay, as previously
described.27 Briefly, both the samples and hydroxyproline
standards (stock: 200 μg/mL L-hydroxyproline) were incu-
bated with chloramine-T solution at room temperature to
facilitate the oxidation of hydroxyproline. Perchloric acid
(3.15 M) was added to quench any residual chloramine-
T, followed by an incubation period at room temperature.
A p-dimethylaminobenzaldehyde solution was then added
as a colorizing solution, and the mixture was incubated at
60 ◦C. All standards were allowed to cool at room tem-
perature under complete darkness and the absorbance was
measured at 560 nm using a synergy HTX microplate reader
(BioTek, Winooski, VT). The amount of denatured collagen
was expressed as the percentage of total amount of collagen.

Statistical methods

The measured outcomes were plotted as histograms to
examine distributions. Paired data sets, representing the
measurements from each sample, were analyzed for between-
group differences using Repeated Measures Analysis of
Variance (ANOVA). Pearson’s correlation coefficients were
computed to assess the linear correlation between frac-
ture toughness (KIC) and Bone Score (BMSi). To identify
systemic bias between BMSi and KIC, respective single
paired measurements were ranked in descending order from
highest to lowest. Subsequently, ranked order differences
analyses28 were conducted. Data transformation was not
necessary as the differences in rank of KIC and BMSi were
normally distributed. The acceptable limit of agreement was
defined statistically using a 95% CI, corresponding to a
mean difference of 32%. All analyses were conducted using
PRISM 9 (GraphPad, San Diego, USA) or Excel (Microsoft,
Redmond USA).

Results

Boiling does not affect cortical porosity or tissue

mineral density, but it leads to a significant

increase in the denatured collagen

The cortical bone porosity analyses revealed no significant
difference in cortical porosity (P = .57) between the boiled and
fresh bones. The mean porosities for the fresh group and the
boiled group were 0.20% (± 0.32%) and 0.27% (± 0.40%),
respectively (Figure 2A). Similarly, no significant differences
were observed in TMD between the 2 groups (Figure 2B).
The mean TMD values for the fresh and boiled group were
1005 (± 25.93) mg HA/cm3 and 1011(± 31.44) mg HA/cm3,
respectively. Taken together, these results confirm that boiling
did not substantially affect the microstructure or mineral
composition of the bone.

Fracture toughness discerns the effects of boiling

and quadrant-dependent variations of bone

fracture behavior

The fracture toughness measurements of cortical bone in both
fresh and boiled beams revealed a significant decrease in
fracture toughness in boiled beams compared to fresh beams
in all 4 quadrants of the bone (P < .0001) (Figure 3A). We
also observed an effect of quadrant on fracture toughness
(P = .002). Analysis of the fracture surfaces revealed distinct
patterns between the fresh and boiled samples. Fresh beams
exhibited a greater occurrence of crack deflection and tough-
ening behavior, resulting in irregular and more tortuous crack
patterns along the fracture surface (Figure 3B). These results
confirm that boiling significantly deteriorates bone material
properties and compromises the bone’s resistance to fracture.

Impact microindentation measurements are

strongly correlated with initiation toughness

Impact microindentation was deployed to assess bone mate-
rial properties in both fresh and boiled groups. The inden-
tation measurements revealed a significantly lower average
BMSi values in the boiled group, indicating detectable impair-
ments in bone material caused by boiling (Figure 4A). No
significant differences were observed between quadrants (P =.
160). High-resolution microCT illustrated that the reference
load applied by the probe creates an observable impression
similar to the stress concentrating pre-crack in the notched
bone beams. Given the equal reference load applied on the
bones of both groups, the boiled group incurred a larger
and deeper impression (Figure 4B). Consistent with the BMSi
readout, the subsequent indentation applied by the additional
30 N of force created a larger impression in the boiled group
than in the fresh group. Importantly, a strong correlation was
identified between the average BMSi and increasing fracture
toughness (KIC) (Figure 5A). The ranked order difference
analysis revealed that approximately 43 of the 48 measure-
ments were within the Upper Acceptable Limits and Lower
Acceptable Limits defined by the 95% CI. Moreover, the
bias converges toward zero in bones with low toughness
(Figure 5B).

Discussion

In this study, we investigated the fracture behavior of boiled
and fresh bovine cortical bone using impact microindentation
and fracture toughness testing. We subjected the bones to
boiling, which denatures the protein tertiary structures, as
a controlled method to deteriorate bone’s organic phase
without affecting the mineral phase.29 MicroCT analyses con-
firmed that boiling altered only the organic phase as seen by
elevated percentage of denatured collagen in boiled samples,
without exhibiting any discernible influence on the mineral
phase, shown here as no differences in cortical porosity or
TMD between groups. While the mineral phase showed no
differences we noted a significant impairment in mechanical
properties, specifically the fracture toughness in the boiled
samples. The loss of fracture toughness in the boiled beams
was accompanied by distinctive morphologies of the crack
surface (Figure 3B). The boiled samples exhibited smoother
crack surfaces that signify brittle fracture behavior and rapid
crack propagation. In contrast, the fresh samples exhibited
more tortuous crack surfaces that are typically associated
with ductile fracture behavior and robust crack deflection



6 JBMR Plus, 2024, Volume 8 Issue 2

Figure 2. Boiling did not influence the (A) cortical porosity (P = .574) or the (B) tissue mineral density (P = .462) of the bone beams. Samples were evaluated
using microCT scanned at 20 μm spatial resolution. (C) However, boiling increased the percentage of denatured collagen (P = .005).

Figure 3. (A) Fracture toughness measurements show that fresh bovine beams had significantly higher fracture toughness (6.18 ± 0.97 MPa
√

m) than
boiled beams in samples taken from all 4 quadrants (2.46 ± 0.70 MPa

√
m). (B) Inspection of the fracture surfaces from microCT revealed that the fresh

bones had extensive crack deflection prior to failure, while the boiled samples showed little to no deflection of the crack (∗∗∗∗P < .0001; ∗∗∗P < .001;
∗∗P < .01; ∗P < .05).

Figure 4. (A) Impact microindentation results showed that the average BMSi is significantly lower in the boiled group (90.6 ± 1.27 [unitless]) compared
to the fresh group (103 ± 2.19 [unitless]) (P < .0001). (B) MicroCT scans at 3 μm resolution show that fresh beams show smaller indentation depths,
35.64 μm and 120.55 μm; compared to boiled beams, 52.89 μm and 158.63 μm, after preload of 10 N, and full load of 40 N, respectively.
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Figure 5. (A) The bone score (average BMSi) measurements are strongly correlated to fracture toughness (KIC) (r = 0.86, P < .001). (B) The ranked difference
analysis reveals that approximately 90% of measurements lie within the 95% CI. Moreover, the bias converges toward zero in the samples with lower
toughness, indicating negligible bias when applied to fragile bones. This data suggests that bone score is an outstanding surrogate for fracture toughness
KIC in weakened bone.

mechanisms.29-32 The critical stress intensity factor (KIC) was
used as the measure of fracture toughness and is based on
linear-elastic assumptions for the bone material. Although our
KIC values are strikingly similar to those in the literature,36

they likely underestimate the true fracture toughness of
bone. These assumptions minimize the contribution from
plastic processes and thus does not account for crack-
growth toughening.33-35 In contrast, impact microindentation
measurements include elements of elastic (eg recoverable)
and plastic (eg permanent) behavior and may be a more
comprehensive evaluation of the material’s mechanical
behavior. To our knowledge, this is the first study to examine
the relationship between fracture toughness and impact
microindentation measurements using the OsteoProbe. It is
worth noting that the notched fracture toughness is conducted
at the millimeter scale, and therefore likely detected the
toughening contributions from microstructural variations
(eg osteon organization) known to occur across bone
quadrants.37 Impact microindentation may be more sensitive
to compositional variations,38,39 and this may explain the
spread of BMSi values in the posterior quadrant of the boiled
group, where the mechanical contributions of the mineral
phase are isolated through collagen denaturation. This also
highlights the ability of impact microindentation to detect
changes that occur at the matrix level.

On the other hand, the micrometer-scale indentation mea-
surements are at a smaller length-scale and therefore were
not affected by these features.7 The excellent correspondence
between KIC and BMSi suggests that measurements of the
OsteoProbe provide insights on the fracture toughness of
bone. The ranked order difference analysis is the gold stan-
dard for comparing 2 analytical measurements with disparate
units,28 and this analysis revealed the bias for approximately
90% of the measurements were within the acceptable limits
defined by the 95% CI. Moreover, the magnitude of bias
diminished in lower KIC and BMSi (higher ranked) samples.
While these limits will need to be refined with additional clini-
cal data, the bias range here is considered good to excellent.40

Bone fractures occur though a complex interplay of
material and biological factors. However, clinical assessments
of fracture risk typically do not account for the material

behavior of bone. The lack of clinical information of in vivo
bone material quality highlights the importance of measuring
bone fracture properties for fracture risk prediction. For
examples, bone mineral density (BMD), measured by DXA,
is currently considered the gold standard for determining
fracture risk, yet, BMD has been shown to explain only one-
third of an individual’s fracture risks in middle-aged and
elderly women.41,42 Since bone is a complex biocomposite,
its fracture behavior is determined by several bone density-
independent factors including degraded collagenous matrix,
increased porosity, accumulation of microcracks,14,34,43-47

among others. Combining BMD and material-level measures
such as indentation improves the prediction of bone
strength.47 Impact microindentation methods have been
successful in detecting changes in bone composition,48

adaptations to bone therapeutics,49-51 and pathological bone
diseases21,48-50,52-63 with BMSi reported to be lower in the
respective pathological populations. Our findings here suggest
that these differences detected by indentation likely reflect the
changes in bone fracture toughness in these patients.

It is also important to note that changes in BMSi do
not always correlate with prevalent fractures.64-67 Bone with
impaired fracture resistance is more likely to fracture ceteris
paribus, but whether a fracture event occurs depends on indi-
vidual loading history, exposure to traumatic loads, current
bone metabolism, among other complexities of bone health.
Therefore, the ability to measure bone fracture resistance in
a patient should be interpreted in context of their individual
propensity and other risk factors. Nonetheless, in vivo fracture
toughness of bone is undoubtedly a critical aspect of fragility
especially in susceptible individuals.

There are a few limitations that should be noted in this
study. We used bovine cortical bone in our experiments, which
may not perfectly emulate the properties of human bone.
Although bovine bones are from skeletally mature animals,
these animals are young compared to elderly humans. Further,
boiling to deteriorate bone’s organic phase produces dramatic
changes and may not recapitulate the progressive biological
changes that occur in bones due to aging and disease.

In summary, our findings demonstrate that impact microin-
dentation can detect changes in fracture behavior caused by
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heat induced denaturation, and the impact microindentation
measurements closely correspond to the critical stress intensity
factor measurement from a notched fracture toughness test.
Future work will aim to define the clinically acceptable limits
of bias with context to human bone fragility.68 Although it is
not possible to perform direct measures of fracture toughness
in vivo, the in vivo measurements of impact microindenta-
tion69 on bone could be considered a surrogate measure of
bone fracture toughness.

Conclusion

Our findings support that impact microindentation quantifies
changes in bone fracture behavior. BMSi was highly correlated
with the critical stress intensity factor of fracture toughness
measured in boiled and fresh bovine bone.
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