
sensors

Article

A Cost-Efficient High-Speed VLSI Architecture for Spiking
Convolutional Neural Network Inference Using Time-Step
Binary Spike Maps

Ling Zhang 1, Jing Yang 1, Cong Shi 1,2,*, Yingcheng Lin 1 , Wei He 1, Xichuan Zhou 1,2, Xu Yang 3, Liyuan Liu 3

and Nanjian Wu 3

����������
�������

Citation: Zhang, L.; Yang, J.; Shi, C.;

Lin, Y.; He, W.; Zhou, X.; Yang, X.; Liu,

L.; Wu, N. A Cost-Efficient

High-Speed VLSI Architecture for

Spiking Convolutional Neural

Network Inference Using Time-Step

Binary Spike Maps. Sensors 2021, 21,

6006. https://doi.org/10.3390/

s21186006

Academic Editor: Paweł Pławiak

Received: 17 July 2021

Accepted: 3 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Microelectronics and Communication Engineering, Chongqing University,
Chongqing 400044, China; zhangling1993@cqu.edu.cn (L.Z.); yang_jing@cqu.edu.cn (J.Y.);
linyc@cqu.edu.cn (Y.L.); hewei007@cqu.edu.cn (W.H.); zxc@cqu.edu.cn (X.Z.)

2 Key Laboratory of Dependable Service Computing in Cyber Physical Society, Ministry of Education,
Chongqing University, Chongqing 400044, China

3 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy
of Sciences, Beijing 100083, China; yangxu@semi.ac.cn (X.Y.); liuly@semi.ac.cn (L.L.);
nanjian@red.semi.ac.cn (N.W.)

* Correspondence: shicong@cqu.edu.cn

Abstract: Neuromorphic hardware systems have been gaining ever-increasing focus in many em-
bedded applications as they use a brain-inspired, energy-efficient spiking neural network (SNN)
model that closely mimics the human cortex mechanism by communicating and processing sensory
information via spatiotemporally sparse spikes. In this paper, we fully leverage the characteristics of
spiking convolution neural network (SCNN), and propose a scalable, cost-efficient, and high-speed
VLSI architecture to accelerate deep SCNN inference for real-time low-cost embedded scenarios. We
leverage the snapshot of binary spike maps at each time-step, to decompose the SCNN operations
into a series of regular and simple time-step CNN-like processing to reduce hardware resource
consumption. Moreover, our hardware architecture achieves high throughput by employing a pixel
stream processing mechanism and fine-grained data pipelines. Our Zynq-7045 FPGA prototype
reached a high processing speed of 1250 frames/s and high recognition accuracies on the MNIST and
Fashion-MNIST image datasets, demonstrating the plausibility of our SCNN hardware architecture
for many embedded applications.

Keywords: neuromorphic computing; spiking convolutional neural networks; SNN hardware; VLSI
implementation; pixel stream processing

1. Introduction

Neuromorphic computing has attracted ever-increasing interest in the past ten years.
The spiking neural network (SNN) closely mimics the operational mechanism in the human
brain cortex, where information is encoded, communicated, and processed via very sparse
electrical pulses (i.e., spikes) among neurons, ensuring high-energy efficiency in cognitive
tasks [1]. SNNs exhibits a radical computing paradigm shift from their traditional artificial
neural network (ANN) counterparts. ANNs employ dense computations and all of the
neurons have to participate in an inference, while SNNs leverage temporally sparse spike
trains and may activate only a small portion of neurons during the inference. Another
difference is that SNNs require a time dimension to evolve with the temporal spike trains.
Therefore, general-purpose computers such as the Central Processing Unit (CPU) and the
Graphics Processing Unit (GPU) are incompetent in deploying brain-inspired SNN models,
as those von Neumann machines are oriented for dense numerical calculations rather than
sparse temporal spike processing.

Sensors 2021, 21, 6006. https://doi.org/10.3390/s21186006 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7478-3103
https://doi.org/10.3390/s21186006
https://doi.org/10.3390/s21186006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186006
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186006?type=check_update&version=1

Sensors 2021, 21, 6006 2 of 14

To fully exploit the computational and energy efficiency of SNNs, various dedicate
neuromorphic chips and hardware systems have recently been designed [2–14]. These VLSI
chips support various spiking neuron models at different levels of biological fidelity and
computational complexity, and generally adopt scalable routing schemes including cross-
bars and network-on-chip (NoC) infrastructures towards large-scale or even brain-scale
multichip systems. Each spike is delivered among neural computing nodes as an address-
event representation (AER) data packet, affiliated with the source and/or destination
neuron identities (addresses), and, optionally, the time stamps indicating when this spike
has been issued. Arbitrary network connections can be implemented under such point-to-
point AER protocol. As a result, the neuromorphic chips have provided a real-time, highly
flexible hardware framework to simulate and investigate various structures, functions, and
operations in different cortical regions for biomedical and neuroscientific research.

On the other side, for real-world applications, especially for visual cognitive tasks,
the most plausible and widely used network topology is the feedforward convolutional
structure, which is composed of stacked convolutional (CONV) layers for hierarchical
feature extraction, and fully connected (FC) layers for feature classification. Such network
structure has gained astonishing high accuracies in recognizing complicated visual objects
in the ANN domain [15–17]. Likewise, the spiking convolution neural network (spiking
CNN, or SCNN) is supposed to achieve relatively higher recognition accuracies in neu-
romorphic visual processing [18–24]. These SCNN models can be trained off-line before
they are loaded to neuromorphic chips for object inference [4,11]. However, those reported
neuromorphic chips are not adequate architectures for SCNNs, as they cannot utilize the
following structural regularity of the CONV layers during inference: (1) only feedforward
connections between successive layers are needed, (2) each neuron is only connected to a
few neurons in a small neighborhood in its precedent layer (i.e., the receptive field of the
neuron), (3) the set of convolutional kernel weights are shared across all the neurons in the
same channel of one layer. Instead, those neuromorphic chips must replicate the shared
convolutional weights in the synapse memory for all neurons, and use the redundant cross-
bar to designate the feedforward, small-neighborhood connections, where most crossbar
nodes are disconnected, and hardware resources are wasted. Moreover, as the network
goes deeper, there is an increasing probability of spike collisions on their NoC routers, and
the processing latency or inference accuracy of the SCNN may deteriorate.

To overcome these problems, some neuromorphic hardware specialized for deep
SCNNs are designed. Configurable event-driven convolution chips are proposed in [25–27]
to support multiple convolution kernels and different kernel sizes. Two CONV layers are
built and cascaded in [25] for fast card symbol recognition, which are then extended to four
CONV layers with subsampling in [26]. More efficient memory access is realized on an
FPGA prototype in [27], by using a novel memory arbiter. A 28 nm SCNN processor is
fabricated in [28], holding one CONV layer of 10 kernels for feature extraction, one pooling
layer for dimension reduction, and two FC layers for feature classification. A systolic
SCNN inference engine is proposed in [29], and two CONV layers with one FC layer are
instantiated. A SNN inference engine called SIES is proposed in [30]and uses 2-D systolic
array to accelerate the computation of the CONV layer.

The main contributions of our work include: (1) this paper proposes a scalable, high-
speed and low-cost neuromorphic VLSI architecture for SCNN inference in real-time
and resource-constrained application scenarios (e.g., portable or mobile platforms, edge-
computing systems, internet-of-things devices, etc.); (2) we leverage the snapshot of binary
spike maps at each time-step along with the spike-map pixel stream processing pipeline to
maximize spike throughput, while minimizing the computation and storage consumptions
of hardware resources; (3) this architecture was prototyped on an FPGA platform with
different SCNN depth configurations. Up to 1250 frames/s throughput on the 28 × 28
MNIST images were obtained under a 100 MHz clock frequency.

The rest of this paper is organized as follows. Section 2 briefly reviews the spiking
neuron model behaviors and the SCNN operation principle. Section 3 proposes our

Sensors 2021, 21, 6006 3 of 14

concept of time-step binary spike map, as well as its regular, simple, and high-performance
processing mechanism. The SCNN hardware design details are described in Section 4.
Section 5 evaluates our architecture on FPGA prototypes and compares our work with
others. Finally, a conclusion is drawn in Section 6.

2. Background
2.1. Biological Spiking Neuron Model

Current neuromorphic studies have led to the development of numerous
models [19,27,31] to simulate biological neurons at different levels of abstraction. Among
them, the leaky integrate-and-fire (LIF) model is particularly popular due to its low com-
putational complexity and sufficient biological fidelity [19,27]. The dynamical behavior of
the LIF spiking neuron in the discrete time domain can be described as:

Vm(t) = Vm(t − 1)(1 − τ−1
m) + ∑

i
wisi(t) (1)

where t is the discrete time-step, Vm(t) is the neuronal membrane potential, τm is the
leakage time constant, wi is the weight of the neuron’s i-th synapse, and si(t) is the input
(pre-synaptic) spike train at that synapse: si(t) is 1 if synapse i receives a spike at time t,
and 0 otherwise. As shown in Figure 1, The LIF neuron continuously integrates input
spikes onto its membrane potential via the synaptic weights, and exponentially leaks at the
moments when no input spike occurs. Once its membrane potential crosses a predefined
threshold Vth, the neuron fires an output (post-synaptic) spike and immediately resets
V(t) to a resting level (usually zero, as in this work). Such leaky integrate-and-fire process
repeats until the end of input spike trains.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 14

with different SCNN depth configurations. Up to 1250 frames/s throughput on the 28 × 28
MNIST images were obtained under a 100 MHz clock frequency.

The rest of this paper is organized as follows. Section 2 briefly reviews the spiking
neuron model behaviors and the SCNN operation principle. Section 3 proposes our con-
cept of time-step binary spike map, as well as its regular, simple, and high-performance
processing mechanism. The SCNN hardware design details are described in Section 4.
Section 5 evaluates our architecture on FPGA prototypes and compares our work with
others. Finally, a conclusion is drawn in Section 6.

2. Background
2.1. Biological Spiking Neuron Model

Current neuromorphic studies have led to the development of numerous models
[19,27,31] to simulate biological neurons at different levels of abstraction. Among them,
the leaky integrate-and-fire (LIF) model is particularly popular due to its low computa-
tional complexity and sufficient biological fidelity [19,27]. The dynamical behavior of the
LIF spiking neuron in the discrete time domain can be described as:

τ−= − − +1
m m m() (1)(1) ()i ii

V t V t ws t (1)

where t is the discrete time-step, Vm(t) is the neuronal membrane potential, τm is the leak-
age time constant, wi is the weight of the neuron’s i-th synapse, and si(t) is the input (pre-
synaptic) spike train at that synapse: si(t) is 1 if synapse i receives a spike at time t, and 0
otherwise. As shown in Figure 1, The LIF neuron continuously integrates input spikes
onto its membrane potential via the synaptic weights, and exponentially leaks at the mo-
ments when no input spike occurs. Once its membrane potential crosses a predefined
threshold Vth, the neuron fires an output (post-synaptic) spike and immediately resets V(t)
to a resting level (usually zero, as in this work). Such leaky integrate-and-fire process re-
peats until the end of input spike trains.

Figure 1. The dynamical behavior of the LIF spiking neuron model.

2.2. Spiking Convolution Neural Network
SCNN is a type of feedforward SNN consisting of a stack of CONV layers for hierar-

chical feature extraction, followed by one or several FC layers as the feature classifier, as
depicted in Figure 2 [18,24,32]. A CONV layer is composed of multiple channels of neu-
ronal maps holding 2-D arrays of spiking neurons. Each spiking neuron in one map is
connected to a few neurons in a small spatial neighborhood (i.e., the receptive field, equal-
ing to the convolutional kernel size) across all channel maps in its preceding layer. And
all of the neurons in the map share the same set of convolutional kernels. Therefore, the
LIF spiking neuron in a CONV layer can be particularized as:

Figure 1. The dynamical behavior of the LIF spiking neuron model.

2.2. Spiking Convolution Neural Network

SCNN is a type of feedforward SNN consisting of a stack of CONV layers for hier-
archical feature extraction, followed by one or several FC layers as the feature classifier,
as depicted in Figure 2 [18,24,32]. A CONV layer is composed of multiple channels of
neuronal maps holding 2-D arrays of spiking neurons. Each spiking neuron in one map
is connected to a few neurons in a small spatial neighborhood (i.e., the receptive field,
equaling to the convolutional kernel size) across all channel maps in its preceding layer.
And all of the neurons in the map share the same set of convolutional kernels. Therefore,
the LIF spiking neuron in a CONV layer can be particularized as:

Vm(x, y, cout, t) = Vm(x, y, cout, t−1)(1 − τ−1
m) + ∑

cin

∑
p,q

w(p, q, cin, cout)s(x + p, y + q, cin, t) (2)

where x, y are the spatial locations of the spiking neuron on the map, cout and cin represent
the channel indices of this CONV layer and its input layer, respectively. w is a 4-D tensor of

Sensors 2021, 21, 6006 4 of 14

the convolutional kernel weights, and p, q are spatial coordinates within the kernels. s is
the spike trains from the input channels.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 14

τ= − + +
in

-1
m out m out m in out in

,
(, , ,) (, , , -1)(1)+ (, , ,) (, , ,)

c p q
V x y c t V x y c t w p q c c s x p y q c t (2)

where x, y are the spatial locations of the spiking neuron on the map, cout and cin represent
the channel indices of this CONV layer and its input layer, respectively. w is a 4-D tensor
of the convolutional kernel weights, and p, q are spatial coordinates within the kernels. s
is the spike trains from the input channels.

Figure 2. A typical feedforward SCNN topology composed of stacked spiking convolutional
(CONV) layers and fully connected (FC) layers.

In conventional CNNs, a pooling layer may exist between successive CONV layers
for map dimension reduction. However, such pooling operations are much more sophis-
ticated for hardware SCNN implementations [33]. An alternative way to reduce map di-
mension is to use CONV layers with a stride larger than 1. A CONV layer with a stride of
d means that the convolutional kernels are placed only on every d-th row and every d-th
column on the input map during the convolution process, as illustrated in the lower part
of Figure 2. It is equivalent to performing a normal convolution (i.e., with a stride of 1),
but only picking out the resultant pixels on every d-th row and every d-th column to con-
stitute the output map.

To apply the SCNN to object recognitions, the object images must be encoded into
spike patterns. In the commonly used rate coding scheme, each pixel of the image is con-
verted to a spike train with an average spike frequency in proportional to the pixel inten-
sity [34]. Each output neuron in the final FC layer is assigned to one object category. The
object category who has the most output spikes is regarded as the classified result [35,36].

3. Proposed Spike Map Stream Processing Mechanism
In most previous SCNN hardware implementations, the spikes are delivered among

neurons in the AER data format [37]. The AER package for one spike includes the input
location or neuron index (i.e., address) where the spike is generated from, and optionally
the polarity and timestamp of the spike. Therefore, a large field of multiple bits is needed
to express the originally simple single-bit spike event, and complicated circuits are re-
quired to route and process such AER packages [3,4,25–27].

To reduce hardware complexity for mobile and edge systems, one solution is to still
treat the spikes in a single-bit format, and the spike source address should be implicitly
indicated in this format. For this purpose, we propose the concept of the time-step binary
spike map, along with high-performance processing techniques for such binary maps. At

Figure 2. A typical feedforward SCNN topology composed of stacked spiking convolutional (CONV)
layers and fully connected (FC) layers.

In conventional CNNs, a pooling layer may exist between successive CONV layers for
map dimension reduction. However, such pooling operations are much more sophisticated
for hardware SCNN implementations [33]. An alternative way to reduce map dimension is
to use CONV layers with a stride larger than 1. A CONV layer with a stride of d means that
the convolutional kernels are placed only on every d-th row and every d-th column on the
input map during the convolution process, as illustrated in the lower part of Figure 2. It is
equivalent to performing a normal convolution (i.e., with a stride of 1), but only picking out
the resultant pixels on every d-th row and every d-th column to constitute the output map.

To apply the SCNN to object recognitions, the object images must be encoded into spike
patterns. In the commonly used rate coding scheme, each pixel of the image is converted to
a spike train with an average spike frequency in proportional to the pixel intensity [34]. Each
output neuron in the final FC layer is assigned to one object category. The object category
who has the most output spikes is regarded as the classified result [35,36].

3. Proposed Spike Map Stream Processing Mechanism

In most previous SCNN hardware implementations, the spikes are delivered among
neurons in the AER data format [37]. The AER package for one spike includes the input
location or neuron index (i.e., address) where the spike is generated from, and optionally
the polarity and timestamp of the spike. Therefore, a large field of multiple bits is needed to
express the originally simple single-bit spike event, and complicated circuits are required
to route and process such AER packages [3,4,25–27].

To reduce hardware complexity for mobile and edge systems, one solution is to still
treat the spikes in a single-bit format, and the spike source address should be implicitly
indicated in this format. For this purpose, we propose the concept of the time-step binary
spike map, along with high-performance processing techniques for such binary maps. At
any discrete time-step t in the digitalized SCNN, the output spikes of the neurons in one
channel of the CONV layer can be snapshot in the form of a binary spike map (image),
where the map pixels are 1 and 0 on the locations of firing and non-firing neurons at this
time-step, respectively, as illustrated in Figure 3. The FC layer can be treated as a special
CONV layer with 1 × 1 maps and 1 × 1 convolutional kernel size. Based on such concept
of time-step binary spike map, we can now leverage regular and much simpler computing
techniques for conventional non-spiking CNN with 1-bit binary feature maps rather than

Sensors 2021, 21, 6006 5 of 14

using complicated AER processing mechanisms. More specifically, within each single
time-step t, the SCNN evaluation is equivalent to the CNN-like processing:

B(x, y, cL) = H(∑
cL−1

∑
p,q

w(p, q, cL−1, cL)B(x + p, y + q, cL−1) + bias) (3)

where B is the snapshot time-step binary spike map, cL indicates the channel index of layer
L, and w is the convolutional kernel weights. The Heaviside function H(x) is 1 or 0, if x ≥ 0
or x < 0, respectively. It acts as a nonlinear transform function in the CNN-like processing.
For each neuron, the bias term in Equation (3) is their respective membrane potential Vm
at the previous time-step scaled by the leakage factor (1 − 1/τm), minus the preset firing
threshold Vth: bias = Vm(1 − 1/τm) − Vth. The variable of time t is omitted in Equation
(3), as it describes operations in the context of a single time-step. As a result, executing
Equation (2) for SCNN inference along a time window 0 ≤ t < T can be decomposed into a
series of regular and simple time-step CNN-like processing on the binary spike maps by
using Equation (3).

Sensors 2021, 21, x FOR PEER REVIEW 5 of 14

any discrete time-step t in the digitalized SCNN, the output spikes of the neurons in one
channel of the CONV layer can be snapshot in the form of a binary spike map (image),
where the map pixels are 1 and 0 on the locations of firing and non-firing neurons at this
time-step, respectively, as illustrated in Figure 3. The FC layer can be treated as a special
CONV layer with 1 × 1 maps and 1 × 1 convolutional kernel size. Based on such concept
of time-step binary spike map, we can now leverage regular and much simpler computing
techniques for conventional non-spiking CNN with 1-bit binary feature maps rather than
using complicated AER processing mechanisms. More specifically, within each single
time-step t, the SCNN evaluation is equivalent to the CNN-like processing:

= + + +
L-1

-1 -1
,

(, ,) ((, , ,) (, ,))L L L L
c p q

B x y c H w p q c c B x p y q c bias (3)

where B is the snapshot time-step binary spike map, cL indicates the channel index of layer
L, and w is the convolutional kernel weights. The Heaviside function H(x) is 1 or 0, if x ≥ 0
or x < 0, respectively. It acts as a nonlinear transform function in the CNN-like processing.
For each neuron, the bias term in Equation (3) is their respective membrane potential Vm
at the previous time-step scaled by the leakage factor (1 − 1/τm), minus the preset firing
threshold Vth: bias = Vm(1 − 1/τm) − Vth. The variable of time t is omitted in Equation (3), as
it describes operations in the context of a single time-step. As a result, executing Equation
(2) for SCNN inference along a time window 0 ≤ t < T can be decomposed into a series of
regular and simple time-step CNN-like processing on the binary spike maps by using
Equation (3).

Figure 3. The binary spike maps corresponding to the snapshot post-synaptic spike events in the
channels of two successive CONV layers at one time-step. The red arrows indicate the firing neurons
at this time-step. We suppose there is only one channel in each layer for simplicity of the illustration.

Since the time-step CNN-like processing uses binary spike maps, the processing cir-
cuit consumptions can be reduced, and the processing performance can be improved. In
this work, we propose a computationally efficient cost-effective binary spike map pixel
stream processing mechanism for high-speed low-cost hardware implementation, as
shown in Figure 4. For one particular layer at a certain time-step, the input binary spike
map pixels from all the channels of its preceding layer are streamed in a pixel-serial chan-
nel-parallel manner. Only the latest rows and columns of the input pixel streams are buff-
ered, producing parallel output streams of binary spike map pixels in this layer. Such
stream-triggered processing propagates all of the layers until the final output streams of
current time-step appear at the output layer. The advantages of employing such time-step
spike map pixel stream processing mechanism for hardware implementation are three-
fold. (1) Small memory footprint: the spike maps of all layers are computed on the fly along
the streams, without the need to store the whole map data of any layer. For each layer,

Figure 3. The binary spike maps corresponding to the snapshot post-synaptic spike events in the
channels of two successive CONV layers at one time-step. The red arrows indicate the firing neurons
at this time-step. We suppose there is only one channel in each layer for simplicity of the illustration.

Since the time-step CNN-like processing uses binary spike maps, the processing
circuit consumptions can be reduced, and the processing performance can be improved.
In this work, we propose a computationally efficient cost-effective binary spike map pixel
stream processing mechanism for high-speed low-cost hardware implementation, as shown
in Figure 4. For one particular layer at a certain time-step, the input binary spike map
pixels from all the channels of its preceding layer are streamed in a pixel-serial channel-
parallel manner. Only the latest rows and columns of the input pixel streams are buffered,
producing parallel output streams of binary spike map pixels in this layer. Such stream-
triggered processing propagates all of the layers until the final output streams of current
time-step appear at the output layer. The advantages of employing such time-step spike
map pixel stream processing mechanism for hardware implementation are threefold. (1)
Small memory footprint: the spike maps of all layers are computed on the fly along the
streams, without the need to store the whole map data of any layer. For each layer, only
a very small portion (depending on the kernel size) of the latest rows and columns of
each input binary map need to be buffered and updated to produce the currently desired
output map pixels. Reducing memory consumption as much as possible is quite critical for
on-chip implementation of large-scale SCNNs. (2) High pixel throughput: The pixel stream
of each layer can be computed in a channel-parallel pixel-pipeline manner to achieve a high
processing throughput up to 1 pixel/channel per-clock cycle, as will be revealed in the next
section. (3) Reduced computing resources: in the map pixel stream processing pipeline, all the
binary pixels in one channel are serially handled, thus a small pixel processing circuit can
be reused to significantly save computing resources, with simple and fast adders instead of
expensive hardware multipliers to complete the convolving operations.

Sensors 2021, 21, 6006 6 of 14

Sensors 2021, 21, x FOR PEER REVIEW 6 of 14

only a very small portion (depending on the kernel size) of the latest rows and columns
of each input binary map need to be buffered and updated to produce the currently de-
sired output map pixels. Reducing memory consumption as much as possible is quite crit-
ical for on-chip implementation of large-scale SCNNs. (2) High pixel throughput: The pixel
stream of each layer can be computed in a channel-parallel pixel-pipeline manner to
achieve a high processing throughput up to 1 pixel/channel per-clock cycle, as will be
revealed in the next section. (3) Reduced computing resources: in the map pixel stream pro-
cessing pipeline, all the binary pixels in one channel are serially handled, thus a small
pixel processing circuit can be reused to significantly save computing resources, with sim-
ple and fast adders instead of expensive hardware multipliers to complete the convolving
operations.

Figure 4. The binary spike map pixel stream processing mechanism for the time-step CNN-like pro-
cessing in SCNN hardware.

4. VLSI Architecture
4.1. Architecture Overview

Figure 5 shows the proposed neuromorphic VLSI architecture for SCNN inference
utilizing time-step binary spike maps. This architecture consists of an input spike map
generator, J groups of CONV modules, K FC modules, pixel stream row buffers between
CONV module groups, an output spike counter, and weight registers for CONV/FC lay-
ers. At every time step, the spike map generator snapshots the input AER stream as a
binary spike map and sends the map pixels serially as a pixel stream to CONV modules.
Each CONV module group corresponds to one CONV layer and one CONV module in
such a group performs the CNN-like 3 × 3 pixel-stream-based convolutions for one chan-
nel in that CONV layer, and each FC module performs the computations needed for one
FC layer, where one FC unit in the FC module corresponds to one spiking neuron in that
FC layer. The spike counter calculates the fired spikes from the last FC module during all
the inference time-steps 0 ≤ t < T of one input sample presentation, and it determines the
final classification result. The circuit design details of the key computational blocks (i.e.,
the CONV and FC modules) in the architecture are further described below.

Figure 5. Hardware architecture of the proposed VLSI system.

Figure 4. The binary spike map pixel stream processing mechanism for the time-step CNN-like
processing in SCNN hardware.

4. VLSI Architecture
4.1. Architecture Overview

Figure 5 shows the proposed neuromorphic VLSI architecture for SCNN inference
utilizing time-step binary spike maps. This architecture consists of an input spike map
generator, J groups of CONV modules, K FC modules, pixel stream row buffers between
CONV module groups, an output spike counter, and weight registers for CONV/FC layers.
At every time step, the spike map generator snapshots the input AER stream as a binary
spike map and sends the map pixels serially as a pixel stream to CONV modules. Each
CONV module group corresponds to one CONV layer and one CONV module in such
a group performs the CNN-like 3 × 3 pixel-stream-based convolutions for one channel
in that CONV layer, and each FC module performs the computations needed for one FC
layer, where one FC unit in the FC module corresponds to one spiking neuron in that FC
layer. The spike counter calculates the fired spikes from the last FC module during all the
inference time-steps 0 ≤ t < T of one input sample presentation, and it determines the final
classification result. The circuit design details of the key computational blocks (i.e., the
CONV and FC modules) in the architecture are further described below.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 14

only a very small portion (depending on the kernel size) of the latest rows and columns
of each input binary map need to be buffered and updated to produce the currently de-
sired output map pixels. Reducing memory consumption as much as possible is quite crit-
ical for on-chip implementation of large-scale SCNNs. (2) High pixel throughput: The pixel
stream of each layer can be computed in a channel-parallel pixel-pipeline manner to
achieve a high processing throughput up to 1 pixel/channel per-clock cycle, as will be
revealed in the next section. (3) Reduced computing resources: in the map pixel stream pro-
cessing pipeline, all the binary pixels in one channel are serially handled, thus a small
pixel processing circuit can be reused to significantly save computing resources, with sim-
ple and fast adders instead of expensive hardware multipliers to complete the convolving
operations.

Figure 4. The binary spike map pixel stream processing mechanism for the time-step CNN-like pro-
cessing in SCNN hardware.

4. VLSI Architecture
4.1. Architecture Overview

Figure 5 shows the proposed neuromorphic VLSI architecture for SCNN inference
utilizing time-step binary spike maps. This architecture consists of an input spike map
generator, J groups of CONV modules, K FC modules, pixel stream row buffers between
CONV module groups, an output spike counter, and weight registers for CONV/FC lay-
ers. At every time step, the spike map generator snapshots the input AER stream as a
binary spike map and sends the map pixels serially as a pixel stream to CONV modules.
Each CONV module group corresponds to one CONV layer and one CONV module in
such a group performs the CNN-like 3 × 3 pixel-stream-based convolutions for one chan-
nel in that CONV layer, and each FC module performs the computations needed for one
FC layer, where one FC unit in the FC module corresponds to one spiking neuron in that
FC layer. The spike counter calculates the fired spikes from the last FC module during all
the inference time-steps 0 ≤ t < T of one input sample presentation, and it determines the
final classification result. The circuit design details of the key computational blocks (i.e.,
the CONV and FC modules) in the architecture are further described below.

Figure 5. Hardware architecture of the proposed VLSI system. Figure 5. Hardware architecture of the proposed VLSI system.

4.2. CONV Module Circuit

Figure 6 shows the computing circuit of the CONV module for evaluating Equation (3)
on the pixel streams of binary spike maps, with 3 × 3 convolutional kernel sizes. The
CONV computing datapath contains three components. The first component is a high-
speed pipelined adder tree calculating the first term of the argument in the H() function in
Equation (3), i.e., the sum of the products of kernel weights w and corresponding input
spike map pixels B from all the previous layer’s channels. To produce one output spike
map pixel, the adder tree simultaneously takes on the 3 × 3 weights (from the weight
registers at the bottom of Figure 5) and 9 corresponding input pixels (fed by the pixel row
buffers, as will be described in the next subsection) in each input channel at a time, in a
channel-parallel fashion as shown in Figure 6, and then sums up the partial products from
all of the input channels to get the whole product result. Since the adder tree works in a

Sensors 2021, 21, 6006 7 of 14

pipeline manner with each pipeline occupying 1 clock cycle, the whole adder tree can reach
a high throughput up to 1 spike map pixel per clock cycle, or equivalently, 100 M pixel/s
under a typical 100 MHz chip clock frequency. Note that since the spike map pixels are
binary, the adder tree adopts simple bitwise AND gates rather than expensive hardware
multipliers to obtain each wB product term.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 14

4.2. CONV Module Circuit
Figure 6 shows the computing circuit of the CONV module for evaluating Equation

(3) on the pixel streams of binary spike maps, with 3 × 3 convolutional kernel sizes. The
CONV computing datapath contains three components. The first component is a high-
speed pipelined adder tree calculating the first term of the argument in the H() function
in Equation (3), i.e., the sum of the products of kernel weights w and corresponding input
spike map pixels B from all the previous layer’s channels. To produce one output spike
map pixel, the adder tree simultaneously takes on the 3 × 3 weights (from the weight reg-
isters at the bottom of Figure 5) and 9 corresponding input pixels (fed by the pixel row
buffers, as will be described in the next subsection) in each input channel at a time, in a
channel-parallel fashion as shown in Figure 6, and then sums up the partial products from
all of the input channels to get the whole product result. Since the adder tree works in a
pipeline manner with each pipeline occupying 1 clock cycle, the whole adder tree can
reach a high throughput up to 1 spike map pixel per clock cycle, or equivalently, 100 M
pixel/s under a typical 100 MHz chip clock frequency. Note that since the spike map pixels
are binary, the adder tree adopts simple bitwise AND gates rather than expensive hard-
ware multipliers to obtain each wB product term.

Figure 6. The circuit design of the CONV module with the kernel size of 3 × 3 to process the pixel
data from the row buffer.

The second computing component of the CONV module adds the bias term in Equa-
tion (3) to the intermediate result from the first computing component, as shown in Figure
6. To reduce resource consumption and speedup calculation, the constant (1 − 1/τm) is pre-
calculated and stored in the parameter registers. Besides, the adding-bias component has
an orthogonal datapath (from top to bottom in the middle of Figure 6) to necessarily up-
date the neuronal membrane potentials stored in the Vm memory at each time step. Fortu-
nately, this auxiliary datapath requires no extra computing logics as it can fully leverage
the intermediate result during the bias addition operation, as illustrated in Figure 6.

The last computing component in the CONV module evaluates the Heaviside func-
tion H() in Equation (3), and gates the resultant output binary pixel stream to the next
layer to realize striding convolution control. According to its definition, the H() block
simply picks up the inversed sign bit of the result from the bias-adding component as the
generated binary output map pixels. Finally, the stride controller only passes the output
pixels at those row and column locations visited by the stride. For instance, in a convolu-
tion with a stride of 2, only those output pixels at both even rows and even columns can
reach the next layer. The row and column counters are not drawn in Figure 6 for clarity
reasons. Besides, the circuits of the second and third components in Figure 6 are also ex-
tremely simple and their operations for one output pixel can complete in only one clock
cycle. Hence, they are further pipelined with the pipeline adder tree component. There-
fore, the whole CONV module can run at a very high processing speed while consuming
a small amount of hardware resources.

Figure 6. The circuit design of the CONV module with the kernel size of 3 × 3 to process the pixel
data from the row buffer.

The second computing component of the CONV module adds the bias term in
Equation (3) to the intermediate result from the first computing component, as shown
in Figure 6. To reduce resource consumption and speedup calculation, the constant
(1 − 1/τm) is precalculated and stored in the parameter registers. Besides, the adding-bias
component has an orthogonal datapath (from top to bottom in the middle of Figure 6) to
necessarily update the neuronal membrane potentials stored in the Vm memory at each
time step. Fortunately, this auxiliary datapath requires no extra computing logics as it can
fully leverage the intermediate result during the bias addition operation, as illustrated in
Figure 6.

The last computing component in the CONV module evaluates the Heaviside function
H() in Equation (3), and gates the resultant output binary pixel stream to the next layer to
realize striding convolution control. According to its definition, the H() block simply picks
up the inversed sign bit of the result from the bias-adding component as the generated
binary output map pixels. Finally, the stride controller only passes the output pixels at
those row and column locations visited by the stride. For instance, in a convolution with
a stride of 2, only those output pixels at both even rows and even columns can reach the
next layer. The row and column counters are not drawn in Figure 6 for clarity reasons.
Besides, the circuits of the second and third components in Figure 6 are also extremely
simple and their operations for one output pixel can complete in only one clock cycle.
Hence, they are further pipelined with the pipeline adder tree component. Therefore, the
whole CONV module can run at a very high processing speed while consuming a small
amount of hardware resources.

4.3. Pixel Row Buffer

The pixel row buffer is shown in Figure 7. It consists of two small 1-bit width memory
pieces and 6 1-bit registers. One memory piece stores N-2 pixels, where N represents
the horizontal size of its input spike map. The input pixel stream from its corresponding
CONV module is buffered in a snake way, enabling 3 × 3 pixels (i.e., B[0] ~ B[8] in Figure 7)
to be simultaneously provided to the 3 × 3 CONV module group belonging to the next
layer at each clock cycle, which maximizes the system data throughput. Note that if the
next layer is an FC layer, the row buffers are not needed. Instead, the pixel streams from
all CONV channels are directly fed to each FC unit in the FC module in a pixel-serial
channel-parallel fashion.

Sensors 2021, 21, 6006 8 of 14

Sensors 2021, 21, x FOR PEER REVIEW 8 of 14

4.3. Pixel Row Buffer
The pixel row buffer is shown in Figure 7. It consists of two small 1-bit width memory

pieces and 6 1-bit registers. One memory piece stores N-2 pixels, where N represents the
horizontal size of its input spike map. The input pixel stream from its corresponding
CONV module is buffered in a snake way, enabling 3 × 3 pixels (i.e., B[0] ~ B[8] in Figure
7) to be simultaneously provided to the 3 × 3 CONV module group belonging to the next
layer at each clock cycle, which maximizes the system data throughput. Note that if the
next layer is an FC layer, the row buffers are not needed. Instead, the pixel streams from
all CONV channels are directly fed to each FC unit in the FC module in a pixel-serial
channel-parallel fashion.

Figure 7. The circuit design of the binary pixel row buffer.

4.4. FC Unit Circuit
The FC layer unit circuit shown in Figure 8 performs the operation of one spiking

neuron in the FC layer. Since the spiking neuron behaviors are identical in both CONV
and FC layers in the SCNN model, the FC unit circuit is quite similar to that of the CONV
module in Figure 6, executing in a pipelined high-throughput manner and also containing
three components: a pipelined adder tree, an adding-bias block, and a Heaviside function
evaluator. However, there are two differences between the circuits of the COVN modules
and the FC units. The obvious difference is that the FC unit needs no stride control, and
the output pixel stream from each FC unit contains only one pixel. Another difference is
that the adder tree in the FC unit receives C (instead of the constant of 9 in the CONV
module) input pixels and corresponding FC weights. If its preceding layer is an FC layer,
C represents the number of neurons of the preceding FC layer (i.e., the number of FC units
in its upstream FC module), and the sum of wB products in Equation (3) are directly sent
to the adding-bias block once obtained. Otherwise, if the preceding layer is a CONV layer,
C represents the number of the input CONV channels, and the adder tree must process
the input pixel streams from the preceding CONV module group in a pixel-serial channel-
parallel manner and buffers intermediate sum result in an accumulator register (Acc. in
Figure 8), before the summation over the input convolution map pixels is completed.

Figure 8. The circuit design of the FC unit.

Figure 7. The circuit design of the binary pixel row buffer.

4.4. FC Unit Circuit

The FC layer unit circuit shown in Figure 8 performs the operation of one spiking
neuron in the FC layer. Since the spiking neuron behaviors are identical in both CONV
and FC layers in the SCNN model, the FC unit circuit is quite similar to that of the CONV
module in Figure 6, executing in a pipelined high-throughput manner and also containing
three components: a pipelined adder tree, an adding-bias block, and a Heaviside function
evaluator. However, there are two differences between the circuits of the COVN modules
and the FC units. The obvious difference is that the FC unit needs no stride control, and
the output pixel stream from each FC unit contains only one pixel. Another difference
is that the adder tree in the FC unit receives C (instead of the constant of 9 in the CONV
module) input pixels and corresponding FC weights. If its preceding layer is an FC layer, C
represents the number of neurons of the preceding FC layer (i.e., the number of FC units
in its upstream FC module), and the sum of wB products in Equation (3) are directly sent
to the adding-bias block once obtained. Otherwise, if the preceding layer is a CONV layer,
C represents the number of the input CONV channels, and the adder tree must process
the input pixel streams from the preceding CONV module group in a pixel-serial channel-
parallel manner and buffers intermediate sum result in an accumulator register (Acc. in
Figure 8), before the summation over the input convolution map pixels is completed.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 14

4.3. Pixel Row Buffer
The pixel row buffer is shown in Figure 7. It consists of two small 1-bit width memory

pieces and 6 1-bit registers. One memory piece stores N-2 pixels, where N represents the
horizontal size of its input spike map. The input pixel stream from its corresponding
CONV module is buffered in a snake way, enabling 3 × 3 pixels (i.e., B[0] ~ B[8] in Figure
7) to be simultaneously provided to the 3 × 3 CONV module group belonging to the next
layer at each clock cycle, which maximizes the system data throughput. Note that if the
next layer is an FC layer, the row buffers are not needed. Instead, the pixel streams from
all CONV channels are directly fed to each FC unit in the FC module in a pixel-serial
channel-parallel fashion.

Figure 7. The circuit design of the binary pixel row buffer.

4.4. FC Unit Circuit
The FC layer unit circuit shown in Figure 8 performs the operation of one spiking

neuron in the FC layer. Since the spiking neuron behaviors are identical in both CONV
and FC layers in the SCNN model, the FC unit circuit is quite similar to that of the CONV
module in Figure 6, executing in a pipelined high-throughput manner and also containing
three components: a pipelined adder tree, an adding-bias block, and a Heaviside function
evaluator. However, there are two differences between the circuits of the COVN modules
and the FC units. The obvious difference is that the FC unit needs no stride control, and
the output pixel stream from each FC unit contains only one pixel. Another difference is
that the adder tree in the FC unit receives C (instead of the constant of 9 in the CONV
module) input pixels and corresponding FC weights. If its preceding layer is an FC layer,
C represents the number of neurons of the preceding FC layer (i.e., the number of FC units
in its upstream FC module), and the sum of wB products in Equation (3) are directly sent
to the adding-bias block once obtained. Otherwise, if the preceding layer is a CONV layer,
C represents the number of the input CONV channels, and the adder tree must process
the input pixel streams from the preceding CONV module group in a pixel-serial channel-
parallel manner and buffers intermediate sum result in an accumulator register (Acc. in
Figure 8), before the summation over the input convolution map pixels is completed.

Figure 8. The circuit design of the FC unit. Figure 8. The circuit design of the FC unit.

5. Experimental Results
5.1. FPGA Prototype

In this work, we used the SystemVerilog to describe the proposed SCNN hardware
architecture and the processing circuits prototyped on a Xilinx Zynq-7045 FPGA chip. The
whole evaluation system of the prototype is shown in Figure 9. An on-chip hardware IP
core of ARM processor was used to communicate the SCNN prototype and a host computer
via a 1000 Mbps Ethernet link. To obtain the SNN weights, we trained equivalent CNN
model structures in Pytorch in an offline manner, converted the CNN models into the
desired SNN models using the method in [18], and finally downloaded the learned weights
to the FPGA prototype via the Ethernet. We adopted four SCNN model configurations

Sensors 2021, 21, 6006 9 of 14

with different numbers of CONV and FC layers, as listed in Table 1, and the corresponding
FPGA resource and power consumption (estimated by the Xilinx Vivado 2018.3 tool) for
prototyping each of the four SNN models are given in Table 2. All of the four FPGA
prototypes were running under a clock frequency of 100 MHz. Note that the on-chip
hardware IP core of ARM processor and the PC debugging software in Figure 9 were only
used for evaluation and they are not part of the prototype, thus their resource and power
consumptions should not be counted in Table 2. Every test image was encoded into spike
trains of 100 time-steps using the aforementioned rate coding method in our PC debugging
software. These spike trains were recorded in the AER format and then downloaded to the
FPGA prototype via the Ethernet. The image classification results were read back to the
host computer for display and accuracy evaluation.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 14

5. Experimental Results
5.1. FPGA Prototype

In this work, we used the SystemVerilog to describe the proposed SCNN hardware
architecture and the processing circuits prototyped on a Xilinx Zynq-7045 FPGA chip. The
whole evaluation system of the prototype is shown in Figure 9. An on-chip hardware IP
core of ARM processor was used to communicate the SCNN prototype and a host com-
puter via a 1000 Mbps Ethernet link. To obtain the SNN weights, we trained equivalent
CNN model structures in Pytorch in an offline manner, converted the CNN models into
the desired SNN models using the method in [18], and finally downloaded the learned
weights to the FPGA prototype via the Ethernet. We adopted four SCNN model configu-
rations with different numbers of CONV and FC layers, as listed in Table 1, and the cor-
responding FPGA resource and power consumption (estimated by the Xilinx Vivado
2018.3 tool) for prototyping each of the four SNN models are given in Table 2. All of the
four FPGA prototypes were running under a clock frequency of 100 MHz. Note that the
on-chip hardware IP core of ARM processor and the PC debugging software in Figure 9
were only used for evaluation and they are not part of the prototype, thus their resource
and power consumptions should not be counted in Table 2. Every test image was encoded
into spike trains of 100 time-steps using the aforementioned rate coding method in our PC
debugging software. These spike trains were recorded in the AER format and then down-
loaded to the FPGA prototype via the Ethernet. The image classification results were read
back to the host computer for display and accuracy evaluation.

Figure 9. The FPGA prototype and the evaluation system.

Table 1. SCNN model configurations for FPGA prototyping.

Configuration SCNN Model Structure
1C1F 1 16c2-10
2C1F 16c2-32c2-10
2C2F 6c2-32c32-32-10
3C1F 16c1-16c2-32c2-10

1 xCyF means x CONV layers + y FC layers, and xcy represents a 3 × 3 COVN layer with x channels
and a stride of y, the digit 10 means an FC layer with 10 neurons.

Table 2. Resource and power consumptions of our FPGA prototype.

Configuration
Logic Resource Memory Resource

Power
Consumption 1 LUT as Logic

(218,600)
FF

(437,200)
DSP
(900)

Block RAM
(545)

LUT as Mem
(70,400)

1C1F
8904

(4.07%)
10,269

(2.35%)
26

(2.89%)
88

(16.15%)
64

(0.09%)
0.519 W

2C1F
64,640

(29.57%)
102,982

(23.55%)
58

(6.44%)
24

(4.40%)
4960

(7.05%)
0.959 W

2C2F
93,202

(42.63%)
136,882

(31.31%)
90

(10.00%)
26

(4.77%)
6123

(8.70%)
1.168 W

Figure 9. The FPGA prototype and the evaluation system.

Table 1. SCNN model configurations for FPGA prototyping.

Configuration SCNN Model Structure

1C1F 1 16c2-10
2C1F 16c2-32c2-10
2C2F 6c2-32c32-32-10
3C1F 16c1-16c2-32c2-10

1 xCyF means x CONV layers + y FC layers, and xcy represents a 3 × 3 COVN layer with x channels and a stride
of y, the digit 10 means an FC layer with 10 neurons.

Table 2. Resource and power consumptions of our FPGA prototype.

Configuration
Logic Resource Memory Resource

Power
Consumption 1LUT as Logic

(218,600)
FF

(437,200)
DSP
(900)

Block RAM
(545)

LUT as Mem
(70,400)

1C1F 8904
(4.07%)

10,269
(2.35%)

26
(2.89%)

88
(16.15%)

64
(0.09%) 0.519 W

2C1F 64,640
(29.57%)

102,982
(23.55%)

58
(6.44%)

24
(4.40%)

4960
(7.05%) 0.959 W

2C2F 93,202
(42.63%)

136,882
(31.31%)

90
(10.00%)

26
(4.77%)

6123
(8.70%) 1.168 W

3C1F 87,172
(39.88%)

147,832
(33.81%)

74
(8.22%)

32
(5.87%)

6000
(8.52%) 1.241 W

1 Estimated by the Xilinx Vavido tool.

We used the MNIST image dataset [38] and the more challenging Fashion-MNIST
dataset [39] to test our prototype, as shown in Figure 10. Each dataset contains 70,000
28 × 28 grayscale images belonging to 10 object categories, of which 60,000 are for offline
SCNN training and the others for inference testing. We employed the method in [18]
to train our SCNN in an offline manner on the host computer. For each SCNN model
configuration, we first trained an equivalent non-spiking CNN using the standard error
back-propagation algorithm, and then converted it to the target SCNN model following
the routine in [18]. Finally, the trained SCNN weights were downloaded to the weight
registers in the FPGA prototype for object category inference. Thanks to the proposed
spike map pixel stream processing mechanism and the pipeline technique, the SCNN

Sensors 2021, 21, 6006 10 of 14

hardware processing throughput kept nearly constant regardless of the depth of SCNN
layers. The prototype inference speed on the MNIST and Fashion-MINIST images for
the SCNN model configurations in Table 1 were all as high as around 1250 frame/s (fps),
under the 100 MHz clock frequency and with 100 time-steps for each image. The SCNN
inference accuracies are illustrated in Figure 11. The recognition accuracy gap between the
two datasets is due to the reason that the Fashion-MNIST object images from the real-world
are much more complicated to classify than the handwritten digits in the MNIST dataset.
We have found that compared to the 2C2F SCNN model, the 3C1F configuration has the
same depth of 4 layers except that 1 FC layer is replaced by a CONV layer. However,
the latter configuration achieved obviously high recognition accuracies on the MNIST
and Fashion-MNIST images, while showing comparable hardware resource and power
consumptions (Table 2) at almost the same high inference speed of about 1250 fps. This
demonstrates the importance of the scalability to deeper CONV layers in the proposed
SCNN hardware architecture.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 14

3C1F
87,172

(39.88%)
147,832

(33.81%)
74

(8.22%)
32

(5.87%)
6000

(8.52%)
1.241 W

1 Estimated by the Xilinx Vavido tool.

We used the MNIST image dataset [38] and the more challenging Fashion-MNIST
dataset [39] to test our prototype, as shown in Figure 10. Each dataset contains 70,000 28
× 28 grayscale images belonging to 10 object categories, of which 60,000 are for offline
SCNN training and the others for inference testing. We employed the method in [18] to
train our SCNN in an offline manner on the host computer. For each SCNN model con-
figuration, we first trained an equivalent non-spiking CNN using the standard error back-
propagation algorithm, and then converted it to the target SCNN model following the
routine in [18]. Finally, the trained SCNN weights were downloaded to the weight regis-
ters in the FPGA prototype for object category inference. Thanks to the proposed spike
map pixel stream processing mechanism and the pipeline technique, the SCNN hardware
processing throughput kept nearly constant regardless of the depth of SCNN layers. The
prototype inference speed on the MNIST and Fashion-MINIST images for the SCNN
model configurations in Table 1 were all as high as around 1250 frame/s (fps), under the
100 MHz clock frequency and with 100 time-steps for each image. The SCNN inference
accuracies are illustrated in Figure 11. The recognition accuracy gap between the two da-
tasets is due to the reason that the Fashion-MNIST object images from the real-world are
much more complicated to classify than the handwritten digits in the MNIST dataset. We
have found that compared to the 2C2F SCNN model, the 3C1F configuration has the same
depth of 4 layers except that 1 FC layer is replaced by a CONV layer. However, the latter
configuration achieved obviously high recognition accuracies on the MNIST and Fashion-
MNIST images, while showing comparable hardware resource and power consumptions
(Table 2) at almost the same high inference speed of about 1250 fps. This demonstrates the
importance of the scalability to deeper CONV layers in the proposed SCNN hardware
architecture.

(a) (b)

Figure 10. The testing image datasets. (a) MNIST. (b) Fashion-MNIST.

(a) (b)

Figure 11. The comparison of recognition accuracies between topologically equivalent non-spiking CNN (computer soft-
ware) and SCNN (FPGA hardware) on (a) MNIST and (b) Fashion-MNIST image datasets.

Figure 10. The testing image datasets. (a) MNIST. (b) Fashion-MNIST.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 14

3C1F
87,172

(39.88%)
147,832

(33.81%)
74

(8.22%)
32

(5.87%)
6000

(8.52%)
1.241 W

1 Estimated by the Xilinx Vavido tool.

We used the MNIST image dataset [38] and the more challenging Fashion-MNIST
dataset [39] to test our prototype, as shown in Figure 10. Each dataset contains 70,000 28
× 28 grayscale images belonging to 10 object categories, of which 60,000 are for offline
SCNN training and the others for inference testing. We employed the method in [18] to
train our SCNN in an offline manner on the host computer. For each SCNN model con-
figuration, we first trained an equivalent non-spiking CNN using the standard error back-
propagation algorithm, and then converted it to the target SCNN model following the
routine in [18]. Finally, the trained SCNN weights were downloaded to the weight regis-
ters in the FPGA prototype for object category inference. Thanks to the proposed spike
map pixel stream processing mechanism and the pipeline technique, the SCNN hardware
processing throughput kept nearly constant regardless of the depth of SCNN layers. The
prototype inference speed on the MNIST and Fashion-MINIST images for the SCNN
model configurations in Table 1 were all as high as around 1250 frame/s (fps), under the
100 MHz clock frequency and with 100 time-steps for each image. The SCNN inference
accuracies are illustrated in Figure 11. The recognition accuracy gap between the two da-
tasets is due to the reason that the Fashion-MNIST object images from the real-world are
much more complicated to classify than the handwritten digits in the MNIST dataset. We
have found that compared to the 2C2F SCNN model, the 3C1F configuration has the same
depth of 4 layers except that 1 FC layer is replaced by a CONV layer. However, the latter
configuration achieved obviously high recognition accuracies on the MNIST and Fashion-
MNIST images, while showing comparable hardware resource and power consumptions
(Table 2) at almost the same high inference speed of about 1250 fps. This demonstrates the
importance of the scalability to deeper CONV layers in the proposed SCNN hardware
architecture.

(a) (b)

Figure 10. The testing image datasets. (a) MNIST. (b) Fashion-MNIST.

(a) (b)

Figure 11. The comparison of recognition accuracies between topologically equivalent non-spiking CNN (computer soft-
ware) and SCNN (FPGA hardware) on (a) MNIST and (b) Fashion-MNIST image datasets.
Figure 11. The comparison of recognition accuracies between topologically equivalent non-spiking CNN (computer
software) and SCNN (FPGA hardware) on (a) MNIST and (b) Fashion-MNIST image datasets.

5.2. Comparsion and Discussion

Table 3 compares our FPGA implementation with recent state-of-the-art software-
based SNN/SCNN implementations regarding processing speed and the recognition accu-
racy. On the whole testing subset of 10000 MNIST images, our hardware implementation
achieved processing accelerations of 1103×, 998×, and 638×, compared to the software
works in [19,40,41], respectively, and is thus very suitable for real-time embedded applica-
tions. The work in [41] obtained the highest recognition accuracy using a more advanced
CNN-to-SCNN training methodology. In the future, we can also utilize such technique to
finish the offline SCNN training procedure and downloaded the learned weights to our
hardware system to achieve similar high accuracy.

Sensors 2021, 21, 6006 11 of 14

Table 3. Performance Comparison to software based SNN/SCNN on MNIST.

Ref. Time (s) Accuracy (%)

[19] 8649 95.01
[40] 7825 78.5
[41] 5000 99.1

Ours (3C1F) 7.84 97.3

Table 4 compares our work with other recent SNN/SCNN hardware implementations.
It demonstrates that our work achieves high processing speed, high recognition accuracy
at a acceptably moderate resource and power consumption level. Although the customized
neuromorphic ASIC chips exhibits higher resource and energy efficiencies as they occupy
small chip area and consumes much lower power, they suffer from long design and
verification cycle, high fabrication cost and less flexibility for chip function upgrade, when
compared to the FPGA-based implementations. The work in [26] gains a little higher
accuracy than ours, as they benchmarked their design on the much simpler Poker-DVS
dataset which contains only 4 categories. The work in [33] also surpasses our work in terms
of the MNIST recognition accuracy, but at a much lower frame rate of only 164 fps. The
work in [30] achieved the highest accuracy among all the works, yet without reporting
their power consumption and frame rate.

Table 4. Comparison with other SNN/SCNN hardware implementation.

Ref. Implementation Clock Freq.
(MHz)

Power
(mW)

Frame Rate
(fps) Model Benchmark Accuracy

(%)

[8] ASIC 75 0.48 N/A SNN MNIST 84.5

[9] ASIC 105 0.16 160 SNN MNIST 89
[10] ASIC 25 21 6.25 SNN MNIST 93.8
[25] ASIC 100 200 127 1 SCNN Poker-DVS N/A
[26] FPGA 50 0.85 0.4 SCNN Poker-DVS 96
[27] FPGA 100 59 111 SCNN Poker-DVS N/A
[30] FPGA 200 N/A N/A SCNN MNIST 99.16
[33] FPGA 150 4600 164 SCNN MNIST 98.94
[42] FPGA 75 1500 6.58 SNN MNIST 92
ours

(3C1F) FPGA 100 1241 1250 SCNN
MNIST 97.3

Fashion-MNIST 83.3
1 For the DVS datasets, the frame rate refers to classifications per second on the AER data stream.

The architecture proposed in this paper allows for implementation of large-scale
SCNN and presents competitive results in terms of the recognition accuracy and frame rate.
It levearages the snapshot of binary spike maps at each time-step along with the spike-map
pixel stream processing pipeline to improve the hardware throughput up to 1250 frame/s
on MNIST and Fashion-MNIST image recognition tasks, while only consuming a few
memory resources, a few multipliers, and a moderate amount of other logic cells on the
FPGA prototype, as demonstrated in Table 2. Indeed, comapred to other SNN hardware
implementations, listed in Table 4, that mainly utilize the NoC infrustructure and AER-
based communications for arbitrary SNN model structures, our proposed architecture and
circuits are specicially designed and optimized for the feedforward multi-layer SCNN
models, which have hitherto the most widespread application in various visual recognition
tasks, and thus achieve the highest frame rate on classifying the 28 × 28 resolution images.

6. Conclusions

In this paper, we propose a scalable, cost-efficient, and high-speed VLSI neuromorphic
architecture for SCNN inferencing, which leverages the snapshot of binary spike maps
at each time-step, to decompose the SCNN operations into a series of regular and simple
time-step CNN-like processing. Our system architecture achieves high pixel throughput
by employing the pixel stream processing mechanism, parallel processing arrays of CONV
modules and FC units, and fine-grained pipelines. An FPGA prototype of the proposed
hardware architecture was implemented on the Xilinx Zynq-7045 chip and reached a

Sensors 2021, 21, 6006 12 of 14

high processing speed of 1250 fps on the MNIST and Fashion- MNIST image datasets
under a 100 MHz clock frequency. Our prototype achieved 97.3% and 83.3% recognition
accuracies on the MNIST and Fashion-MNIST datasets using an SCNN model with 3 CONV
layers and 1 FC layer, while moderately consuming 1.241W power. Our neuromorphic
hardware system exhibits high plausibility for versatile embedded, mobile, and edge-
computing applications.

Author Contributions: Conceptualization, J.Y.; Data curation, X.Z.; Investigation, J.Y.; Methodology,
C.S., Y.L. and N.W.; Project administration, J.Y.; Resources, C.S.; Software, C.S., Y.L. and X.Y.; Supervi-
sion, J.Y.; Validation, W.H.; Writing riginal draft, L.Z., J.Y., C.S. and L.L.; Writing review & editing, J.Y.
and C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Key Project of Chongqing Science and Technology
Foundation (Grant No. cstc2019jcyj-zdxmX0017), the Chongqing Talents Plan for Yong Talents
(Grant No. CQYC201905015), and the Open Research Funding from the State Key Laboratory of
Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences (Grant No.
CARCH201908).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Indiveri, G.; Liu, S.-C. Memory and Information Processing in Neuromorphic Systems. Proc. IEEE 2015, 103, 1379–1397. [CrossRef]
2. Seo, J.S.; Brezzo, B.; Liu, Y.; Parker, B.D.; Esser, S.K.; Montoye, R.K.; Rajendran, B.; Tierno, J.A.; Chang, L.; Modha, D.S.; et al. A

45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In Proceedings of the
2011 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 19–21 September 2011; pp. 1–4.

3. Painkras, E.; Plana, L.A.; Garside, J.; Temple, S.; Galluppi, F.; Patterson, C.; Lester, D.; Brown, A.D.; Furber, S. SpiNNaker: A
1-W 18-Core System-on-Chip for Massively-Parallel Neural Network Simulation. IEEE J. Solid-State Circuits 2013, 48, 1943–1953.
[CrossRef]

4. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.V.; Merolla, P.; Imam, N.; Nakamura, Y.Y.; Datta, P.; Nam, G.-J.;
et al. TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput.
Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

5. Benjamin, B.V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A.R.; Bussat, J.M.; Alvarez-Icaza, R.; Arthur, J.V.; Merolla,
P.A.; Boahen, K. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 2014, 102,
699–716. [CrossRef]

6. Qiao, N.; Mostafa, H.; Corradi, F.; Osswald, M.; Stefanini, F.; Sumislawska, D.; Indiveri, G. A reconfigurable on-line learning
spiking neuromorphic processor comprising 256 neurons and 128 K synapses. Front. Neurosci. 2020, 9, 141. [CrossRef]

7. Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

8. Frenkel, C.; Lefebvre, M.; Legat, J.D.; Bol, D. A 0.086-mm2 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking
Neuromorphic Processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 145–158.

9. Chen, G.K.; Kumar, R.; Sumbul, H.E.; Knag, P.C.; Krishnamurthy, R.K. A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural
Network With On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS. IEEE J. Solid-State Circuits 2018, 54, 992–1002.
[CrossRef]

10. Ma, D.; Shen, J.; Gu, Z.; Zhang, M.; Zhu, X.; Xu, X.; Xu, Q.; Shen, Y.; Pan, G. Darwin: A neuromorphic hardware co-processor
based on spiking neural networks. J. Syst. Arch. 2017, 77, 43–51. [CrossRef]

11. Frenkel, C.; Legat, J.-D.; Bol, D. MorphIC: A 65-nm 738k-Synapse/mm2 Quad-Core Binary-Weight Digital Neuromorphic
Processor With Stochastic Spike-Driven Online Learning. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 999–1010. [CrossRef]

12. Li, S.; Zhang, Z.; Mao, R.; Xiao, J.; Chang, L.; Zhou, J. A Fast and Energy-Efficient SNN Processor with Adaptive Clock/Event-
Driven Computation Scheme and Online Learning. IEEE Trans. Circuits Syst. 2021, 68, 1543–1552. [CrossRef]

13. Kuang, Y.; Cui, X.; Zhong, Y.; Liu, K.; Zou, C.; Dai, Z.; Wang, Y.; Yu, D.; Huang, R. A 64K-Neuron 64M-1b-Synapse 2.64pJ/SOP
Neuromorphic Chip With All Memory on Chip for Spike-Based Models in 65 nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs
2021, 68, 2655–2659. [CrossRef]

http://doi.org/10.1109/JPROC.2015.2444094
http://doi.org/10.1109/JSSC.2013.2259038
http://doi.org/10.1109/TCAD.2015.2474396
http://doi.org/10.1109/JPROC.2014.2313565
http://doi.org/10.5167/uzh-121768
http://doi.org/10.1109/MM.2018.112130359
http://doi.org/10.1109/JSSC.2018.2884901
http://doi.org/10.1016/j.sysarc.2017.01.003
http://doi.org/10.1109/TBCAS.2019.2928793
http://doi.org/10.1109/TCSI.2021.3052885
http://doi.org/10.1109/TCSII.2021.3052172

Sensors 2021, 21, 6006 13 of 14

14. Detorakis, G.; Sheik, S.; Augustine, C.; Paul, S.; Pedroni, B.U.; Dutt, N.; Krichmar, J.; Cauwenberghs, G.; Neftci, E. Neural
and synaptic array transceiver: A brain-inspired computing framework for embedded learning. Front. Neurosci. 2018, 12, 583.
[CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

16. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
18. Cao, Y.; Chen, Y.; Khosla, D. Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition. Int. J. Comput.

Vis. 2015, 113, 54–66. [CrossRef]
19. Zhao, B.; Ding, R.; Chen, S.; Linares-Barranco, B.; Tang, H. Feedforward Categorization on AER Motion Events Using Cortex-Like

Features in a Spiking Neural Network. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1963–1978. [CrossRef] [PubMed]
20. Kheradpisheh, S.R.; Ganjtabesh, M.; Thorpe, S.J.; Masquelier, T. STDP-based spiking deep convolutional neural networks for

object recognition. Neural Netw. 2018, 99, 56–67. [CrossRef] [PubMed]
21. Lee, C.; Srinivasan, G.; Panda, P.; Roy, K. Deep Spiking Convolutional Neural Network Trained With Unsupervised Spike-Timing-

Dependent Plasticity. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 384–394. [CrossRef]
22. Srinivasan, G.; Roy, K. ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient

Neuromorphic Computing. Front. Neurosci. 2019, 13, 189. [CrossRef] [PubMed]
23. Xu, Q.; Peng, J.; Shen, J.; Tang, H.; Pan, G. Deep CovDenseSNN: A hierarchical event-driven dynamic framework with spiking

neurons in noisy environment. Neural Netw. 2019, 121, 512–519. [CrossRef]
24. Yang, X.; Zhang, Z.; Zhu, W.; Yu, S.; Liu, L.; Wu, N. Deterministic conversion rule for CNNs to efficient spiking convolutional

neural networks. Sci. China Inf. Sci. 2020, 63, 122402. [CrossRef]
25. Camuñas-Mesa, L.; Zamarreno-Ramos, C.; Linares-Barranco, A.; Jiménez, A.J.A.; Gotarredona, M.T.S.; Linares-Barranco, B. An

Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors. IEEE J. Solid-State Circuits 2011, 47,
504–517. [CrossRef]

26. Camuñas-Mesa, L.A.; Domínguez-Cordero, Y.L.; Linares-Barranco, A.; Serrano-Gotarredona, T.; Linares-Barranco, B. A config-
urable event-driven convolutional node with rate saturation mechanism for modular ConvNet systems implementation. Front.
Neurosci. 2018, 12, 63. [CrossRef]

27. Tapiador-Morales, R.; Linares-Barranco, A.; Jimenez-Fernandez, A.; Jimenez-Moreno, G. Neuromorphic LIF row-by-row multi-
convolution processor for FPGA. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 159–169. [PubMed]

28. Frenkel, C.; Legat, J.D.; Bol, D. A 28-nm convolutional neuromorphic processor enabling online learning with spike-based retinas.
In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020;
pp. 1–5.

29. Kang, Z.; Wang, L.; Guo, S.; Gong, R.; Deng, Y.; Dou, Q. ASIE: An Asynchronous SNN Inference Engine for AER Events Processing.
In Proceedings of the 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), Hirosaki, Japan,
12–15 May 2019.

30. Wang, S.-Q.; Wang, L.; Deng, Y.; Yang, Z.-J.; Guo, S.-S.; Kang, Z.-Y.; Guo, Y.-F.; Xu, W.-X. SIES: A Novel Implementation of Spiking
Convolutional Neural Network Inference Engine on Field-Programmable Gate Array. J. Comput. Sci. Technol. 2020, 35, 475–489.
[CrossRef]

31. Heidarpur, M.; Ahmadi, A.; Ahmadi Mand Azghadi, M.R. CORDIC-SNN: On-FPGA STDP Learning with Izhikevich Neurons.
IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2651–2661. [CrossRef]

32. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 2017, 11, 682. [CrossRef]

33. Ju, X.; Fang, B.; Yan, R.; Xu, X.; Tang, H. An FPGA implementation of deep spiking neural networks for low-power and fast
classification. Neural Comput. 2020, 32, 182–204. [CrossRef]

34. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef] [PubMed]

35. Wang, T.; Shi, C.; Zhou, X.; Lin, Y.; He, J.; Gan, P.; Li, P.; Wang, Y.; Liu, L.; Wu, N.; et al. CompSNN: A lightweight spiking neural
network based on spatiotemporally compressive spike features. Neurocomputing 2021, 425, 96–106. [CrossRef]

36. Shi, C.; Wang, T.; He, J.; Zhang, J.; Liu, L.; Wu, N. DeepTempo: A Hardware-Friendly Direct Feedback Alignment Multi-Layer
Tempotron Learning Rule for Deep Spiking Neural Networks. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1581–1585.
[CrossRef]

37. Lazzaro, J.; Wawrzynek, J. A multi-sender asynchronous extension to the AER protocol. In Proceedings of the Sixteenth
Conference on Advanced Research in VLSI 1995, Chapel Hill, NC, USA, 27–29 March 1995; pp. 158–169.

38. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

39. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

http://doi.org/10.3389/fnins.2018.00583
http://doi.org/10.1145/3065386
http://doi.org/10.1007/s11263-014-0788-3
http://doi.org/10.1109/TNNLS.2014.2362542
http://www.ncbi.nlm.nih.gov/pubmed/25347889
http://doi.org/10.1016/j.neunet.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29328958
http://doi.org/10.1109/tcds.2018.2833071
http://doi.org/10.3389/fnins.2019.00189
http://www.ncbi.nlm.nih.gov/pubmed/30941003
http://doi.org/10.1016/j.neunet.2019.08.034
http://doi.org/10.1007/s11432-019-1468-0
http://doi.org/10.1109/JSSC.2011.2167409
http://doi.org/10.3389/fnins.2018.00063
http://www.ncbi.nlm.nih.gov/pubmed/30418884
http://doi.org/10.1007/s11390-020-9686-z
http://doi.org/10.1109/TCSI.2019.2899356
http://doi.org/10.3389/fnins.2017.00682
http://doi.org/10.1162/neco_a_01245
http://doi.org/10.3389/fncom.2015.00099
http://www.ncbi.nlm.nih.gov/pubmed/26941637
http://doi.org/10.1016/j.neucom.2020.10.100
http://doi.org/10.1109/TCSII.2021.3063784
http://doi.org/10.1109/5.726791

Sensors 2021, 21, 6006 14 of 14

40. Yu, Q.; Tang, H.; Tan, K.C.; Li, H. Rapid Feedforward Computation by Temporal Encoding and Learning With Spiking Neurons.
IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1539–1552. [CrossRef] [PubMed]

41. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–8.

42. Neil, D.; Liu, S.C. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 2014, 22, 2621–2628. [CrossRef]

http://doi.org/10.1109/tnnls.2013.2245677
http://www.ncbi.nlm.nih.gov/pubmed/24808592
http://doi.org/10.1109/TVLSI.2013.2294916

	Introduction
	Background
	Biological Spiking Neuron Model
	Spiking Convolution Neural Network

	Proposed Spike Map Stream Processing Mechanism
	VLSI Architecture
	Architecture Overview
	CONV Module Circuit
	Pixel Row Buffer
	FC Unit Circuit

	Experimental Results
	FPGA Prototype
	Comparsion and Discussion

	Conclusions
	References

