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Abstract: Steel-fiber-reinforced concrete (SFRC) has been introduced as an effective alternative to
conventional concrete in the construction sector. The incorporation of steel fibers into concrete
provides a bridging mechanism to arrest cracks, improve the post-cracking behavior of concrete,
and transfer stresses in concrete. Artificial intelligence (AI) approaches are in use nowadays to
predict concrete properties to conserve time and money in the construction industry. Accordingly,
this study aims to apply advanced and sophisticated machine-learning (ML) algorithms to predict
SFRC compressive strength. In the current work, the applied ML approaches were gradient boosting,
random forest, and XGBoost. The considered input variables were cement, fine aggregates (sand),
coarse aggregates, water, silica fume, super-plasticizer, fly ash, steel fiber, fiber diameter, and fiber
length. Previous studies have not addressed the effects of raw materials on compressive strength in
considerable detail, leaving a research gap. The integration of a SHAP analysis with ML algorithms
was also performed in this paper, addressing a current research need. A SHAP analysis is intended
to provide an in-depth understanding of the SFRC mix design in terms of its strength factors via
complicated, nonlinear behavior and the description of input factor contributions by assigning a
weighing factor to each input component. The performances of all the algorithms were evaluated
by applying statistical checks such as the determination coefficient (R2), the root mean square error
(RMSE), and the mean absolute error (MAE). The random forest ML approach had a higher, i.e.,
0.96, R2 value with fewer errors, producing higher precision than other models with lesser R2 values.
The SFRC compressive strength could be anticipated by applying the random forest ML approach.
Further, it was revealed from the SHapley Additive exPlanations (SHAP) analysis that cement content
had the highest positive influence on the compressive strength of SFRC. In this way, the current study
is beneficial for researchers to effectively and quickly evaluate SFRC compressive strength.

Keywords: SFRC; building material; compressive strength; steel fiber; concrete

1. Introduction

The mechanical properties, toughness, ductility, fatigue resistance, and crack-arresting
of concrete can be improved by adding fibers into it [1–9]. Specifically, the addition of steel
fibers to cementitious concrete enhances the post-cracking behavior and toughness [10–15]. The
addition of adequate steel fiber content (i.e., 0–1.5%) to concrete can improve its properties [1].
Steel, artificial, and natural fibers are incorporated into concrete to enhance the mechanical
properties and resistance against cracks of cementitious concrete composites [2–8]. Different
studies have been conducted on models for regular concrete mechanical properties depending
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on a wide database [16], although there are additional predicting parameters such as fiber
type, aspect ratio, and volumetric content for SFRC compared to normal concrete. However,
the development of appropriate predictive models is still new. Subsequently, the scuffling of
conventional nonlinear and linear regression models is used to determine the compressive
strength of SFRC. ML techniques may assist in resolving the issue of difficulty for the strength
prediction of SFRC [9–16]. Although multiple experimental studies have been conducted for
this purpose, as reported in the literature, the prediction of SFRC properties having different
mix design components is still quite hard. Therefore, in the current study, an effort is made to
predict SFRC compressive properties by employing ML approaches.

The employment of ML techniques may effectively resolve complex problems in
various engineering fields. Based on an input database, ML techniques may estimate
outcomes. To predict concrete properties, two ML approaches, a standalone procedure (a
single-model-based decision tree) and ensemble techniques (i.e., random forest, gradient
boosting, and XGBoost) are used. As reported in the literature, the performance of ensemble
models has been better than individual ML models. Chaabene, et al. [17] evaluated in detail
the employment of ML techniques for the prediction of concrete mechanical properties.
Furthermore, several types of research have been conducted for the anticipation of me-
chanical properties of different concrete types, such as phase-change-material-integrated
concrete [18], self-healing concrete [19], high-performance concrete (HPC) [20], recycled
aggregate concrete (RAC) [21], etc. The employment of ML techniques was performed by
Han, et al. [22] to predict HPC compressive strength. Fine aggregates, coarse aggregates,
cement, water, GGBFS, age, and five additional variable combinations were all considered
as the database for input factors. The developed model provided HPC compressive strength
prediction with high precision.

SFRC mechanical properties have extensively been determined in various studies [23–25].
However, the procedures of specimen-casting in the laboratory, curing, and testing consume
a lot of time, effort, cost, and labor. Therefore, the employment of ML modern techniques for
the assessment of SFRC mechanical properties may resolve such issues and reduce expenses
for experimentation. Moreover, the effects of raw ingredients on compressive strength have
still not been addressed considerably in recent research, providing a research gap. Accordingly,
the effects of raw materials, i.e., input factors, on the outcome factor, i.e., compressive strength,
are also determined and explained by performing SHapley Additive exPlanations. In the
current study, different ensemble ML techniques are applied to predict SFRC compressive
strength. Random forest, gradient boosting, and XGBoost are employed as ensemble ML
models. Furthermore, a statistical analysis is also performed to evaluate all the models, and
different ML models are compared. Based on the performances, a superior model is proposed
to predict SFRC compressive strength. In addition, a SHapley Additive exPlanations (SHAP)
analysis, i.e., a post hoc model agnostic approach, is employed to gain insight into the ML
models [26,27]. SHAP integration with the ML algorithms is also performed in this study, which
is still a research gap. The purpose of a SHAP analysis is to give an in-depth understanding of
the SFRC mix design in terms of its strength factors via complex, nonlinear behavior and the
description of input factor contributions by allocating a weighing factor to every input factor. It
assists in the development of sustainable and durable concrete mixes.

2. Methodology
2.1. Machine-Learning Techniques

This ensemble method for classification and regression was proposed by Friedman [28].
The gradient-boosting method is the same as other boosting techniques but is limited to
regression only. In this technique, each training set iteration is selected randomly and is
validated by the base model, as represented in Figure 1. The execution accuracy and speed
of gradient boosting can be enhanced by randomly subsampling the training data, which
ultimately helps to avoid overfitting. The smaller the training data fraction, the higher the
regression speed to fit smaller model data at each iteration. A shrinkage rate and an n-tree
tuning factor are needed in gradient-boosting regression, where n-tree denotes the number
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of grown trees. Here, the n-tree value should not be too small, and the shrinkage factor,
usually named as the learning rate, is applicable for each expansion tree.

Figure 1. Gradient-boosting training process [29].

Chen and Guestrin [30] proposed an extreme gradient-boosting (extreme gradient
boosting) algorithm, which is considered an authentic tool for researchers in the data
science field due to the effective tree-based ensemble learning algorithm. Gradient-boosting
architecture, i.e., applying different functions for result estimation using Equation (1), is
the basis of extreme gradient boosting [28]:

yi = y0
i + η∑n

K=1 fk(Ui) (1)

where the predicted output is shown by yi, using ith data with Ui as a parameter vector; n
shows the estimator quantity in correspondence with independent tree structures against
every fk, where the range of k is from 1 to n; and y0

i is the main hypothesis (mean of the
original factors in the training dataset). η depicts the learning rate to enhance the model
performance, along with the connection of additional trees to avoid overfitting. One major
conflict in ML is developing a model with the least amount of overfitting. The training
phase is complementarily evaluated in the extreme gradient-boosting model.

As per Equation (1), at the kth level, the kth estimator is in connection with the model,
the forecasting of the kth y−k

i is determined through the predicted output y−(k−1)
i in a

further step, and the respective developed fk against the kth complementary estimator is
provided in Equation (2):

y−k
i = y−(k−1)

i + ηfk (2)

where fk depicts the weight of the leaves and is developed by minimizing the kth tree
objective function (Equation (3)):

fobj = γZ + ∑Z
a=1

[
gaωa +

1
2
(ha + λ)ω

2
a

]
(3)

where the leaf node quantum is denoted by Z, the complexity factor by c, the constant
coefficient by λ, and the weight (i.e., 1−Z) of the leaf byω2

a. λ and c are controlling factors
applied to improve the model in terms of avoiding overfitting. ha and ga are the summed
factors for the whole dataset linked with the previous and initial loss function gradient
leaves, respectively. For building the kth tree, a leaf is further bifurcated into multiple
leaves. Gain parameters are used to apply such a system, as given in Equation (4):

G =
1
2

[
O2

L
PL + λ

+
O2

R
PR + λ

+
(OL + OR)

2

PL + PR + λ

]
(4)

where the gain parameters are denoted by G, and the right and left leaves are PR and
OR, as well as PL and OL, respectively. The division criteria are generally assumed when
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approximating the gain parameter at zero. λ and c are controlling factors that are dependent
indirectly on the gain parameters. For instance, the gain parameter can considerably be
decreased by a larger regularization parameter, ultimately preventing the leaf convolution
process. However, the model performance for adopting training data is also be reduced by
this. The basic, level-wise structure of the extreme gradient boosting tree model is shown
in Figure 2.

Figure 2. XGBoost (extreme gradient-boosting) algorithm structure [31].

The random forest model is a regression- and classification-based approach that
has been studied by various researchers [22,32]. The compressive strength of concrete
is predicted using a random forest model, as performed by Shaqadan [33]. The prime
difference between random forest and DT is the number of trees. A single tree is developed
in DT; however, in random forest, multiple trees are built, which is known as a forest. The
dissimilar data are selected arbitrarily and are accordingly allocated to respective trees.
Each tree has data in rows and columns, and different dimensions for the rows and columns
are determined. The following steps are carried out for the growth of each tree: The data
frame comprises 2/3 of the whole dataset that is randomly selected for each tree. This
method is known as random forest. Random selection is made for the prediction variables,
and the node splitting is achieved by finely splitting these variables. For all the trees, the
remaining data are utilized to estimate the out-of-bag error. Accordingly, the final out-of-
bag error rate is assessed by combining errors from each tree. Each tree provides regression,
and among all the forest trees, the forest with the greatest amount of votes is selected
for the model. The value of the votes can either be 1 or 0. The obtained proportion of 1
specifies the prediction probability. Among all the ensemble algorithms, random forest is
the most sophisticated one. It includes desirable features for variable importance measures
(VIMs) with robust overfitting resistance and fewer model parameters. DT is used as a
base predictor for random forest. Acceptable results can be produced by random forest
models with default parameter settings [34]. As allowed by random forest, combinations
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of parameter settings and base predictors can be reduced to one. The basic, level-wise
structure of the random forest model is presented in Figure 3.

Figure 3. Random forest algorithm structure [35].

Furthermore, the current study identified influences for a global feature, as well as
the interactions and dependencies of the considered feature on SFRC, depending on a
game theory technique named SHapley Additive exPlanations (SHAP) [36] to enhance the
explainability of the proposed model. In this technique, the prediction of every instance was
explained by the computation of contributions for all the considered features for forecasting
by applying Shapley values from the game theory coalition. The contribution for each
individual feature value over all the possible combinations was marginally averaged to
produce the Shapley value. The more influential features had higher absolute Shapley values.
The Shapley values against each feature from the database were averaged to attain global
feature influences. Afterwards, the sorting of these values in a decreasing manner in terms of
importance was performed, followed by their plotting. A single point on the plot represented
a Shapley value against individual instances and features. Feature importance and Shapley
values determined the y and x axis positions, respectively. The higher influence of a feature
on SFRC was depicted from its higher position on the y-axis, and its importance was depicted
from a low-to-high color scale. The interactions of features and the corresponding impacts
on SFRC were depicted from the SHAP feature dependence plots, in which interactions with
other features were colored. This process provides better information than conventional
plots of partial dependence [37]. In SHAP, more specifically, the feature importance (j) for the
output of the model f φj( f ), is allocated weightage for the summation of feature contributions
towards the model outcome f (xi) to gain the overall possible feature combinations [38]. The
φj( f ) is expressed by Equation (5), as provided below:

φj( f ) = ∑S⊆{x1,.....,xp}/{xj}
|S|!(p− |S| − 1)!

p!

(
f
(

S t
{

xj
})
− f (S)

)
(5)

where

S is the feature subset;
xj is the feature j;
p is the feature number in the model.
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In the SHAP technique, the feature importance is determined by quantifying prediction
errors while disturbing a specific feature value. The sensitivity of the prediction error is
taken to allocate weightage to the significance of the feature while perturbing its value.
The performance of the trained machine-learning model was also explained with the help
of SHAP. SHAP employs an additional feature attribution technique, i.e., the addition of
linear input factors, to demonstrate an interpretable model, which is taken by the model’s
outcome. For instance, a model with input parameters xi (in which i ranges between 1 and
k, and k depicts the input parameter number) and h (xs) depicts the explanation model with
xs as a simple input. However, Equation (6) is deployed to portray the original model f (x):

f (x) = h(xs) = ∅0 + ∑p
i=1 ∅ixi

s (6)

where

p is the input feature number;
∅0 is the constant without any information (i.e., no input).

x = mx(xs) indicates that the mapping function has a relationship with both the x and
xs input parameters. Lundberg and Lee [39] presented Equation (6) in which (h ()), i.e.,
the prediction value, was enhanced by the ∅0, ∅1, and ∅3 terms, and a decrease of
∅4 in the h () value was also observed (Figure 4). A single-value key to Equation (6)
is the inclusion of three desired characteristics, such as consistency, missingness, and
local accuracy. Consistency ensures no reduction in the attribution and is assigned to the
respective feature as a change in a feature of more impact. Missingness ensures no value
for importance is assigned to the missing features, i.e., ∅i = 0 is employed by xi

s = 0. Local
accuracy ensured that the summation of feature attribution is taken as a function for the
outcome, which includes a requirement of the model for matching the outcome f with xs
as a simplified input. x = mxxs represents the attainment of local accuracy.

Figure 4. SHAP attributes [40].

2.2. Dataset Description

The database that was employed for the prediction of SFRC compressive strength
is shown in Figure 5. Data regarding the compressive strength of SFRC were extracted
from the literature [41–57]. These included cement, water, sand, coarse aggregates, super-
plasticizer, silica fume, fly ash, steel fiber, fiber length, and fiber diameter as inputs. These
input factors were considered as compressive strength predictor variables. All these input
and output parameters were collected within a compressive strength range of 20–100 MPa.
These studies were selected because of the similarities between their input parameters.
Figure 5 depicts the range for every variable and the minimum and maximum values. The
compressive strength of SFRC was estimated using the Python and Spyder scripting of
Anaconda software. The compressive strength histogram taken in the current study is
presented in Figure 6.
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Figure 5. Description of parameter data.



Polymers 2022, 14, 3065 8 of 19

Figure 6. SFRC compressive strength distribution.

3. Results and Discussion
3.1. XGBoost

Figure 7 depicts the predicted and experimental value comparison for SFRC compressive
strength using the XGBoost algorithm. A highly accurate outcome prediction for SFRC
compressive strength was provided by the XGBoost algorithm. The adequacy of the XGBoost
model was specified with the satisfactory R2 value of 0.90. The error distribution of XGBoost
was predicted, and experimental values for SFRC compressive strength are illustrated in
Figure 8. The average error value for SFRC compressive strength was 4.63 MPa. A total of
70% of the total error values were below 5 MPa; 16% of these values ranged between 5 and
10 MPa, and 14% were above 10 MPa.

Figure 7. Experimental and XGBoost predicted results.
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Figure 8. Experimental and XGBoost predicted values with errors.

3.2. Gradient Boosting

Figure 9 depicts the estimated gradient-boosting model and experimental outcome
values for SFRC compressive strength. The 0.95 R2 value in the case of gradient boosting
showed outcomes with higher accuracies than the XGBoost model. Figure 10 shows the
error distribution for the gradient boosting estimated and experimental values in the case
of SFRC compressive strength. It can be observed that 86% of the values were less than
5 MPa, 10% were between 5 and 10 MPa, and the remaining 4% of the values were above
10 MPa. The higher R2 and lesser error values represented the higher precision of gradient
boosting than the XGBoost model.

Figure 9. Experimental and gradient boosting predicted results.
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Figure 10. Experimental and gradient boosting predicted values with errors.

3.3. Random Forest

Figure 11 demonstrates the random forest estimated outcomes and experimental
values for SFRC compressive strength. The 0.96 R2 value for the random forest model
represented more adequate results than the other two models. At the same time, the
estimated SFRC compressive strength outcomes in the case of random forest were preferable
to all the other considered ensemble models. Figure 12 reveals the distribution of random
forest predicted and experimental values with errors for SFRC compressive strength. Here,
90% of the error values were less than 5 MPa, and the remaining 10% of the values were
between 5 and 10 MPa. At the same time, not a single error value was more than 10 MPa.
The R2 and error values for SFRC compressive strength in the case of random forest were
more precise and acceptable. Therefore, this outcome indicated that high-precision results
could be predicted using random forest compared to other models.

Figure 11. Experimental and random forest predicted results.
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Figure 12. Distribution of experimental and BSA predicted values with errors.

3.4. Comparison of All Models

A k-fold cross-validation technique was adapted to validate the executing model. The
model’s performance was assessed by employing statistical checks [58–61]. Generally, the data
were split into ten groups with random dispersion to perform k-fold cross-validation, and the
repetition of this method was made ten times to attain results within an acceptable range, as
presented in Figure 13. The statistical checks are listed in Table 1 for all the models. The R2

values for the random forest, gradient-boosting, and XGBoost models were 0.96, 0.95, and 0.90,
respectively, as illustrated in Figure 14a–c. The R2 value for random forest was more than the
other considered models, having less error values for SFRC compressive strength.

Figure 13. K-fold cross-validation procedure [62].
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Table 1. Statistical checks of XGBoost, gradient-boosting, and random forest models.

Techniques MAE (MPa) RMSE (MPa) R2

XGBoost 4.6 6.5 0.90

Gradient boosting 2.4 3.5 0.95

Random forest 2.4 3.1 0.96

Figure 14. Statistical representation: (a) XGBoost; (b) gradient boosting; and (c) random forest.
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The SFRC compressive strength was estimated by employing the ensemble ML tech-
niques in the current study to offer reliable and efficient results. The 0.96 R2 value in
the case of the random forest outcome showed a precise estimation of SFRC compressive
strength. The superiority of the ensemble random forest ML algorithms for the compressive
strength prediction of SFRC utilizing a single, optimized model out of twenty submodels is
depicted in Figure 15a–c. Hence, it can be summarized that random forest showed higher
precision and lower errors than the other considered models.

Figure 15. Submodel results: (a) XGBoost; (b) gradient boosting; and (c) random forest.
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3.5. Enhanced Explainability of ML Models

This study also presents a detailed explanation of machine-learning models, as well
as the interactions and dependencies of all the input features. By employing a SHAP tree
explainer for the whole database, an enhanced feature that influences global representation
is presented by merging local SHAP explanations. TreeExplainer, i.e., a tree-like SHAP
approximation approach, was applied [63]. In this process, tree-based models’ internal
structures were assessed, which is the summation of the calculations linked with a tree
model leaf node, leading to low-order complexity [63]. As the XGBoost model provided
highly precise SFRC compressive strength prediction, this section interprets the model for
SFRC compressive strength with the help of SHAP analysis. The different features were
correlated with SHAP values for the SFRC compressive strength (as acquired from ensemble
XGBoost modeling), as illustrated in Figure 16. It may be noted that the cement feature had
the highest, i.e., approximately 20, SHAP value for SFRC compressive strength prediction.
The cement feature positively influenced the SFRC compressive strength, which means that,
by increasing the cement content, its strength was enhanced. The second-highest SHAP
value was for water against SFRC compressive strength; however, it negatively influenced it.
Enhancing the water content resulted in reduced SFRC compressive strength and vice versa.
Afterwards, silica fume, the main factor for SFRC, had a SHAP value of approximately 5
(Figure 17). The silica fume content positively influenced the compressive strength of SFRC.
Increasing the content of silica fume turned into increased SFRC compressive strength.
Then, coarse aggregates were the next in terms of SHAP value. However, in this scenario,
enhancement in the SFRC compressive strength resulted in the optimum content of coarse
aggregates. After the optimized content, with any further addition of coarse aggregate
content, the compressive strength of the SFRC decreased. In both ways, i.e., positive and
negative, the influence of coarse aggregates on the compressive strength of SFRC was
demonstrated by this behavior, whereas, in the case of fine aggregates, a negative influence
on the compressive strength of SFRC was observed. SFRC particle packing density was
difficult to attain in the case of an enhanced content of sand. In the same way, the SHAP
value for fiber volume was next, followed by super-plasticizer, and silica fume, as well as
steel fiber length and diameter. More or less the same SHAP values near zero were observed
for all these features, depicting their lesser influence on SFRC compressive strength.

Figure 16. SHAP plot.
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Figure 17. Interaction plots of various parameters: (a) cement; (b) water; (c) sand; (d) coarse
aggregates; (e) silica fume; (f) super-plasticizer; (g) Vf; and (h) fiber length.
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The different features’ interactions with SFRC compressive strength are illustrated
in Figure 17. The interaction of the cement feature is presented in Figure 17a. It may be
noted from the plot that cement influenced the SFRC compressive strength and was in a
direct relationship with it. In Figure 17b, the negative influence of water content on SFRC
compressive strength can be observed. The inverse relation of water content with SFRC
compressive strength was observed. The interaction of the sand feature is presented in
Figure 17c. Due to its effect on silica fume, the sand content depicted a negative influence
and resulted in reduced SFRC compressive strength. Then, the coarse aggregates feature
depicted both positive and negative interactions, depending upon the content (Figure 17d).
The range up to the optimum content resulted in positive interactions, while interactions
above that were negative. The silica fume interaction plot is shown in Figure 17e. It depicted
an increasing trend of up to 20% content. However, it indicated negative influence at a
considerably high content, i.e., 40%. Similarly, super-plasticizer showed a positive influence
up to 2% content; however, further content negatively influenced the SFRC compressive
strength. Likewise, the steel fiber volumetric content interacted positively and influenced
SFRC compressive strength (Figure 17g). Figure 17h shows the interaction of steel fiber
length with coarse aggregate content. It depicts a positive influence on SFRC compressive
strength with enhancement in the steel fiber length.

4. Conclusions

The employment of machine-learning (ML) approaches to predict the mechanical
properties of concrete in the construction industry is gaining attention nowadays. The
main aim of the current study was to assess the precision of ML techniques to predict the
compressive strength of steel-fiber-reinforced concrete (SFRC). The ten input parameters for
prediction were cement, fine aggregates (sand), coarse aggregates, water, super-plasticizer,
fly ash, silica fume, steel fiber length, and fiber diameter. The following outcomes were
drawn from the conducted study:

• The 0.96 R2 value in the case of the random forest model showed its accuracy in
predicting SFRC compressive strength. In the case of ensemble gradient-boosting and
XGBoost ML models having 0.95 and 0.90 R2 values, respectively, the predicted SFRC
compressive strength had less accuracy.

• The predicted SFRC compressive strength was optimized using twenty submodels
with a range of 10 to 200 predictors. The ensemble random forest model produced
a comparatively more precise prediction of SFRC compressive strength than all the
other considered models.

• As revealed from the k-fold cross-validation outcomes, the gradient-boosting and
random forest models had higher R2 and lesser RMSE and MAE values for SFRC
compressive strength than the other considered models, where the random forest
model displayed the best accuracy for SFRC compressive strength prediction.

• Statistical checks such as RMSE and MAE were employed to evaluate the perfor-
mances of the models. However, the higher determination coefficient and lower error
value showed the superiority of the random forest model in the prediction of SFRC
compressive strength.

• Among all the ML techniques, the random forest was the best approach to estimate
SFRC compressive strength.

• The cement feature had the highest influence on the prediction of SFRC compressive
strength, followed by water content, silica fume, coarse aggregates, sand, volumetric fiber
content, and content of super-plasticizer, as revealed from SHAP analysis. However, the
SFRC compressive strength was least influenced by the diameter of the steel fibers.

• SFRC compressive strength was positively influenced by cement content, as well as steel
fiber volumetric content and length, as depicted from the feature interaction plots.

Indeed, a proper relational database and testing are important for engineering applications.
This study was limited to the prediction of compressive strength with ten input parameters
and did not include any other factors. However, a large database with an increased number
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of experiments and more input parameters, such as specimen size, curing age, etc., must be
developed in the future for the utilized models to provide more accurate results.
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