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Abstract
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Background: Ischemia/reperfusion (I/R) injury of heart is one of the major causes of acute cardiac injury, which
may result in worsening or even loss of heart function. With novel microRNAs being evolutionarily discovered,

numbers of them remained functionally unknown. We aimed to discover novel microRNAs with therapeutic or
diagnostic potential in the setting of early cardiac I/R injury.

Methods: Cardiac electrical activity, biochemical detection and histopathology analysis were performed to reveal
early changes of cardiac I/R injury. A microRNA array was performed to screen differential microRNAs in the mouse
model of cardiac I/R injury. The differentially expressed microRNAs were validated in cardiac tissues and in serum

Results: The abnormality in electrocardiogram and increases in serum cTnl levels suggested the successful
establishment of cardiac I/R injury in mice. A total of 1882 microRNAs were identified, of which 11 were significantly
down-regulated and 41 were significantly up-regulated at 3 h post reperfusion. microRNA 223-3p and microRNA
3113-5p were among the mostly altered microRNAs and were validated to be up-regulated within the early hours
of I/R injury in heart tissues. In the circulating system, cTnl, a sensitive marker of cardiac injury, or microRNA 223-3p
only increased within the first 6 h post I/R injury. However, microRNA 3113-5p stably increased in the serum,
keeping an increase of 2.5-fold throughout the 24 h. In the human serum samples, microRNA 3113-5p was detected
to be significantly upregulated as soon as 3 h after I/R stimuli and kept significantly higher levels within the 48 h.

Conclusion: This is the first study that reported the functional roles of microRNA 3113-5p in cardiovascular system.
Our data suggested that cardiac microRNA 3113-5p might be a useful target for therapeutic purposes and
circulating microRNA 3113-5p might serve as a stable marker for early diagnosis of cardiac I/R injury.
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Background

Ischemia/reperfusion injury (I/R injury) is defined as initial
lack of oxygen due to deprivation of blood flow and the fol-
lowing restoration of blood supply from the occluded vessel.
I/R injury is a critical mechanism of organ injury [1], and a
central cause of tissue injury during various medical condi-
tions, including surgical procedures, organ transplantation,
cardiovascular diseases (i.e. myocardial infarction, and circu-
latory shock) and toxic insults [2]. During the development

* Correspondence: tomjiangxi@163.com

1Department of Forensic Medicine, School of Basic Medical Sciences, Gannan
Medical College, 1 Yixueyuan Road, Zhanggong District, Ganzhou, Jiangxi
341000, People’s Republic of China

“Key Laboratory of Prevention and Treatment of Cardiovascular and
Cerebrovascular Diseases of Ministry of Education, Gannan Medical College,
Ganzhou 341000, Jiangxi, China

Full list of author information is available at the end of the article

B BMC

of I/R injury, a surge of reactive oxygen and nitrogen species
as well as inflammatory cascades bursts and eventually trig-
gers organ damage [3]. Other processes such as protein
post-translational modifications, lipid oxidations, and DNA
breakage are also common mechanisms that aggravate a
chain of deleterious responses which eventually result in
dysfunction of endothelial cells, neutrophils transmigration
to the insulted endothelium, burst of inflammatory cyto-
kines, calcium iron overload, and eventual cell death [4].
Long-term insult by I/R injury could lead to irreversible in-
jury to heart and many studies have demonstrated various
therapeutic strategies against long-term I/R injury [5]; how-
ever, early diagnosis and treatment of I/R injury, which re-
ceives scanty attention, is advantageous over late-stage
intervention and thus mandates more research focus.
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Recently, microRNAs have been shown to implicate in
the pathophysiology of cardiac I/R injury [1]. Multiple
microRNAs have been reported to have diagnostic
values or therapeutic potentials [6]. For example, micro-
RNA 21 contributed to cardiac diseases by triggering
mitogen-activated protein kinase (MAPK) activity in fi-
broblasts [7]. MicroRNA 21 lowers blood pressure in
spontaneous hypertensive rats by upregulating mito-
chondrial translation [8]. microRNA 223-3p is another
widely documented microRNA which has been reported
to regulate cardiac fibrosis after myocardial infarction by
targeting RAS p21 protein activator 1 (RASA1) [9], and
regulated expression of voltage-gated K+ channel Kv4.2
in acute myocardial infarction [10].

Due to the nature of external secretion and functional im-
portance in heart diseases, multiple microRNAs have been
anticipated as non-invasive biomarkers. So far, more than
200 microRNAs have been considered as heart-specific with
many of them being identified to release into the circulatory
system during ischemic injury. It is reported that the com-
bination of microRNA 199a-3p, microRNA 208a-3p, micro-
RNA 122-5p, and microRNA 223-3p has a good diagnostic
performance for hypertension [11]. Elevated plasma micro-
RNA 223 content associated with the severity of coronary
heart disease [12]. Circulating microRNA 1, 499-5p, and
microRNA 133a or the cardiomyocyte-specific microRNA
208b have been reported to instantly increase in patients
with the onset of ST-elevated myocardial infarction
(STEMI) and their levels peak within 12 h after disease onset
[13]. However, despite the numerous reports documenting
the potential of microRNAs serving as biomarkers for I/R
injury, only limited number of microRNAs have been ap-
plied in clinical trials, implicating there is still space to iden-
tify novel microRNAs.

One fact is that microRNAs keep expanding and
undergo evolutionarily identification [14]. With tech-
niques deeply sequencing microRNAs, some new micro-
RNAs with functionality unknown have been identified
[15, 16]. By using the newly refreshed database, an up-
dated microRNA array could provide a panel of micro-
RNAs, some of which might represent new ones that
may otherwise remain functionally unknown [15, 16].
The present study aimed to perform an updated micro-
RNA array analysis of heart tissues undergoing I/R in-
jury in order to discover novel microRNAs. The
identified microRNAs were then validated through
quantitative analysis. Our data provided novel bio-
markers for diagnosis and treatment of early cardiac I/R

injury.

Methods

Experimental protocol

Male C57BL/] mice (~25g) were initially anesthetized
with 5% chloral hydrate and injected with heparin
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intravenously at a final concentration of 500 U/kg.
Mouse heart was then exposed and perfused according
to Langendorff with oxygenated, normothermic Krebs-
Henseleit buffer as previously described [17]. For the
purpose of this study, different reperfusion time was ap-
plied to the indicated group of mice. A time-matched
nonischemic control group was aerobically reperfused
for 190 min. For the details of inducing I/R injury, the
left anterior descending coronary artery (LAD) was
undergoing continuous occlusion for 45 min to induce
regional ischemia. Thereafter, the occluded LAD was
reopened to let perfusion with different hours (1 h, 3 h,
6h, 12h, or 24h). Heart rate and coronary flow were
real-time monitored during the perfusion periods in all
groups. To confirm successful ligation of the LAD, a
Data Analysis System (BL-420; TME Technology,
Chengdu, Sichuan, China) was used to record the elec-
trocardiogram (ECG) during the I/R period. Samples
from all groups (n=6/group) were immediately frozen
in liquid nitrogen for subsequent microRNA isolation.
To further assess tissue injury, heart release of cardiac
Troponin I (cTnl) was measured using a ¢cTnl ELISA kit
(Life Diagnostics Inc., West Chester, PA, USA) from
serum samples. In brief, to collect mice serum samples,
mice were anesthetized and their hearts were exposed.
Following exposure of hearts, the LAD was directly li-
gated and then reopened for different hours (1h, 3h, 6
h, 12h, or 24 h). In a second series of experiments, the
LAD-supplied risk regions of the left ventricle were im-
mediately sampled at the end of 3-h reperfusion and
subject to further analysis of differentially expressed
microRNAs. For sampling, a single oblique cut was
made from the origin of the LAD toward the right side
of the apical area. In this way, the samples involve the
majority of the left ventricle anterior wall as well as the
apex of the heart.

Histopathology analysis

The left ventricle from the LAD-supplied zone was fixed
in 4% paraformaldehyde, dehydrated, and embedded in
paraffin. Paraffin-embedded tissues were then cut into
4 pm-thick slices, which were then stained with
hematoxylin & eosin (HE) for histological examination.
Briefly, after deparaffinization and rehydration, myocar-
dial sections were sequentially stained with eosin for
cytoplasm staining and hematoxylin for nucleus staining.
Digital images were obtained at x 200 magnification by
microscopy (Olympus, Tokyo, Japan).

Isolation of microRNAs from serum and cardiac tissues

Circulating miRNAs were isolated with the miRNeasy
mini kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. RNAs from heart tissues
were isolated using TRIzol® (Life Technologies, Carlsbad,
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CA, USA) according to the manufacturer’s instructions.
RNA purity and concentration were assessed by specto-
photometry at 260 and 280 nm (NanoDrop Products,
Wilmington, DE, USA) equipped with a 2100 Bioanaly-
zer (Agilent Technologies, Santa Clara, CA, USA).

Microarray analysis of microRNA expression

For the purpose of microarray analysis, all microRNAs
from heart samples were initially labeled with the micro-
RNA Complete Labeling and Hyb kit system (Agilent
Technologies). Labeled samples were then completely
vacuum dried at a medium-high temperature (45 °C) and
hybridized onto the surface of a mouse microRNA
Microarray (Agilent Technologies) in a microarray
hybridization chamber (Agilent Technologies) according
to previous regulations [18]. The scanning of each array
was in accordance with a previous published protocol
[19]. Statistical analysis was performed and explicitly de-
scribed below. Briefly, the fluorescent signal intensity
data represented microRNA expression and changes in
gene expression were determined as ratios of signal in-
tensity values. For visual comparison and representation
of both down- and upregulation, data were processed
and depicted as log2 changes.

Analysis of differentially expressed microRNAs were
done using Feature Extraction software (Agilent Tech-
nologies) as previously described [20]. All individual
microRNAs were represented by 20 different probes on
the array. A microRNA was considered to be detectable
when at least 1 probe from all the 20 probes was de-
tected. The final gene signal equals to the sum of all sig-
nals of each individual probe. Using a two-tailed two-
sample unequal variance Student’s t-test, the P value
was used as a determinate to find significantly expressed
microRNAs. A corrected P value was calculated for each
microRNA to control the false discovery rate (FDR)
using the Benjamini and Hochberg multiple testing cor-
rection protocol. MicroRNA expression ratios with P
values less than 0.05 and log2 changes of less than — 1.0
or log2 changes of more than 1.0 were considered as sig-
nificant repression or overexpression, respectively.

Reverse transcription quantitative polymerase chain
reaction (RT-qPCR) analysis

Reverse transcription of the total RNA into cDNA was
performed using the High Capacity RNA-to-cDNA tran-
scription kit (Applied Biosystems), according to the
manufacturer’s instructions. The RT-qPCR assays were
performed using the TagMan MicroRNA Reverse Tran-
scription Kit (Applied Biosystems) following with the
TagMan MicroRNA Assays (Applied Biosystems) ac-
cording to the manufacturer’s instructions on a 7500
Real-Time RT-qPCR system (Applied Biosystems). The
RT-qPCR conditions were as follows: 95°C for 10 min,
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and 40 cycles of 95°C for 13s and 60°C for 60s. The
relative expression levels of serum microRNAs were nor-
malized to the relative expression level of U6. The rela-
tive expression of microRNAs was calculated using the
2-AACt equation [21]. Primers used in this study were
listed in Table 1. The U6 primer sequences and univer-
sal reverse primers were provided by the Kkits.

We also analyzed the relative expression of predicted
target genes of microRNAs. Gapdh was used as the in-
ternal control gene for normalization. The primers used
were listed in Table 2.

Statistical analysis

Microarray and RT-qPCR data were presented as means
+ standard error of mean (SEM). The Students’ ¢-test
was used to compare differences of means between
groups. The one-way analysis of variance (ANOVA) was
used to evaluate differences among =3 groups, which
was followed by least-significant-difference (LSD) post
hoc test for comparisons within groups. P<0.05 was
considered to be statistically significant.

Results

Early cardiac I/R injury lacks biochemical biomarkers and
presented nonspecific histologic changes

Initially, we occluded the left coronary for 45 min and
then perfused the artery for different hours (1h, 3h, 6 h,
12 h and 24 h) to establish a murine model of cardiac I/
R injury. ECG monitoring showed that the mice with
LAD occlusion (ischemic mice) exerted remarkable ele-
vation of ST segment, while the ST segment in the sham
group of mice remained at the baseline. After 45 min of
occlusion, the LAD was re-opened and ECG monitoring

Table 1 Forward primer sequences used in this study
miRNAs
mmu-miR-146a-5p

Primer Sequences 53"
TGAGAACTGAATTCCATGGGTT
TCTCCCAACCCTTGTACCAGTG
AGAGGTATAGCGCATGGGAAGA

mmu-miR-150-5p
mmu-miR-202-3p

mmu-miR-30b-5p TGTAAACATCCTACACTCAGCT
mmu-miR-3968 CGAATCCCACTCCAGACACCA
mmu-miR-1224-5p GTGAGGACTGGGGAGGTGGAG
mmu-miR-188-5p CATCCCTTGCATGGTGGAG
mmu-miR-1895 CCGAGGAGGACGAGGAGGA
mmu-miR-1892 ATTTGGGGACGGGAGGGAGGAT
mmu-miR-327 ACTTGAGGGGCATGAGGAT
mmu-miR-3113-5p GTCCTGGCCCTGGTCCGGGTCC
mmu-miR-709 GAGGCAGAGGCAGGAGGAT
mmu-miR-223-3p TGTCAGTTTGTCAAATACCCCA
mmu-miR-154-5p TAGGTTATCCGTGTTGCCTTCG
mmu-miR-5121 AGCTTGTGATGAGACATCTCC
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Table 2 Primer sequences for target genes

Gene Primers

Zfp933 Forward 5-CAGGCAGGCTTCTCCTTATT-3'
Reverse 5-CCTGGTCTACAGAGTGAGTTTC-3'

Gapdh Foward 5-TGCGACTTCAACAGCAACTC-3'

Reverse 5-ATGTAGGCCATGAGGTCCAC-3'

showed that the ST segment declined to baseline after 3
h’ perfusion (Fig. 1a), conforming to the manifestation of
I/R injury. Moreover, the serum levels of cTnl, a sensi-
tive cardiac injury marker, dramatically increased in the
first 3h after reperfusion; thereafter it dropped but
remained significantly higher in the I/R injured mice
than that in Sham mice (Fig. 1b). HE staining is the gold
standard for diagnosing most of heart diseases. However,
despite the significant elevation of cTnl levels during the
initial 3 h’ perfusion, histological analysis of heart tissues
showed that myocardial cells in the sham group were
well-ordered with regular structure. Myocardial cells
from the I/R injured mice were swelling in the plasma
(black arrow) and showed slight interstitial edema (blue
arrow) or occasional cell hypertrophy (green arrow) after
3- or 6-h’ reperfusion. The non-specific histopathological
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manifestations suggested that histological analysis did not
aid in making a diagnosis of cardiac I/R injury.

microRNA array identified multiple novel microRNAs

To identify sensitive cardiac markers indicating I/R in-
jury, we then performed a microRNA array analysis of
hearts tissues with 3 h I/R injury. A total of 1882 micro-
RNAs were identified, of which 11 were significantly
down-regulated and 41 were significantly up-regulated
at 3 h post reperfusion (Fig. 2a). Scatter plot analysis and
volcano plot showed the distribution of all the 1882
microRNAs (Fig. 2b-c). The fold change of repression
ranged from 1.6 to nearly 50, while that of upregulation
varied from 1.8 to 463 (Fig. 2c). Of great interest, many
of the identified microRNAs, such as microRNA 3113-
5p, have been only recently discovered and remained
largely unknown in function.

Bioinformatics analysis of the differentially expressed
microRNAs

Of all these differentially expressed microRNAs, target
genes were predicted using four databases including Tar-
getScan, miRDB, miRTarbase and Tarbase. Thereafter,
Gene Ontology (GO) analysis revealed that biological
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Fig. 1 Establishment of a murine model bearing cardiac ischemia/reperfusion (I/R) injury. a Electrocardiogram monitoring of mice with (ischemia
group) or without (Sham group) coronary artery occlusion. Mice after re-opening of the left anterior descending (LAD) artery (perfusion group)
were also subject to ECG monitoring. b ELISA detection of serum cTnl levels in Sham group of mice and in mice with distinct perfusion time. ¢
Hematoxylin & Eosin (HE) staining of heart tissues were performed. Myocardial cells in the sham group were well-ordered with regular structure,
while myocardial cells from the I/R injured mice were swelling in the plasma (black arrow) and showed slight interstitial edema (blue arrow) or
occasional cell hypertrophy (green arrow) after 3 or 6 h' reperfusion. *, p < 0.05 vs. Sham
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processes included multiple processes such as regulation of
myosin light chain phosphatase activity, histone H4-K20
methylation and cellular response to nitric oxide. Molecular
function included connexin binding, calcium-dependent
protein serine/threonine phosphatase activity and voltage-
gated sodium channel activity involved in cardiac muscle
cells etc. (Fig. 3a). Kyoto Encyclopedia of Genes and Ge-
nomes (KEGQG) pathway analysis showed that the majority
of target genes were involved in mechanistic target of rapa-
mycin (mTOR) signaling pathway, Axon guidance, and
Wnt signaling pathway etc. (Fig. 3b). Since microRNAs
function mainly through targeting mRNAs [22, 23], it was
hypothesized that microRNAs without valid target genes
might not have biological importance. We thus refined
microRNAs with target genes predicted by at least 3 data-
bases and concentrated on microRNA 3113-5p, microRNA
5121, microRNA 327, microRNA 1892, microRNA 709,
microRNA 1895, microRNA 188-5p, microRNA 1224-5p,
microRNA 3968, microRNA 30b-5p, microRNA 202-3p,

microRNA 154-5p, microRNA 150-5p, and microRNA
146a-5p (Fig. 3c). Target genes from 3 of the 4 databases
were schematically illustrated for all the microRNAs of
interest (Fig. 3c).

RT-gqPCR validation of interest microRNAs in mice

Based on the above analysis, RT-qPCR analysis of
cardiac microRNA expression was then performed. It
was initially shown that microRNA 223-3p in the I/R
group of mice showed the highest change by up to 4
folds as compared with Sham group of mice, while
microRNA 3113-5p was only second to microRNA
223-3p that showed as high as 3-fold upregulation
(Fig. 4a). Hence, we further analyzed these two
microRNAs in heart tissues with distinct perfusion
time. It was found that microRNA 223-3p gradually
increased right after perfusion and peaked by 6h
after perfusion. It then remained relatively stable till
24h after perfusion (Fig. 4b). Moreover, RT-qPCR
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(KEGG) pathway analysis of target genes. ¢ Schematic illustration of potential microRNAs target genes

validation assay showed that microRNA 3113-5p
showed stable upregulation during the whole perfu-
sion periods as compared with Sham mice hearts
(Fig. 4c). Analysis of the predicted target gene of

microRNA 3113-5p, zinc finger protein 933 (Zfp933),
showed that it was consistently repressed by 2-folds
in the perfused heart tissues, independent of perfu-
sion time (Fig. 4d).
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Circulating microRNA 3113-5p stably increased in early
perfusion hours in mice

In addition to the cardiac expression, we also detected
the circulating levels of interest microRNAs. RT-qPCR
detection showed that microRNA 223-3p had maximal
upregulation in serum samples of perfused mice but de-
clined dramatically after 3 h (Fig. 5a). Unlike microRNA
223-3p, serum levels of microRNA 3113-5p remained
approximately 3-fold increased throughout the whole
early perfusion time (Fig. 5b).

Circulating microRNA 3113-5p significantly increased in
early I/R stimuli in human samples

To further detect the expression of microRNA 3113-5p in
human samples, we collected serum samples from a healthy
control and 3 patients with cardiac I/R injury (Table 3). All

these patients were diagnosed with myocardial injury (MI)
and underwent stent implantation. One hour before oper-
ation, all patients showed dramatically high levels of cardiac
Troponin I (cTnl) and Myoglobin (MYO) and 1 h after op-
eration, they still presented with higher cTnl levels than the
normal upper limit (Table 3). The cardiac I/R injury patients
were collected sera during time periods of 3h, 6 h, 24 h, 48
h and 72 h. Our results showed that as soon as 3 h after car-
diac I/R stimuli, the circulating microRNA 3113-5p signifi-
cantly increased by up to 1.5-fold (Fig. 6). The circulating
microRNA 3113-5p peaked at 6h (6-fold) and
remained significantly higher than control levels until
48h after cardiac I/R stimuli. At 72h after reperfu-
sion, the serum level of microRNA 3113-5p dropped
to the basal level as observed in the health control.
During the early I/R injury hours (within 48h),
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Fig. 5 Circulating microRNA 3113-5p stably increased in the perfusion hours. a RT-gPCR analysis of circulating microRNA 223-3p in serum
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circulating microRNA 3113-5p levels were signifi-
cantly higher than the healthy control (Fig. 6).

Discussion

Organ damage insulted by I/R injury represents a serious
medical condition, which often leads to deterioration or
even loss of organ function [4]. I/R injury is occurred
when transient tissue oxygen deprivation due to vessel
occlusion accompanies with a subsequent reperfusion
period following recovery of blood supply. During the
reperfusion periods, multiple reactive oxygen and nitro-
gen species accumulate and result in eventual tissue in-
jury [3].

In order to facilitate early diagnosis of acute I/R injury
insults and risk stratification for future adverse cardiac
events, it is constantly urgent to find cardiac or circula-
tory biomarkers that refine the diagnosis and manage-
ment of patients with symptoms related to acute or
chronic cardiovascular diseases [1]. microRNAs are a
class of noncoding RNAs that negatively affect gene
transcription through binding to the mRNA [24]. Mul-
tiple microRNAs have been identified to have diagnostic
values or therapeutic potentials, but few have been ap-
plied into clinical trials. Since noncoding RNAs have
been revolving to forge new ones [16], it is necessary to

re-perform a microRNA array in order to discover a
panel of novel microRNAs.

Since histopathological analysis revealed non-specific
and non-significant changes, identification of molecular
markers would be of great importance. Using an updated
database with refreshed microRNAs, the current study
identified 52 microRNAs that differentially expressed
after 3h of I/R injury. GO and KEGG bioinformatics
analyses revealed that these microRNAs were associated
with regulation of myosin light chain phosphatase activ-
ity, histone H4-K20 methylation and cellular response to
nitric oxide. Many of these microRNAs were consistent
with previous reports such as microRNA 146a [25] and
some were inconsistent which might be explained by dif-
ferent I/R injured hours (we used 3h of I/R injury for
microRNA array). Of all these microRNAs, microRNA
223-3p and microRNA 3113-5p showed the highest fold
changes. MicroRNA 223 expression was greatly upregu-
lated in the livers after 75 min ischemia followed by 120
min reperfusion and its expression associated with hep-
atic I/R injury [26]. In a more recent study, microRNA
223-3p and -5p cooperatively suppressed necroptosis in
I/R injured hearts [27]. MicroRNA 223-3p also regulated
cardiac fibrosis after myocardial infarction by targeting
RASA1 [9], and regulated expression of voltage-gated

Table 3 Characteristics of the healthy control and 3 patients with Ml

Case Agely) Gender Pathologic Therapeutic Myocardial enzymes
NO. diagnosis measures 1 h before operation 1 h after operation
cTnl (ng/ml) MYO (ng/ml) cTnl (ng/ml) MYO (ng/ml)
1 30 Male NA NA NA NA NA NA
2 82 Male Ml Stent implantation 32.566 508 15436 375
3 74 Male Ml Stent implantation 9.361 485.8 18457 20.28
4 36 Male Ml Stent implantation 0.137 3732 35.198 504

cTnl cardiac Troponin | (Normal reference values 0 to 0.03 ng/ml), MYO myoglobin (Normal reference values 17.4 to 105.7 ng/ml), Ml myocardial infarction, NA

not applicable
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Fig. 6 Circulating microRNA 3113-5p significantly increased in the
early perfusion hours in human serum samples. Serum samples from
healthy people who underwent routine health checkup served as
control (Ctrl). Three patients with myocardial infraction and
underwent stent implantation were collected sera during time
periods of 3h,6h, 24 h, 48h and 72 h. *, P<0.05, ***, P <0.0001

vs. Ctrl

K+ channel Kv4.2 in acute myocardial infarction [10].
Similar with previous reports, the microRNA array also
identified that microRNA-223-3p was among the top
ones that altered expression, which was in conformation
with previous reports that associated microRNA 223-3p
with heart diseases [9, 10]. In the validation assay, car-
diac microRNA 223-3p kept increasing after reperfusion
but its expression in serum samples only peaked at 1h
of perfusion, indicating that microRNA 223-3p might be
a valuable biomarker of cardiac I/R injury but this value
was only within a very narrow time window.

Though not altered as much as microRNA 223-3p,
microRNA 3113-5p was only second to it as evidenced by
RT-qPCR validation. Different from microRNA 223-3p,
microRNA 3113-5p was stably upregulated in both cardiac
tissues and the serum samples. Right after perfusion, the car-
diac microRNA 3113-5p level was approximately 2—3 folds
increased and kept at this high level throughout the whole
perfusion periods. Its predicted target gene, Zfp933, was also
stably repressed and kept at a minimum level in distinct per-
fusion hours. Zfp933 is one member from the zinc finger
protein family with its function mysterious. The C2H2-zinc
finger proteins constitute the largest class of transcription
factors within the human genome. These proteins are gener-
ally involved in crucial cell functions, such as survival and
growth [28]. It has been reported that Zfp580, a Zfp933
homogenous protein, shows the highest expression in the
heart and serves as a cardioprotection factor against cardiac
I/R injury [29]. Hence, the identification of Zfp933 as the tar-
get gene of microRNA 3113-5p further implicated the
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functional significance of microRNA 3113-5p and its expres-
sion pattern in turn reinforced the stable cardiac increase of
microRNA 3113-5p. One great advantage that makes micro-
RNAs superior to other biomarkers is that microRNAs could
stably exist in the extracellular space, such as circulating
blood, urine, vitreous humor and other body fluids in spite
of the existence of RNases [30]. Multiple extracellular micro-
RNAs have been identified to have potential function and
pivotal roles as disease biomarkers [31]. We therefore de-
tected serum levels of microRNA 3113-5p in mice and in hu-
man samples in order to find non-invasive biomarkers. It
was found that the serum levels of microRNA 3113-5p also
stably increased ever since perfusion. The increase of micro-
RNA 3113-5p was approximately 2—3 folds in mice serum, a
change similar to that in cardiac levels, indicating that the
cardiac and circulating levels of microRNA-3113-5p were
highly consistent. In human serum samples, microRNA
3113-5p was significantly increased after 3h of I/R injury
and peaked by 6 h and this significant increase could be de-
tected till 48 h. Validation of microRNA 3113-5p expression
in human sera further suggested the diagnostic potential in
cardiac I/R injury. Therefore, the early increase of microRNA
3113-5p made it a superior biomarker since it might serve as
an early and stable indicator for cardiac I/R injury.

MicroRNA 3113-5p is a new microRNA that remains
mysterious as to its function. This study represents the
first one to report its functional association with cardiac
I/R injury. The stable increase in cardiac and circulating
microRNA 3113-5p levels suggested that it is a valuable
microRNA that may aid in diagnosing I/R injury or serve
as a potential therapeutic target in the heart for medical
intervention of I/R injury.

Conclusions

The present study re-analyzed the differentially
expressed microRNAs during cardiac I/R injury, with an
updated microRNA array. Multiple novel microRNAs
that remains functionally unknown were identified.
Among them, microRNA 223-3p and microRNA 3113-
5p were the top ones that were validated to have func-
tional association with I/R injury. microRNA 3113-5p is
a stable biomarker that altered significantly in early
hours of reperfusion. This is the first study that identi-
fied a novel microRNA, microRNA 3113-5p as a critical
biomarker for cardiac I/R injury. Cardiac microRNA
3113-5p might be a useful target for therapeutic pur-
poses and circulating microRNA 3113-5p might serve as
a stable marker for diagnosis of cardiac I/R injury.

Limitations

The present study only assessed the association of micro-
RNA 3113-5p with cardiac I/R injury. The expression of
microRNA 3113-5p in I/R injury from other organs was
not detected.
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