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Abstract: Background. In vitro methods for hematopoietic differentiation of human pluripotent
stem cells (hPSC) are a matter of priority for the in-depth research into the mechanisms of early
embryogenesis. So-far, published results regarding the generation of hematopoietic cells come
from studies using either 2D or 3D culture formats, hence, it is difficult to discern their particular
contribution to the development of the concept of a unique in vitro model in close resemblance
to in vivo hematopoiesis. Aim of the study. To assess using the same culture conditions and the
same time course, the potential of each of these two formats to support differentiation of human
pluripotent stem cells to primitive hematopoiesis without exogenous activation of Wnt signaling.
Methods. We used in parallel 2D and 3D formats, the same culture environment and assay methods
(flow cytometry, IF, qPCR) to investigate stages of commitment and specification of mesodermal, and
hemogenic endothelial cells to CD34 hematopoietic cells and evaluated their clonogenic capacity in
a CFU system. Results. We show an adequate formation of mesoderm, an efficient commitment to
hemogenic endothelium, a higher number of CD34 hematopoietic cells, and colony-forming capacity
potential only in the 3D format-supported differentiation. Conclusions. This study shows that
the 3D but not the 2D format ensures the induction and realization by endogenous mechanisms
of human pluripotent stem cells’ intrinsic differentiation program to primitive hematopoietic cells.
We propose that the 3D format provides an adequate level of upregulation of the endogenous
Wnt/β-catenin signaling.

Keywords: hPSC; primitive hematopoietic differentiation; Wnt signaling; embryoid body; 3D culture

1. Introduction

In vitro generation of human hematopoietic stem cells from embryonic and induced
pluripotent stem cells (hPSC) serves multiple beneficial purposes: mechanistic studies of
hematopoiesis, development of cell therapy for hematological diseases, induced transplant
tolerance, disease modeling, and drug screening, among others [1] [2]. The current proto-
cols for the generation of hematopoietic cells are based on the recapitulation of develop-
mental signals similar to those in the embryo. In vitro, hematopoietic progenitors originate
from mesoderm through hPSC differentiation, as a part of the process that starts upon
the exposure of hPSCs to the appropriate dose of bone morphogenic factor 4 (BMP4) [3].
Then the mesoderm begins to form the hemogenic endothelium resulting in hematopoietic
commitment (Figure 1) [4,5]. Much effort has been applied to defining the appropriate
differentiation conditions required to obtain hematopoietic stem cells in vitro; for example
signal gradients [6], cytokines in suitable combinations with the appropriate timing and spe-
cific microenvironments, such as feeder cells or artificial niches and with different culture
systems, such as embryoid bodies (EBs) [7]. The EB has been employed widely in studies
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of hematopoiesis to parallel the course of embryonic development and to investigate the
primitive (and definitive) hematopoiesis represented by the hemangioblast [8–10] that
produces erythroid cells and monocytes [4,5,11–13]. Alongside, a 2D monolayer has been
considered to be adequate for the induction of primitive hematopoiesis [14–18]. In both
EB and 2D Monolayer systems, exogenous Wnt/catenin pathway stimulation was used
to enhance the definitive developmental compartmentalization/wave of hematopoiesis.
Together, these studies contributed to the current concept of in vitro hematopoietic differ-
entiation and raised questions regarding the reasons for using either EBs or monolayers to
produce hematopoietic cells (See Table 1). Recent studies demonstrated the advantages of
3D organoid protocols of hPSC differentiation and generation of clinical-grade definitive
human progenitor cells and stem cells of hematopoietic lineages, potentially engraftable
lymphoid progeny for transplantation studies and, erythroid progeny capable of producing
adult hemoglobin [19]. 3D culture technology has also been improved by the employment
of biomaterials to create 3D tumor models for drug screening [20,21]. Additionally, when
applied in ectodermal-derived lineages, the 3D format improved neuronal differentiation,
and the formation of a neural network, recapitulating brain tissue-like environments suit-
able in a disease model-specific extracellular aggregation [22]. In the past, the comparative
potentials of 2D and 3D culture platforms for supporting in vitro hematopoietic differ-
entiation of hPSCs have been explored, to improve their pluripotency and escalate cell
productivity [23,24].
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two developmental programs/waves: primitive hematopoiesis, characterized by the formation of 

monocytic cell types, and definitive hematopoiesis with lymphoid potential. Abbreviations: FGF: 

Fibroblast Grow Factor, IL3: Interleukin 3 IL6: Interleukin 6, IL7: Interleukin 7, VEGF: Vascular En-

dothelial Grow Factor, EPO: Erythropoietin, SCF: Stem Cell Factor, FLT3: receptor-type tyrosine-
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Figure 1. Schematic representation of current knowledge of in vitro differentiation of human pluripo-
tent stem cells to hematopoietic lineage. Hematopoietic differentiation of hPSCs is depicted based on
the protocols in the literature. Hematopoietic differentiation occurs in a consecutive stage-specific
manner, starting with the BMP4-induced mesodermal commitment (days 0–4) followed by conven-
tionally employed exogenous activation of Wnt/β-catenin signaling at this initial stage. The Lateral
plate (Day 3–4) mesoderm generates endothelial progenitors (4–6), hemogenic endothelium with the
potential to hematopoietic lineages (Day 6–8). At this latter stage, the population splits into two devel-
opmental programs/waves: primitive hematopoiesis, characterized by the formation of monocytic
cell types, and definitive hematopoiesis with lymphoid potential. Abbreviations: FGF: Fibroblast
Grow Factor, IL3: Interleukin 3 IL6: Interleukin 6, IL7: Interleukin 7, VEGF: Vascular Endothelial
Grow Factor, EPO: Erythropoietin, SCF: Stem Cell Factor, FLT3: receptor-type tyrosine-protein kinase.
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Table 1. Selected publications on the independent use of 3D/Embryoid Body and 2D/monolayer systems in hematopoietic
differentiation from hPSCs. The table displays the differences in the generation of hematopoietic lineages under these two
conditions. Additionally, results show the importance of Wnt/β-catenin signaling activation during in vitro differentiation
of hPSCs of the definitive hematopoietic fate.

Study hPSCs Culture
System

Day(s)
Hematopoietic
Commitment

Hematopoietic
Wave Lineage Cells Wnt

Activation

Yanagimachi
et al., 2013 hESCs, hiPCSs 2D/Monolayer 6 Primitive Monocytes, Dendritic

Cells No

Sturgeon et al.,
2014

hESCs,
HiPSCs 3D/EB 6 Primitive

definitive
Monocytes,

Lymphoid Lineages Yes

Ruiz et al., 2019 hiPCSs 2D/Monolayer 5–9 Primitive Primitive
Hematopoietic Cells Yes

Niwa et al.,
2011 hiPSCs 2D/Monolayer 6 Primitive Monocytic Lineages No

Kennedy et al.,
2007 hESCs 3D/EB 5–6 Primitive Early Hematopoietic

Progenitors No

Galat et al.,
2017 hiPSCs 2D/Monolayer 5 Primitive Monocytic lineages Yes

Ditadi &
Sturgeon, 2015 hESCs 3D/EB 8–15

Primitive,
Definitive

progenitors

Hemogenic
Endothelium and

early hematopoietic
progenitors

Yes

Knorr et al.,
2013 hIPSC, hESCs 3D/EB 11 Definitive Nk, Lymhpoid No

In the same context, comparison between 2D and 3D conditions has been performed
in studies of other differentiation models, such as osteogenic differentiation [25] and,
widely in cardiac differentiation. Studies with hPSC-derived cardiomyocytes found that
the differentiation potential was affected by the choice of culture platforms, either it is 2D
or 3D [26–30]. This study aimed to reveal differences between the 2D and 3D conditions
observable during the generation of primitive hematopoietic cells from hPSCs in the same
media and cytokines. Previously, some differences between 2D and 3D settings in lineage
specification processes, as well as its (3D) advantages, have been noted in independent
studies [14,31–33]. However, in independent experiments, due to the extreme plasticity
of the early embryogenesis, the microenvironment differences can influence distinctly the
developmental processes hence only by the use of the same experimental setting, same
culture condition, parallel assays, and principles of interpretation can we highlight reliably,
the intrinsic differences between the two culture methods observed at each of the steps
of the in vitro induction and differentiation. To address this issue, we have undertaken
comparative experiments of 2D and 3D systems regarding the capacity of each of them to
support the primitive hematopoietic differentiation using a commercial embryonic stem
cell line and an induced pluripotent stem cell line generated in our lab (Figure S1A,B).

2. Materials and Methods
2.1. Embryonic Stem Cell and iPS Cell Lines

The ES cell line ESI-017 was purchased from ESI-BIO (Alameda, CA, USA). Induced
Pluripotent Stem Cells were generated as described previously [34]. Briefly, human dermal
fibroblasts (ATCC catalog number PCS-201-010) were transduced with lentiviral vectors
containing the genes encoding reprogramming factors Oct 4, Sox2, Nanog, Klf4 and, C-Myc
resulting in the formation of colonies on day 15 to 20 days post-infection. Colonies were
then selected according to morphology and compaction and expanded to passage 30 and
maintained until ready for differentiation. The use of human cells in this study has been
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approved by the Ethics Committee of the Biomedical Research Institute of the National
Autonomous University of Mexico (UNAM).

2.2. Cell Culture under 2D/Monolayer and 3D/Embryoid Body Conditions

Human ES and iPS cell colonies were cultured as 2D/monolayer and 3D/EB in
Essential 8 medium, E8 (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA, then
detached using 0.1% Type IV Collagenase (Sigma-Aldrich, St. Louis, MI, USA) followed by
mechanical disaggregation. The 2D/monolayer cells were seeded at a density of 1 × 104

onto Matrigel () (MG)-coated plates (Corning, NY, USA) whereas for 3D culture untreated,
ultralow attachment plates (Nunc, Rochester, New York, USA) were used. Cell clumps
were maintained in E8 medium until spheres were grown to no more than 300 µM in
diameter. Obtained spheres were passaged after collagenase treatment and mechanical
disaggregation. Cell clumps of around 100 to 200 µm were seeded and cultured in the same
conditions until initiation of differentiation (day 0).

2.3. Mesodermal, Hematoendothelial and Hematopoietic Differentiation

To observe the effects of the two (2D and 3D) culture systems on differentiation, neither
Wnt pathway activators nor inhibitors were added to the media as conventionally done
(See Table 1). The differentiation of the hPSCs took place in 12-well plates (Nunc) treated
with MG for the 2D and in ultra-low attachment non-treated plates for 3D. Mesodermal
differentiation proceeded in Stempro 34 (Sigma-Aldrich) medium supplemented with 10×
ITS (Gibco), 40 ng/mL BMP4, 10 ng/mL FGF2 (Preprotech), 50 µg/mL Ascorbic Acid
(Sigma-Aldrich), 100× Glutamax (Gibco) and Gentamicin (Gibco) from day 0 to day 4. On
day 4, the medium was changed to Stempro 34 with 10× ITS, 100× Glutamax, Gentamicin,
10 ng/mL FGF, 10 ng/mL VEGF; 10 ng/mL of IL6 and 2 U/mL EPO (Preprotech) for
three more days (days 4 to 6). On day 6 the medium was replaced with hematopoietic
differentiation Stempro 34 medium containing the above supplements plus 50 ng/mL SCF,
5 ng/mL IL7, 5 ng/mL Flt3 and 10 ng/mL IL3 (Preprotech Rocky Hill, USA). CHIR99021
(3 µM) and IWR-1(1 µM) (Sigma), were added only when indicated.

2.4. Hematopoietic Colony Assay

Analysis of hematopoietic colony formation potential of the hematopoietic stem
cells was performed by plating 2 × 100 cells in Methocult (Stem Cell Technologies Inc.
Vancouver, Canadá) supplemented with SCF (100 ng/mL), EPO (2 U/mL), IL-6 (5 ng/mL),
IL-3 (40 ng/mL), TPO (40 ng/mL) (Preprotech). Colonies were quantified after 30 days.
Cells were separated from the Methocult by centrifugation and fixed for Wright staining.

2.5. AFT024 Co-Culture for Further Hematopoietic Differentiation

To generate further hematopoietic lineages, we employed co-culture with the AFT024
cell line, which is derived from mouse fetal liver stroma, this cell line expresses DL1,
an important factor during the acquisition of advanced hematopoietic fates. Cells were
purchased from ATCC (SCRC-1007) and transduced with a lentiviral GFP reporter (pLenti
CMV GFP Puro, Addgene) [34]. Passage 4 cells were expanded with Optimem (Gibco) and
5% FBS (Gibco) until confluency and then seeded at 10,000 cells per well in 96 well plates.
On days 6 to 8, 2D/monolayer and 3D/EB cells were plated on the AFT024 monolayers
with Optimem medium supplemented with 1%FBS, 100X Glutamax, and IL7, IL3, SCF
with a change of monolayer every 5 days during 30 days [35].

2.6. Flow Cytometry Analysis

Flow cytometry analysis was done in a FACSCanto cytometer (Becton Dickinson,
NJs, USA). Fluorophore-conjugated antibodies used for flow cytometry immunostaining
are listed in Supplementary Table S2. Immunostaining was performed as recommended
in the technical datasheet for each antibody. Analysis of flow cytometry acquisitions
was performed using FACSdiva Software (Becton Dickinson, BD Biosciences, CA, USA)
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and FlowJo v10.0.7 (FlowJo, LLC, BD Biosciences, CA, USA). Ten thousand events were
recorded for each sample. Analysis of Flow Cytometry Data and the fold increase in mean
fluorescence was performed with FlowJo v10.0.7.

2.7. Immunofluorescence

Cells were seeded on MG-coated chamber slides (Nunc-Labtek, Thermo Scientific,
USA). Cells were fixed with 4% PFA for 15 min at room temperature (RT) and then
permeabilized with 0.2% Triton in PBS for 10 min. Cultures were blocked using 1% BSA
plus 0.2% Triton in PBS for 30 min at RT and then incubated with primary antibody in
blocking solution for 1 h at RT or overnight at 4 ◦C. After washing, the secondary antibodies
were added, washed and cells were put in blocking solution for 1 h at RT in the dark. After
washing, nuclei were stained with Hoechst 33342 (Invitrogen, CA, USA). Epifluorescence
analysis was performed using an Olympus IX71 phase-contrast fluorescence microscope
and images were analyzed with QCapture Suite software (QImaging, Surry, BC, Canada).
Microscopy analysis was performed using a Nikon confocal microscope and images were
analyzed with the Image J (ImageJ, U. S. National Institutes of Health, Bethesda, Maryland,
USA) software, Z Stacks of the 3D cultures were obtained using the Bioformats plugin. The
list of antibodies used and the catalog number is available in Supplementary Table S2.

2.8. Gene Expression Analysis by RT-qPCR

Total RNA was isolated using TRIzol reagent according to the manufacturer’s in-
structions (Invitrogen, CA, USA) followed by DNase I (Invitrogen, Waltham, MA, USA)
treatment and an RNA clean-up using the RNeasy mini kit (Qiagen, Hilden, Germany).
Reverse-transcription reactions were performed using a One-step RT-PCR kit (Qiagen).
Quantitative RT-PCR (RT-qPCR) reactions were performed using KAPA SYBR FAST (Roche)
master mix on a Rotor-Gene 6000 thermal cycler (Qiagen). Data analysis was performed
using Rotor-Gene Q series Software (Qiagen) and relative expression was calculated using
Pfaffl’s efficiency calibrated method [36]. The primers for the PCR experiments are listed in
Supplementary Table S1.

2.9. Statistical Analysis

Values are given as mean with SE, and statistical significance was performed from
at least three independent biological replicates. Student’s t-test or analysis of variance
(ANOVA) were performed to analyze two or more groups of means, respectively, using
GraphPad Prism version 6.04 for Windows, (GraphPad Software, La Jolla, CA, USA).
Tukey’s post hoc test was performed to determine the statistical significance of the ANOVA.

3. Results
3.1. 3D/EB and 2D/Monolayer Culture Conditions Differ in Their Capability to Produce
Hematopoietic Cells

Our main objective was to compare the capacity of these formats to support the
cell commitment events during differentiation of hPSC to primitive hematopoiesis in
the lack of exogenous stimulation of Wnt/β-catenin shown previously to direct differ-
entiation to definitive hematopoietic lineages [37–42]. To this purpose, we performed
simultaneous differentiation in these formats, with the same culture environment and
assay methods, without the addition of any Wnt/β-catenin exogenous stimulator like
CHIR99021. Figure 2A depicts the cells’ morphological changes in 2D and 3D formats
on days 0, 4, 6, and 8 of hPSCs differentiation driven exclusively by endogenous factors.
Before differentiation, we tested the capacity of the protocol we used to ensure similar
expanding and pluripotency properties of the passage 30 hESC and hiPSC, by seeding
them in the same media as a monolayer at a density of 1 × 104(2D) or as spheres (3D) (see
the section of Materials and Methods) and culturing for 5 days. The Immunofluorescence
analysis with antibodies to Tra160, Oct4 and NANOG showed no significant differences
between the two cultures, evidencing that hPSCs used in the study were similar from the



Cells 2021, 10, 2858 6 of 15

start of the differentiation, hence the differences that could arise will be from the specific
effects of the culture formats (Figure 2B) (Figure S1C).
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Figure 2. Comparison of the pluripotency of hPSCs in 2D/monolayer and 3D/EB culture systems. (A) Experimental
procedure of in vitro differentiation in parallel settings showing representative phase-contrast images of cells at Day 0,
Day 4, Day 6 and Day 8. (B) Immunofluorescence analysis of 3D/EBs clones and their cross-sections, and 2D/Monolayer
cells, stained by antibodies to Tra-160, Oct4 and NANOG. Scale Bars: EB: 100 µM, Monolayer: 100 µM.

As the pluripotency of hPSCs was similar in both 3D and 2D colonies, we set on to find
possible differences in the hematopoietic commitment of the cells under the two culture
conditions. As was reported (see references in Table 1), early hematopoietic commitment
can be identified starting from Day 6 through detection and quantification of a cell cohort
with the CD34+/(Kinase domain receptor), KDR+ phenotype. Although CD43 would
be adequate for the identification of hematopoietic populations in these experiments, yet
we found the CD34+/KDR+ co-expression preferable to identify cells in transition from
mesoderm to hematopoietic and endothelial phenotypes. With this intention in mind, we
measured the number of CD34+/KDR+ cells by flow cytometry and compared the numbers
of CD34-positive cells under the two culture formats on days 4, 6, and 8 (Figure 3A)
(Figures S2–S4). A higher number of CD34+/KDR+ cells in the 3D/EB condition was
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found. Additionally, we measured the colony-forming capacity of cells from both systems
grown on methylcellulose for 30 days (Day 6 + 24). For this purpose, day 6 cells were
divided in half, one of which was used for FACS analysis and the other half used in the
methylcellulose colony formation experiments. (Figure 3B). Two hundred cells (n = 3) from
each of the formats were used and obtained on average seven colonies (four of them are
shown in Figure 3). Although CFU’s were already detectable at 10–15 days, we continued to
culture up to 30 days (6d + 24d), cells were isolated and then wright-stained and identified
as CFU-GM colonies. Clear differences between the two culture formats were revealed:
round and refractive groups of cells were found in the 3D/EB while monolayer/2D cultures
did not show colony-formation (Figure 3B). We did not separate and identify more CFU
types, considering that only one type already demonstrated a sharp difference between
the two formats. As there were no colonies at the 2D/monolayer condition (n = 3), the
quantitative determination of CFU capacities was not performed.

The cytometry analysis results described in Figure 3B showed that only the suspen-
sion (3D/EB) culture format produced a population of CD34+KDR+ cells. When further
analyzing this double-positive subset, we found that this cell population expresses almost
in its entirety CD31 (97.5%). This suggested the emergence of a hemogenic endothelial
population (CD34+KDR+CD31+). Simultaneously, we found evidence (lower panel) of
a population that is positive for CD34, and positive for CD31, but negative for KDR, a
possible indication of non-hematopoietic endothelial cells, showing that hematopoietic
and non-hematopoietic cells can arise simultaneously during this period of differentia-
tion (44–47). This finding correlates with the formation of colonies in the 3D and the
lack of colonies in the monolayer format. Immunofluorescence showed on day 6 the co-
expression of CD34, KDR, and CD43 in the 3D but not in the 2D format (Figure 3C). These
results indicated that the 2D/monolayer system was significantly inferior in supporting
the hematopoietic differentiation, basically, and specifically, in the development of clono-
genic CD34 hematopoietic cells. Additionally, to know whether the observed distinctions
were due to a slower differentiation of 2D/Monolayer cells, we compared the time course
of differentiation of the cells in the two formats at later time points (Day 8 and Day 10)
(Figure 3A). The results showed a consistent time course pattern of CD34+ cell generation
on days 8 and 10 (Figures S4 and S5), indicating that there was not a higher number of
positive cells at any time point during the differentiation of the 2D/Monolayer. Once
the above differences between the two systems were observed, we sought to find out the
earliest time point at which these differences became apparent. To this end, we performed
qRT-PCR analysis of the expression of day 4 cells of key mesodermal commitment markers:
Brachyury (T), BMP, KDR, Plate derived growth factor receptor (PDGFR), and Sox17, a
marker associated with endodermal lineage but also known as a differentiation-related
factor during the acquisition of endothelial phenotype required for the early hematopoi-
etic fate establishment [43–46]. We found that the mesoderm was phenotypically well
established in 3D/EB by day 4; in contrast, the 2D format cells showed a reduced or no
commitment (Figure 3D) (see the primers in Supplementary Table S1). In particular, the
expression of Brachyury (T) was two-fold higher in 3D/EB system than in the 2D system
(p ≤ 0.001). We analyzed the expression of the KDR gene, an important mesodermal marker
that, unlike the T gene, remains active in cells undergoing hematopoietic commitment [45].
In our experiments, the 3D/EB mesoderm cells showed a high expression of KDR, whereas
the 2D/monolayer mesoderm cells were almost negative for this marker, suggesting that
none or very few of these cells were competent for hematopoiesis. PDGFR has been used
to identify lateral plate mesoderm and to distinguish it from paraxial mesoderm [47,48].
We found that the level of expression of the PDGFR gene by 3D/EB cells exceeded more
than twofold its expression by the 2D/monolayer cells (p ≤ 0.001), suggesting that the 2D
system had a weaker capacity of producing lateral mesoderm. The expression patterns of
all these markers suggested that the 2D/monolayer system was deficient for the appro-
priate induction in the mesodermal cells (positive for T and KDR) of commitment to the
hematopoietic lineage (KDR), displaying, at the same time, a strong selectivity for lateral
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mesoderm (PDGFR) commitment to early (primitive) hematopoiesis (So×17). Figure 3E
compares T and KDR immunofluorescence staining on day 4. Additionally, in line with
the above results (Figure 3D), we found that the mesodermal marker Brachyury (T) was
expressed by cells of both formats, but to a different extent. Commitment was distinctively
achieved in the two systems. However, as there was little or no KDR staining in 2D cells,
it can be posited that 2D/Monolayer condition could support a partial mesodermal com-
mitment but is still insufficient to fully achieve hematopoietic specification. In common,
these results suggested a weaker capacity to induce lateral mesoderm of the 2D system,
thus resulting in a diminished hematopoietic commitment.
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Figure 3. 3D/EB suspension and 2D/monolayer formats differ significantly in their capability of producing hematopoietic
cells from hPSCs. (A) Comparison of the percentages of the cells with CD34+/KDR phenotype generated by the 3D and
2D systems on day 6 (Mean ± SEM) n = 4, ** p ≤ 0.01. Time course of CD34/KDR cells in 3D and 2D formats (B) Phase
contrast image of hematopoietic colonies in methylcellulose shown for 3D/EB on day 30 after Wright-Staining (see methods),
showing images of a typical macrophage and a monocyte. No such cells were present in the 2D system. Flow cytometry
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analysis of the day 6 3D/EB and 2D/monolayer cells for co-expression of CD34 and KDR (without sorting of CD34 cells)
rectangles indicate the populations of interest with antibody stain. Abbreviations: CD34: Cluster of differentiation 34,
CFU-GM: Colony-forming unit Granulocyte-Macrophage. (C) Immunofluorescence of hematopoietic markers CD34, KDR
and CD43 on Day 6 of the 3D/EB cells; images were processed with Image J to obtain sections (z-stack) of EB using the
bio formats plug-in (see methods). Abbreviations: T: Brachyury. (D) Quantitative RT-PCR determined expression levels of
mesodermal genes on day 4; bars show the expression levels of the genes relative to the GAPDH gene; (Mean ± SEM) n = 3,
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Results of three independent experiments with RNAs of iPS and ES cells are shown.
(E) Immunofluorescence of mesodermal markers T and KDR on day 4 for 3D/EB and 2D/Monolayer at 20×, scale bar:
100 µm.

3.2. Endogenous Wnt/Catenin Signaling Is Active in the 3D/EB System but Not in
2D/Monolayer System

Since the 3D/EB culture system displays an enhanced mesodermal and hematopoi-
etic commitment, we sought the possible causes of this phenomenon. Our group has
previously reported that Wnt/β-catenin is an essential regulator of the biphasic human
somatic cell reprogramming [34]. In particular, Wnt activates mesendodermal genes during
colony maturation towards the pluripotent state. Furthermore, in many studies [17,41,49]
exogenous Wnt/catenin was used to stimulate the production of hematopoietic pop-
ulations from hPSCs. The comparative cytometry assays revealed that β-catenin was
abundantly expressed by the 3D/EB and was almost non-expressed by the 2D/monolayer
cells (Figure 4A) (Figure S6). In concordance with this higher presence of β-catenin in
3D cells, Figure 4B shows the higher expression in these cells of the Axin2 gene, one of
the Wnt transcription factors. Figure 4C shows immunostaining of the markers T and
β-Catenin, it is observed that in the 3D condition both markers are present, however, in
the monolayer condition, only T was present. These findings suggested that the high level
of hematopoietic commitment in mesodermal cells and a more efficient differentiation to
CD34+ cells with clonogenic potential in the 3D/EB format might be due to the higher en-
dogenous levels of Wnt/catenin signaling. In line with this suggestion, the 2D/monolayer
system’s inability to sufficiently activate endogenous Wnt/catenin signaling might be a
cause of its relative inefficiency to induce the commitment to the hematopoietic fate. To
complement these data, we examined the two culture platforms for the ability to generate
cells with advanced hematopoietic commitment; to this end, we sought to obtain lymphoid
lineages by co-culturing the cells with AFT024 stromal cells as a feeder, providing in vivo-
like microenvironment for advanced hematopoietic differentiation. Figures S9 and S10
compare the two culture formats regarding the presence of CD56, which is most stringently
associated with, but certainly not limited to, natural killer cells. As expected, the 3D format
produced a higher number CD56 -positive cells than did the monolayer format on day 30
of culture.

Once it was shown that the 3D/EB system provides higher endogenous Wnt activity,
we tested the effects of adding CHIR99021, a Wnt pathway activator, or IWR-1, a Wnt
pathway inhibitor (Figures S7 and S8). The rationale for this was to look at the effects on
hematopoietic differentiation of additional (to the endogenous) level of Wnt/β-catenin
induced by CHIR99022 in the 3D/EB cells (Figure 4D). It is known [50] that endothelial
cells (ECs) are generated from mesoderm during hPSC differentiation, and are comprised
of two sub-populations: non-hemogenic (vascular) and hemogenic endothelium; it is also
known that the CD34+/CD31+ population is a hemogenic endothelium with primitive
potential [51]. As was described above, we split the EB+CHIR derived cells into two
portions, one of which was cultured in CFC and the other one subjected to FACS. We found
that the 3D cells acquired an advanced clonogenic capacity evidenced by the generation of
erythroid colonies (CFU-E) (Figure 4D) (Figure S11). In Figure 4E, we show that activation
of Wnt by CHIR99021 depleted the CD31+ subpopulation that was present in the 3D/EB
condition without Wnt activation. Additionally, activation of the Wnt pathway depleted
the CD31+/KDR+ fraction that forms a part of the endothelial- primitive hematopoietic
lineage cells (Figure 4E). Our results on the depletion of these populations correlate with
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the published (Table 1) data, indicating that exogenous Wnt activation is a means to launch
both primitive and definitive hematopoietic programs.
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(B) Quantitative PCR analysis of Axin2, and (C) Immunofluorescence of Brachyury and β-catenin. Scale Bars: 100 µm,
(Mean ± SEM) n = 3, * p ≤ 0.05. (D) Phase-contrast images of disaggregated 3D/EB+CHIR day 6 cells cultured in
methylcellulose; arrows indicate colonies of EryCFC and CFU-GM wright-stained. (E) Representative flow cytometry
analysis of Day 6 3D/EB cells after the use of Wnt activator/inhibitor showing the results of the treatment either with CHIR or
with IWR, green rectangle shows the population of interest, the endothelial component in CD31/CD34 cells, orange rectangle
shows the endothelial component in the CD31/KDR cells and purple rectangle distinguishes the primitive hematopoietic
component in the CD43/CD34 cells. Source of the cells: CD34/KDR populations (D), CD31/CD34, KDR/CD31, and
CD34/CD43 populations.

Previously, Keller’s and Slukvin’s groups (see Table 1) demonstrated that the meso-
derm gives rise to a hematopoietic CD34+/CD43− population detectable on day 6 of
hPSC differentiation. This population expresses the markers of hemogenic endothelium
and possesses multi-lineage (definitive) hematopoietic potential. On the other hand, the
CD34+/CD43+ population may represent primitive hematopoietic cells. We found that
when 3D/EB cells were treated with CHIR, the CD43+ fraction was absent in the day 6
cultures. We consider that our EB+CHIR Wnt activation condition depleted the primitive
CD34+CD43+ in favor of the CD34+CD43− phenotype, in line with Keller’s finding. Con-
versely, this population remained stable in untreated 3D/EB cultures. Altogether, these
results further support the notion of the 3D/EB condition’s higher capacity to mimic the
early embryonic events (primitive wave of hematopoiesis) during in vitro differentiation
(Figure 4E). In contrast, the expression levels of the markers CD34, CD31, KDR, and CD43
were low in the EB+IWR cells, providing additional confirmation that the 2D/monolayer
is by itself insufficient to generate hematopoietic cells (Figure 4D,E).

4. Discussion

In previous studies (e.g., the references in Table 1) with the 3D/EB culture format, it
was shown that in the presence of growth factors, specific cytokines, and other ingredients,
hPSCs exposed to appropriate doses of BMP4 [38] were committed through activation of T
(Brachyury) and KDR genes to the mesoderm, then through hemogenic endothelium, to
transient primitive hematopoietic bipotential hemangioblast cells capable of differentiating
into hematopoietic and endothelial cells. On the other hand, in independent experiments
using the 2D format, hPSCs required exogenous stimulation of Wnt signaling for the
generation of definitive hematopoietic populations. The specific contribution of each of
these two formats is difficult to evaluate in independent experiments, because the dis-
tinctions in the microenvironment factors, different assay conditions and differences in
interpretation of results could obscure their effects on in vitro hematopoietic processes.
This study compares the potentials of these two formats to support the hPSCs hematopoi-
etic differentiation in the same experimental settings without exogenous stimulation of
Wnt signaling. Our results describe in detail how each format supports hematopoietic
differentiation, starting from the mesoderm formation and commitment to the posterior
stages up to the clonogenicity stage. To our understanding, this is the first such study
whose results contribute to the estimation of the potential of the endogenous machinery
to realize the differentiation program in two experimental settings and use these results
in the conceptualization of in vitro hematopoiesis. Our results support the view that the
3D/EB system efficiently mimics the in vivo embryonic events. In addition, our results
provide a tentative explanation for the higher capacity of the 3D/EB system, by showing
that endogenous Wnt/catenin signaling is more active in this format on day 4 [39,41,49].
The novelty in our findings is the demonstration of the importance of adequate activation
of endogenous Wnt signaling by BMP in the 3D format, which is required for robust
mesoderm formation through the activation of the genes encoding T and KDR, which
determines successful commitment to hemogenic endothelial precursors of the clonogenic
CD34 hematopoietic cells. In contrast, the 2D/monolayer system displays a consider-
ably lower level of endogenous Wnt/catenin (Figure 4) and therefore, a lower number
of hematopoietic CD34 cells which lack clonogenic capacity. According to the results of



Cells 2021, 10, 2858 12 of 15

this comparison, it can be hypothesized that the 2D/monolayer system deficiency results
from its incapacity to respond adequately to BMP4 for complete mesoderm formation. To
compensate for this weak potential, exogenous stimulation of Wnt signaling is practiced,
but this directs differentiation to the definitive hematopoietic fate. Significantly, these
deficiencies of the 2D format reflect the impossibility of such a format to model the unique,
in vivo, 3D-like embryonic development. Meanwhile, the 2D format is capable to serve as
a biotechnological platform for the production of hematopoietic cells useful for therapeutic
purposes, in which cell-autonomous factors can operate only, leaving in an inactive state
the integrative regulators of the developmental mechanisms.

Finally, this study shows the clear advantages of 3D culture as a basis for the advances
in the understanding of the mechanistic aspects of in vivo hematopoietic events. Prospec-
tively, this capacity of the 3D/EB format to model adequately the 3D niche condition for
primitive hematopoiesis can also help to explain anomalies caused by mutations in the KDR
and GATA2 genes, thus proposing an adequate in vitro system for drug testing [52,53].
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