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Abstract

Next generation sequencing (NGS) has been leading the genetic study of human disease into an era of
unprecedented productivity. Many bioinformatics pipelines have been developed to call variants from NGS data. The
performance of these pipelines depends crucially on the variant caller used and on the calling strategies
implemented. We studied the performance of four prevailing callers, SAMtools, GATK, glftools and Atlas2, using
single-sample and multiple-sample variant-calling strategies. Using the same aligner, BWA, we built four single-
sample and three multiple-sample calling pipelines and applied the pipelines to whole exome sequencing data taken
from 20 individuals. We obtained genotypes generated by lllumina Infinium HumanExome v1.1 Beadchip for
validation analysis and then used Sanger sequencing as a “gold-standard” method to resolve discrepancies for
selected regions of high discordance. Finally, we compared the sensitivity of three of the single-sample calling
pipelines using known simulated whole genome sequence data as a gold standard. Overall, for single-sample calling,
the called variants were highly consistent across callers and the pairwise overlapping rate was about 0.9. Compared
with other callers, GATK had the highest rediscovery rate (0.9969) and specificity (0.99996), and the Ti/Tv ratio out of
GATK was closest to the expected value of 3.02. Multiple-sample calling increased the sensitivity. Results from the
simulated data suggested that GATK outperformed SAMtools and glfSingle in sensitivity, especially for low coverage
data. Further, for the selected discrepant regions evaluated by Sanger sequencing, variant genotypes called by
exome sequencing versus the exome array were more accurate, although the average variant sensitivity and overall
genotype consistency rate were as high as 95.87% and 99.82%, respectively. In conclusion, GATK showed several
advantages over other variant callers for general purpose NGS analyses. The GATK pipelines we developed perform
very well.
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Introduction

Next-generation sequencing technology has produced a
gigantic amount of biological data and has shed light on the
path towards personalized medicine. While the cost of high
throughput genome sequencing is decreasing in terms of
merely acquiring sequence data, the analysis and interpretation
of these large-scale sequencing data continues to pose a major
challenge [1]. To call variants from this NGS data, many
aligners and variant callers have been developed and
composed into diverse pipelines. A typical pipeline contains an
aligner and a variant caller: the aligner maps the sequencing
reads to a reference genome, and the variant caller identifies
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variant sites and assigns a genotype to the subject(s). The
performances of different aligners have been studied
extensively [1-3]. Overall, Burrows-Wheeler Transform (BWT)-
based aligners are fast and memory efficient, because
alignment is a string matching process and BWT-based
aligners employ data compression features by creating an
index of the reference genome to facilitate string matching. The
Burrows-Wheeler Aligner (BWA) [4] displays a good balance
between running time, memory usage, and accuracy [5]. For a
systematic comparison, we chose BWA as the common aligner
for all the variant callers and calling strategies which we would
implement.
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Table 1. Summaries of the variant-callers.

Caller SAMtools GATK glfTools Atlas2
Code (o] Java C & C++ Ruby
. o Logistic
Model HMM & MAQ  Bayesian Likelihood-based .
regression
Algorithm EM MapReduce -
. Single & . . i . .
Sampling i Single & multiple  Single & multiple  Single
multiple
Variants SNPs & indels SNPs & indels SNPs only SNPs & indels
. Realignment, per Requires pre- Separated
Sorting,
. . base generated GLFs  programs for
Features indexing, o
X recalibration, generated by SNPs and
formatting, etc. . .
VQSR SAMtools-hybrid indels

doi: 10.1371/journal.pone.0075619.t001

Variant calling consists of two steps: genotype assignment
and variant identification. Early probabilistic methods, such as
Mapping and Assembly with Quality (MAQ) [6] and SOAPsnp
[7], used fixed prior values for heterozygote probabilities and
nucleotide-read error probabilities. SeqEM [8] introduces
multiple-sample genotype calling via an adaptive approach
employing the expectation-maximization (EM) algorithm to
estimate the model parameters. Hardy-Weinberg equilibrium
(HWE) could optionally be assumed so that there would be
fewer parameters for EM algorithm to estimate.

The most widely used variant callers include SAMtools [9],
glftools [10], GATK [11,12], and Atlas2 [13]. Table 1 presents
simple summaries of their characteristics. SAMtools uses a
revised MAQ model to estimate sequencing error. The glftools
family (glfSingle, glfMultiples, and polymutt) call SNPs from
pre-generated genotype likelihood files (GLF). GATK adopts
the MapReduce philosophy [14] to parallel programming for
simple Bayesian modeling. Atlas2 employs logistic regression
models trained on validated whole-exome capture sequencing
data rather than regular likelihood calculations and has been
shown to have high sensitivity [15]. All of these variant callers
have been widely used for previous NGS analyses such as the
1000 Genomes Project [16]. Additionally, they can be flexibly
implemented as part of a customized pipeline. However, the
performances of these callers with different calling strategies
have not been previously compared in a deliberate and
systematic way.

To that end, we built several pipelines with the same pre-
calling procedure before variant calling and applied the
pipelines to real exome sequencing data and simulated whole
genome sequencing (WGS) data. Statistical metrics were
reported to evaluate the callers and calling strategies. The aim
was to provide a comprehensive evaluation for the most widely
used variant callers and strategies and to assist researchers in
choosing a suitable variant caller and strategy for their own
NGS studies.

PLOS ONE | www.plosone.org

1

2

3
4

6

Comparison of Variant Callers for NGS Data

Methods

The pipelines

Our pipelines were customized for systematic evaluation. For
that purpose, the alignment and several mapping-improvement
steps were unified for all compared variant callers as shown in
Figure 1. The paired-end reads in FastQ format were mapped
to reference genome HG19 using BWA-0.6.1. The mapping
files in SAM (Sequence Alignment/Map) format were converted
to BAM (binary version of SAM) format and sorted by
SAMtools-0.1.18. Local realignment around known indels was
performed by GATK-1.6.9 on the sorted BAM files. Picard-
tools-1.5.3 [17] was used to remove PCR duplicates. Finally,
base quality score recalibration was performed using GATK
again. These steps constitute a unified procedure generating
BAM files ready for variant-calling. A reduced version skips the
mapping QC steps, as marked by the dashed curve arrow in
Figure 1. Hereafter, we use “Unified” and “Reduced” to indicate
the two versions of the pre-calling procedure. We built four
single-sample calling pipelines and three multiple-sample
calling pipelines as follows:

Unified pre-calling procedure + SAMtools single-sample
calling;

Unified pre-calling procedure + SAMtools multiple-sample
calling;

Unified pre-calling procedure + GATK single-sample calling;

Unified pre-calling procedure + GATK multiple-sample

calling;

5 Unified pre-calling procedure + SAMtools-0.1.7a-hybrid +

glfSingle;
Unified pre-calling procedure + SAMtools-0.1.7a-hybrid +
glfMultiples

7  Unified pre-calling procedure + Atlas2 v1.0.

For all seven pipelines, the “Unified” pre-calling procedure
can be replaced by the “Reduced” version.

Whole exome sequence data

We sequenced exomes of 20 individuals. Twelve of them
were from a single pedigree, while the other eight were
unrelated individuals. Participants recruited early in the study
were each given an "Information About" sheet, and consent
was oral and documented in an anonymized form. Participants
recruited later in the study provided written, informed consent.
Both consent procedures, and these studies, were approved by
the Yale IRB. The sequencing method allocated these
individuals into five lanes and used four bar codes such that
each individual had a unique sequencing ID. Nimblegen EZ
Exome V2 capture was used and contained 244,619 intervals
covering about 44.1 megabases. We used the lllumina HiSeq
platform for sequencing and generated 74 bp paired-end reads
at the Yale Center for Genome Analysis.

We first ran FastQC [18] to summarize the reads (data not
shown) with a focus on base quality scores and GC content, N
content, sequence duplication levels. The unified pre-calling
procedure described above was applied to the reads of all 20
individuals, and mapping files ready for variant-calling were
generated. In local realignment, we used a BED (Browser
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Figure 1. Unified steps of the pipelines. Blue rounded rectangles represent the reads, blue rectangles represent mapping-QC
procedures, red callouts indicate the tools. The dashed curve arrow represents a reduced version skipping the mapping-QC steps.

doi: 10.1371/journal.pone.0075619.g001

Extensible Data) file downloaded from the UCSC genome
browser to define predetermined exome target regions. This
BED file contained all known exons in RefGene plus 10 bases
on both ends of each interval, extended in aim to cover more
total bases on human genome than the Nimblegen EZ Exome
V2 capture regions. To evaluate the mapping by BWA, we
used the SAMtools “idxstats” command to count the numbers
of mapped and unmapped reads and GATK
“DepthOfCoverage” to compute the read depths at bases in
target regions in the BED file. The distinct variant-calling
procedures of the pipelines generated raw variants from the
final BAM files with specific command option settings. The raw
variants were further filtered; for example, VCFtools-0.1.7 [19]
was used to filter the variants with the BED file. Finally, we
used ANNOVAR [20] to perform regional and functional
annotations. Details about the pipeline implementation can be
found in the first section of File S1. The numbers of SNPs and
indels and transition/transversion (Ti/Tv) ratios were used as
metrics to evaluate callers, calling strategies, and filters. In
addition, we checked the overlapping between sets of filtered
variants by the four single-sample calling pipelines.

PLOS ONE | www.plosone.org

Exome array data

To validate the variants, we also generated microarray data
using the lllumina HumanExome v1.1 Beadchip [21] for 12 out
of those 20 individuals: six from the pedigree, and six from the
eight unrelated individuals. The lllumina exome chip contains
selected non-synonymous, splicing, and stop altering variants,
randomly selected synonymous SNPs, GWAS tag SNPs,
Ancestry Informative Markers (AIMs), fingerprint SNPs, HLA
tag SNPs, mitochondrial SNPs, Chromosome Y SNPs, and
over 100 indels, etc.

We used a set of Perl programs to perform quality control on
the exome genotype data and compared the exome genotypes
with the genotypes of the filtered variant sets by the
sequencing pipelines. To compare the rediscovery rate,
sensitivity, and specificity of the pipelines, we defined true
positives (TPs), false positives (FPs), true negatives (TNs), and
false negatives (FNs) in a way similar to binary classification
(see Table S1 in File S1 and the exome array data processing
section in the supplementary materials). The rediscovery rate,
defined as the proportion of called variants at matched sites
confirmed by the exome array genotype data, was used as the
key metric for evaluating the performance of the variant caller
and calling strategy.
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Resolving Discrepancies by Sanger sequencing

We conducted another validation study by Sanger
sequencing for a panel of selected variants, with particularly
high discordance between the genotypes called from exome
sequencing and the exome array for the twelve individuals with
both exome sequencing and exome array data. We first chose
six exonic variants obtained via the GATK multiple-sample
calling pipeline with discordance rate at least 8/12. In other
words, for each variant, at most four out of the twelve
successfully genotyped individuals had matched genotypes
from exome sequencing and the exome array. Then we
extended from the selected variants in both 5’ and 3’ directions
to target regions of about 400 bps for Sanger sequencing
which in each case covered the exon start position. The PCR
products generated for sequencing also included a total of
seven other nearby variants. Both the discordant variants, and
the additional variants that mapped close to them within the
targeted amplicons, were evaluated by Sanger sequencing.
Non-variant sites with all 0/0 genotypes in the arrays were
excluded (as they were completely concordant).

Simulation of whole genome sequence data

Whole genome sequence data was simulated for two
purposes: to provide a “gold standard” (that is, because the
exact actual sequence we generated was known) to compare
the performances of SAMtools, GATK and glftools on whole
genome data; and to check the effect of coverage on variant-
calling. Atlas2 was designed for exome sequence analysis [13],
so it was excluded for this comparison.

The whole genome sequence data was generated using
dwgsim-0.1.10 [22] directly from chromosome 22 of reference
genome HG19. Chromosome 22 was chosen for convenience
for illustration since it is the smallest autosome. Five
independent mutation sets (individuals) were simulated using
default parameter settings, which generated 70bp paired-end
reads for the five individuals with different average coverage at
4x, 10x, 20x, 40x, 100x (see the simulation and analysis
section in the supplementary materials).

We replaced the “Unified” pre-calling procedure in the first
three pipelines with “Reduced” and applied them to the
simulated WGS data:

Reduced pre-calling procedure + SAMtools single-sample
calling;

2 Reduced pre-calling procedure + GATK single-sample

calling;

3 Reduced pre-calling procedure + SAMtools-0.1.7a-hybrid +

glfSingle.

We validated the called variants against the mutant variants
of the five “individuals” using VCFtools-0.1.7, which directly
provided TPs, FPs, and FNs. The positive prediction value
(PPV, the fraction of validated variants among all called from
the sequence data) and sensitivity (the fraction of simulated
variants which were called from the sequence data) were used
as metrics for evaluating the callers. The sensitivity was the
key measure.

Data cannot be released due to patient privacy concerns,
specifically the identifying nature of the pedigree. Researchers
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who wish to reanalyze or reproduce this analysis will be
granted in-house access to the raw data upon request.

Results

Real exome sequence and array data

To evaluate the “Unified” pre-calling procedures of all
pipelines, we extracted the number of reads for each individual
and computed the percentage of mapped reads, the
percentage of mapped unique reads, the number of bases in
targeted regions covered by at least one read, and the mean
coverage depth (see Table S2 in File S1). Overall, 95.9+1.0%
of the reads was mapped to the reference genome (HG19),
and 90.7+£1.7% of the reads was mapped as unique reads.
These show that BWA makes use of a high proportion of the
read data. Within the extended exome regions, 42.6-47.8
megabases (57.3-64.3%) were covered by at least 1x, with
average coverage ranging from 62x to 137x. On average,
37.33+0.82 megabases (47.3-52.4%) were covered by at least
10x, and 35.59+0.97 megabases (44.1-49.7%) were covered
by at least 15x.

We first compared the numbers of SNPs and indels, and the
Ti/Tv ratio, across pipelines. Figure 2a summarizes the
distribution of the number of SNPs called from the 20
individuals using different callers and calling strategies (see
Figures S1-S3 and the single-sample calling and multiple-
sample calling subsections in the supplementary materials (File
S1) for individual results). The single-sample calling strategy
generated 27.45+0.64k, 27.92+0.85k and 29.35+0.79k raw
SNPs with SAMtools, GATK, and dgIfSingle, respectively;
variant filtering removed 6.44%, 12.53%, 11.12% of raw SNPs
respectively. These numbers are consistent with the
20.28+0.64k for average observed coding region variants in
European American (see Table 1 in [23]), since we used
extended target regions described above. In contrast, the
multiple-sample calling strategy increased the numbers of
called raw SNPs by 0.87%, 16.56% and 70.96% with
SAMtools, GATK, and glftools, respectively; variant filtering
removed 18.18%, 11.1% and 32.16% of raw variants. Atlas-
SNP2 called 24.80+0.98k SNPs after filtering. Notably,
compared with single-sample calling after variants filtering,
while the GATK and glftools increased the proportion of called
variants, the SAMtools multiple-sample calling lost (i.e., did not
identify)17.60% SNPs. This might indicate that multiple-sample
calling raises the sensitivities of GATK and glftools, but fails on
SAMtools most likely due to the default depth limit of SAMtools.
Figure 2b summarizes the Ti/Tv ratio of the SNP sets by four
single-sample calling pipelines. The raw SNPs have average
Ti/Tv ratio 2.79, 2.79, and 2.73 for SAMtools, GATK, and
glfSingle, while the filtered have 2.96, 2.99, 2.96 and 2.97
(Atlas2), closer to the expected value 3.02 (see Table S2 in
[24]). These confirmed that filtering is important to improve
variant calling quality. Figure 2c summarizes the number of
indels by SAMtools, GATK and Atlas2. There were no
systematic differences for raw indels, but remarkable
differences after filtering, which suggested that filters applied to
GATK indels and filtering on the posterior probability for Atlas2
indels are more stringent than filtering on variant quality score.
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Figure 2. Boxplots of measure for validation by the pipelines. a. Number of SNPs. b. Ti/Tv ratio. c. Number of indels by the
pipelines. d. True positive calls by the pipelines. e. False positive calls plus error genotypes by the pipelines. f. Re-discovery rate
(positive prediction value) by the pipelines. g. Sensitivities of the pipelines. h. Specificities of the pipelines. The green bars indicate
the first quartiles, red bars extend to medians, blue bars reach the third quartile, and error bar caps show the ranges. SAMt, gIfS
and gIfM stand for SAMtools, gIfSingle and glfMultiples respectively. “_S” and “_M” represent single and multiple calling strategies.

R and F represent raw and filtered variants.
doi: 10.1371/journal.pone.0075619.g002

We also compared the numbers of true positives (TPs), false
positives (FPs), rediscovery rate, sensitivity and specificity of
the pipelines (see Figures S4 and S5, and the exome array
results section in the supplementary materials (File S1) for
individual results). At the 246,305 unique exome array sites,

the 12 individuals on average had 228,816.17£135.75
homozygous  reference  genotypes, 10,370.92+190.86
heterozygous genotypes, 6,903.084116.17 homozygous

alternate genotypes, and 214.83+148.18 missing genotypes.
Table 2 presents genotype summaries for each individual as
well as the sequencing coverage on these sites extracted from
the corresponding ready-to-call BAM files. Figure 2d and 2e
show the summaries of the numbers of TPs and FPs (including
error genotypes) from exome array validation, respectively. Six
pipelines performed comparably regarding the number of TPs,
with each identifying over 7,000 on average. The exception
was pipeline 2 (SAMtools multiple-sample calling), which failed
to detect enough TPs (4,979.75+66.05). More precisely, GATK
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generated more TPs than SAMtools and Altas2, and glftools
generated the most TPs with single or multiple. GATK (single)
produced the least FPs (22.75+3.4) and glfMultiples generated
the highest number of FPs. Figure 2f-2h show the rediscovery
rate, sensitivity and specificity of the pipelines. Although all
pipelines had specificity higher than 0.999, GATK had slight
advantages in both rediscovery rate and specificity over other
callers. Glftools, especially glfMultiples, had the highest
sensitivity, but produced the most FPs at the same time, mostly
due to the genotype assignments to those individuals without
enough read depth at the array marker sites. GATK multiple-
sample calling reduced such inaccurate assignments by
placing missing genotypes, and conduced to average
specificity 0.999937, which was accompanied by average
sensitivity 95.87% (see the 4™ bar in Figure 2g).

Furthermore, we calculated the pairwise overlapping variants
among the four filtered variant sets generated from the single
sample-calling pipelines, and obtained six pairs of recapture
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Figure 3. Shared variants by single-sample pipelines and their validation. a. Average pairwise overlapping between filtered
variants called by SAMtools (blue), GATK (red), glfSingle (olive green) and Atlas2 (purple). b and c. Boxplots of sensitivities and
specificities for shared variants. P13 stands for shared variants between pipeline 1 (SAMtools) and 3 (GATK), P135 stands for

shared variants by pipeline 1, 3 and 5 (gIfSingle), and so on.
doi: 10.1371/journal.pone.0075619.g003

Table 2. Summaries of exome array data by individual and
the exome sequencing coverage depths on the array
positions in target regions.

Subject Genotype Coverage
0/0 0/1 11 missing 0x >=1x >=20x

1 228882 10219 7036 168 2178 228877 206196
2 228712 10488 6952 153 1510 229545 219000
4 229058 10177 6868 202 2254 228801 205724
8 228725 10370 6939 270 2091 228964 207350
6 228570 10299 6787 648 2131 228924 207822
7 228843 10436 6868 158 2087 228968 208786
8 228818 10580 6763 144 2802 228253 183593
9 228787 10694 6683 141 2060 228995 211920
15 228679 10580 6910 136 2219 228836 205725
16 228939 10211 7081 74 2181 228874 201762
17 228808 10340 6952 204 2324 228731 200000
19 228973 10057 6998 277 1957 229098 209676

doi: 10.1371/journal.pone.0075619.t002

fractions (fraction of shared variants in each variant set in the
pair). Figure 3a shows the average pairwise overlapping for
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filtered variants. We presented the number of shared variants
in the overlapping regions. The most important observation is
that the recapture fractions were very high, ranging from
88.11-95.45%, which suggested that the pipelines are in
agreement and that our pipelines are reliable. SAMtools had
the highest recapture fractions, and GATK had the lowest
recapture fractions among the four single-sample calling
pipelines. These recapture differences may be attributed to the
more stringent featured filtering for GATK and Atlas2, rather
than to differences in sensitivity (as shown by validation results
above). The shared variants were further compared and
validated using the exome array data again. Both the number
of TPs and the number of FPs dropped when additional
pipelines were used to select shared variants, generating
higher specificity and lower sensitivity generally, as shown in
Figure 3b and 3c. The highest specificity, 0.9999804+7.79¢e-6,
was attained by taking shared SNPs by all four pipelines
(average only 7.5 FPs), while the shared SNPs called by both
GATK (single-sample) and glfSingle had the highest sensitivity
among these variant sets.
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Table 3. Summaries of simulated mutations and variants.

Subject bases_var strand1 strand2 both
Mut01 35650 11918 11923 11809 34829 31247 3582 10.28%
Mut02 35711 11955 11816 11940 34908 31425 3483 9.98%
Mut03 35220 11739 11786 11695 34516 31032 3484 10.09%
Mut04 35447 11758 11845 11844 34728 31344 3384 9.74%
Mut05 35680 11921 11966 11793 34933 31441 3492 10.00%
doi: 10.1371/journal.pone.0075619.t003

variants SNPs indels %_indels

Sanger Sequencing Results

All 13 variants (six targeted intentionally because they were
known to be discrepant, and seven additional variants
contained within sequenced amplicons) were detected by
Sanger sequencing (see Table S3 in File S1 and the Sanger
sequencing results section in the supplementary materials). For
the six highly discordant variants, Sanger sequencing
confirmed most genotypes called by exome sequencing, with
an average genotype (allele) concordance rate of 88.9%
(93.8%), compared to 26.4% (40.3%) between the exome array
and the Sanger sequencing. For four nearby variants that could
be called by Sanger sequencing but that were not included in
the exome genotyping array, the average genotype (allele)
concordance rate with exome sequencing was 88.2% (94.1%).
Genotypes of the other three nearby variants, which had
previously been called both from exome arrays and from
exome sequencing, were completely concordant with Sanger
sequencing results as well.

Simulated whole genome sequence data

We labeled the five individuals with “mutations” generated by
dwgsim-0.1.10 directly from HG19 Chromosome 22 as “Mut01-
Mut05.” Table 3 summarizes their “mutant” bases and variants.
Averaged over the five, 35,542+207.35 mutant bases were
generated, among which the strand one only, strand two only,
and both strand mutant bases were distributed evenly (1/3, 1/3,
1/3). These mutant bases defined 34,783+169.2 variants per
individual: 31,298+167.4 SNPs and 3,485+70.1 indels.

We applied the three modified pipelines to the simulated
reads (see Table S4 in File S1 for the alignment and coverage
summaries). We observed that GATK UnifiedGenotyper failed
to call any of these simulated indels. Therefore the variants
generated were reduced to four sets: (i) SNPs called by
SAMtools, (ii) indels called by SAMtools, (iii) SNPs called by
GATK, and (iv) SNPs called by glfSingle. These called variants
were compared to the simulated variants using VCFtools-0.1.7
after necessary reformatting, which gave the TPs and FPs
directly. The true negatives (TNs) distribute across almost the
whole chromosome, and the number of TNs is more than
10,000 times greater than the observed number of false
positives (FPs) for all (average) coverage; hence the specificity
of each of the three callers was >99.99%. Figure 4 shows the
PPV and sensitivity for the four sets (see the simulated whole
genome sequence results data section in the supplementary
materials (File S1) for more details). At all coverage depths,
GATK had a higher sensitivity than SAMtools and glfSingle.
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SAMtools had higher sensitivity for SNPs than glIfSingle at low
coverage (4x and 10x), similar sensitivity to glfSingle at 20x,
and lower sensitivity than glfSingle at high coverage (40x and
100x). Its sensitivity for indels was close, overall, to its
sensitivity for SNPs, but the difference decreased as the
coverage depth increased, monotonically, from 1.2% at 4x to
-2.93% at 100x. As expected for SNPs, SAMtools had an
almost perfect PPV at 20x or higher, and a very high PPV at
10x. However, at 4x, the PPV was only 98.67%, which was
lower than glfSingle. GATK gave a lower PPV for SNPs than
SAMtools and gIfSingle at 4x, 10x, 20x, and 40x, but a higher
PPV than gIfSingle at 100x. SAMtools’ PPV for indels dropped
after 10x. Note that glftools used a hybrid version of SAMtools
to calculate first the genotype likelihoods. These results
suggest that the majority of the FPs called by GATK at low
coverage may be attributed to the algorithm inconsistency
between GATK and SAMtools, while the FPs called by
SAMtools and glfSingle may mainly be attributed to alignment
errors. The influence of that algorithm inconsistency became
weaker for SNP detection from high coverage data.

Discussion

Next-generation sequencing is a powerful tool for identifying
rare and de novo variants, disease mapping, and quantifying
expression levels. For analysis, NGS reads are first aligned to
a reference genome, and then subjected to variant calling after
necessary quality control procedures. The alignment is crucial
for variant calling accuracy, and BWA is a widely-used aligner
with good performance. This study evaluated the performance
of several popular variant callers, SAMtools, GATK, glftools,
and Atlas2, with pipelines incorporating BWA and single-
sample or multiple-sample calling strategies. The pipelines
were applied to both real whole exome sequencing data and
simulated whole genome sequencing data after simplification.
The called variants were compared to the exome genotyping
array data and simulated variants respectively, both used as
“gold standards”. The statistical measures obtained from the
exome sequencing data confirmed a widely-accepted idea that
filtering is a crucial step for improving the accuracy of variant
calling. The exome array data comparison showed that GATK
had the highest re-discovery rate (Positive Prediction Value)
and specificity, while glftools showed the highest sensitivity.
The multiple-sample strategy worked effectively for GATK and
glfMultiples, but not for SAMtools. The simulated whole
genome sequencing data comparison demonstrated that GATK
had higher sensitivity.

GATK performed well on both the real exome sequencing
data and the simulated whole genome sequencing data. On the
exome sequencing data, it generated the fewest false positives
after filtering, and therefore had the highest PPV and
specificity. The filtered variants called by GATK had the highest
recapture rate compared with SAMtools and glftools. GATK
worked with the multiple-sample-calling strategy effectively and
avoided inflating false positive genotype calls by assigning
missing genotypes. It identified 9.0% more SNPs correctly and
doubled the indels calls when using the multiple-sample
strategy. For the simulated whole genome sequencing data,
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general purpose NGS analyses, at least for circumstances

similar to those we have described.

GATK had higher sensitivity than SAMtools or glIfSingle. The

advantage over the latter two was remarkable for low coverage

SAMtools remains a useful tool for many tasks. Because it
limits the total read depth to 8000, however, this makes it more

cases. Although there were more false positives with GATK

than with SAMtools or gIfSingle at very low coverage, the false

suitable to evaluate whole genome sequencing data at
moderate coverage rather than target candidate gene
sequencing or exome sequencing data, both of which generally
contain large portion of sites with higher coverage. On our

exome sequencing data, SAMtools missed many variants with

discovery rate dropped quickly as coverage depth increased.

The variants were not filtered. The performance of VQSR and
filters for indels on our exome sequence data showed that

GATK may also perform well on real whole genome

sequencing data after filtering. Based on the results presented
herein, it is our recommendation that GATK be used for

multiple-sample calling. Its single-sample detection rate for
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SNPs was similar to GATK, but lower than gIfSingle, while its
single-sample detection rate for indels was not systematically
different from GATK or Atlas2. When calling indels, SAMtools
tended to keep the same tailing bases for both reference and
alternate alleles. For example, SAMtools gives TAAAA:TAAA
(REFERENCE:ALTERNATE) at Chr1:109486240 for several
individuals in our subjects, while GATK and Atlas2 give TA:T
which is identified as rs3215062 in dbSNP. This led to more
“Non-Matching Reference” cases in comparison with indels
called by GATK or Atlas2, and contributed to its lowest average
recapture rate among the callers we compared in this study. It
called more false positives than GATK. On simulated whole
genome sequencing data, SAMtools was not robust to
alignment errors at low coverage, and its false discovery rate
for indels increased as coverage increased.

Glftools uses a revised version of the SAMtools-0.1.7a-
hybrid, which generates genotype likelihood files (GLFs).
Glftools calls SNPs from the GLF files rather than the BAM
files. A moderate read depth is required for accurate genotype
likelihood calculation; so on simulated whole genome
sequencing data, glfSingle had low sensitivity at low coverage
(4x). On our exome sequencing data, glfSingle and glfMultiples
had the highest sensitivity of the approaches we evaluated.
The false discovery rate of gIfSingle was higher than GATK,
but it also called the most TPs. GlfMultiples called significantly
more variant sites than GATK and correctly identified a larger
number of SNPs (compared to glIfSingle) even after filtering.
However, the exome array data show that false positives were
also rising, mainly due to the non-missing genotype
assignment (which was not accurate for cases of low coverage
or of close likelihoods). This high sensitivity is an advantage for
studies aiming for a high detection rate, and makes glftools a
good tool for first round variant discovery.

Atlas2 does not use a traditional probabilistic model method
to calculate regular likelihoods; it employs logistic regression
models trained to validate whole-exome capture sequencing
data. It calls SNPs and indels using separate programs. The
Atlas-SNP2 logistic model uses unique variables not included
by other callers, such as the mean neighboring base quality
(NBQ) around the SNP, the mean distance to the 3’ end, and
interaction terms. The Atlas-Indel2 logistic model uses four
variables: the local sequence entropy, the strand direction, the
normalized variant square, and the mean NBQ. The SNPs and
indels can be further filtered heuristically on the posterior
probability and read depth, etc. The output of Atlas-SNP2 is still
not user-friendly, containing too many raw putative sites and
too many whole sequences. Immediate filtering is necessary to
make comparable outputs to the other variant callers. Altas-
Indel2 allows for interval processing. On our exome
sequencing data, Atlas-SNP2 called fewer SNPs (after filtering)
than SAMtools and gIfSingle, but slightly more SNPs than
GATK. Altas-Indel2 called a comparable number of raw indels
to SAMtools and GATK, and after filtering, fewer indels than
SAMtools but more than GATK. Atlas2 was demonstrably not
suitable for analysis of our simulated WGS data (see File S1,
last paragraph), because of the estimate failures of specific
model parameters which were not taken into simulation. Our
conclusion is that filtering on the posterior probability is more
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stringent than filtering on the variant quality score. However, it
is not as stringent as VQSR or the recommended filter set for
exome indels. Atlas-Indels generates reference and alternate
alleles in a manner consistent with GATK. Therefore, the
indels, identified by these two callers, have no allele-matching
errors. At the exome array sites, Altas2 calls the fewest TPs
among the four and more FPs than GATK. This new caller has
been implemented into Genboree Workbench [25] for web-
based analysis and has the flexibility to run on a desktop [15];
our data suggest that it has no consistent advantages over the
others.

Regarding the computational burden, our pipelines used the
same pre-calling procedure such that CPU times for the callers
vary for individuals and sampling-strategy for calling. GATK
contains multi-thread option itself, which reduced the running
time by the number of threads; SAMtools and Atlas2 had
longer running time for calling, as they do not contain multi-
thread components by themselves; glftools ran slower than
SAMtools, as it required the output of the hybrid version of
SAMtools. Multiple-sample calling takes much longer than
single-sample calling.

We used variant data from the lllumina HumanExome v1.1
Beadchip for validation. High consistency was observed among
the variant sets generated by the single-sample pipelines and
the real exome sequencing data. For the GATK multiple-
sample pipeline, the overall genotype consistency rate
(including the 0/0 genotypes) between exome sequencing and
the exome array was 99.82%. Although Sanger sequencing in
theory is a better method based on real data to generate a
“gold standard” of variants for validation, it would not be
practical to Sanger-sequence the entire exome. Alternatively,
we selected a few variants with high discordance between
exome sequencing and the exome array for Sanger
sequencing. The results for this highly selected set of variants
showed exome sequencing was more accurate for variant
genotyping than the exome array, and the high discordance
was mainly due to inaccuracy of the exome array rather than
exome sequencing. On the other hand, the simulated whole
genome data serves as an overall better validation, although it
does not correspond to any individual’s actual sequence,
because the actual simulated sequence is known without any
ambiguity.

In summary, GATK makes a powerful tool for NGS analyses
and works effectively with both single-sample and multiple-
sample calling strategies. Our results show that it has the
highest specificity and PPV on the exome sequencing data and
the highest sensitivity on the simulated whole genome
sequencing data. Glftools have a higher sensitivity when
applied to the exome sequencing data, but produces more
false positives than GATK. SAMtools is not especially
distinguished for any task except for the high PPV for SNPs on
simulated whole genome sequencing data. Atlas2 provides a
different method of modeling for variants, but in its current
implementation, shows results no better than GATK. Overall,
filtering is crucial for improving the accuracy of variants,
especially accuracy of indels for which larger variations across
pipelines were observed than for SNPs (see Figures S1 and
S2). A multiple-sample strategy increases the sensitivity of
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GATK and glftools, but also increases the number of false
positives. For target candidate gene sequencing or exome
sequencing studies, our analyses favor the use of GATK. If
extremely high specificity is desired, these callers may be used
together to define a common intersection of variant sets,
especially, glfSingle and GATK together may make a good
choice for SNP-calling. For whole genome sequencing at
moderate coverage, GATK should be used for first round
detection, and SAMtools should be used for recapture to
improve confidence.

Supporting Information

Figure S1. Raw variants from single-sample callings. a.
Number of raw SNPs. b. Number of raw indels. c. Ti/Tv ratio in
raw SNPs.

(TIFF)

Figure S2. Filtered variants from single-sample callings. a.
Number of filtered SNPs. b. Number of filtered indels. c. Ti/Tv
ratio in filtered SNPs.

(TIFF)

Figure S3. Variants from multiple-sample callings. a.
Number of raw SNPs. b. Number of raw indels. c. Number of
filtered SNPs. d. Number of filtered indels.

(TIF)

Figure S4. Validation of single-sample calling variants
using exome array data a. Number of true positive genotypes.
b. Number of false positive genotypes. c. PPV, i.e., rediscovery
rate. d. Sensitivity. e. Specificity.

(TIFF)

Figure S5. Validation of multiple-sample calling variants
using exome array data a. Number of true positive genotypes.
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