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Abstract

Historically, the majority of statistical association methods have been designed assuming

availability of SNP-level information. However, modern genetic and sequencing data pres-

ent new challenges to access and sharing of genotype-phenotype datasets, including cost

of management, difficulties in consolidation of records across research groups, etc. These

issues make methods based on SNP-level summary statistics particularly appealing. The

most common form of combining statistics is a sum of SNP-level squared scores, possibly

weighted, as in burden tests for rare variants. The overall significance of the resulting statis-

tic is evaluated using its distribution under the null hypothesis. Here, we demonstrate that

this basic approach can be substantially improved by decorrelating scores prior to their addi-

tion, resulting in remarkable power gains in situations that are most commonly encountered

in practice; namely, under heterogeneity of effect sizes and diversity between pairwise LD.

In these situations, the power of the traditional test, based on the added squared scores,

quickly reaches a ceiling, as the number of variants increases. Thus, the traditional

approach does not benefit from information potentially contained in any additional SNPs,

while our decorrelation by orthogonal transformation (DOT) method yields steady gain in

power. We present theoretical and computational analyses of both approaches, and reveal

causes behind sometimes dramatic difference in their respective powers. We showcase

DOT by analyzing breast cancer and cleft lip data, in which our method strengthened levels

of previously reported associations and implied the possibility of multiple new alleles that

jointly confer disease risk.

Author summary

Joint analysis of association between the outcome and a group of SNPs within a genetic

region is increasingly recognized to complement single-SNP analysis and shed light on

the underlying molecular mechanisms. However, the correlation among GWAS associa-

tion results calls for specifically tailored statistical methods. Here we propose DOT (Dec-

orrelation by Orthogonal Transformation) method that can efficiently combine evidence

of association over different SNPs and genes within a pathway without access to the
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original genotypic data. DOT is fast, does not rely on a permutation algorithm, and is

often dramatically more powerful than other popular methods, such as VEGAS and the

recently proposed ACAT. We believe that DOT will become a useful addition to the

toolbox of methods based on the summary statistics for the GWAS community.

This is a PLOS Computational Biology Methods paper.

Introduction

During the recent years, genome-wide association studies (GWAS) uncovered a wealth of

genetic susceptibility variants. The emergence of new statistical approaches for the analysis of

GWAS have largely contributed to that success. The majority of these methods require access

to individual-level data, yet methods that require only summary statistics have been developed

as well. The rising popularity of summary-based methods for the analysis of genetic associa-

tions has been motivated by many factors, among which is convenience and availability of

summary statistics and high statistical power that can often match the power of analysis based

on individual records [1–3].

Many types of association tests, including those originally developed for individual-level

records, can be presented in terms of added summary statistics. For example, gene set analysis

(GSA) tests or burden and overdispersion tests for rare variants [2, 4, 5], can be written as a

weighted sum of summary statistics. In GSA applications, methods based on combined sum-

mary statistics can be used to efficiently aggregate information across many potentially associ-

ated variants within individual genes, as well as over several genes that may represent a

common etiological pathway. When within-gene association statistics (or equivalently, P-val-

ues) are being combined, linkage disequilibrium (LD) needs to be accounted for, because LD

induces correlation among statistics. The correlation among association test statistics for indi-

vidual SNPs without covariates is the same as the correlation between alleles at the correspond-

ing SNPs, if the genotype-phenotype relationship is linear. This fact allows one to model a set

of statistics using a multivariate normal (MVN) distribution with the correlation matrix equal

to the matrix of LD correlations. More generally, in the presence of covariates correlated with

SNPs, MVN correlations among association statistics will depend not only on LD but also on

other covariates in the model [6, 7].

When SNPs are coded as 0,1,2 values, reflecting the number of copies of the minor allele,

the LD matrix of correlations can be obtained from SNP data as the sample correlation matrix.

It can also be directly estimated from haplotype frequencies whenever those are available or

reported. Specifically, the LD (i.e., the covariance between alleles i and j; Dij) is defined by

the difference between the di-locus haplotype frequency, Pij, and the product of the frequencies

of two alleles, Dij = Pij − pipj. Then, the correlation between a pair of SNPs is defined as

rij ¼
Dijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pið1� piÞpjð1� pjÞ
p . The di-locus Pij frequency is defined as the sum of frequencies of those hap-

lotypes that carry both of the minor alleles for SNPs i and j. Similarly, pi allele frequency is the

sum of haplotype frequencies that carry the minor allele of SNP i.
It is important to distinguish situations, in which the LD matrix is estimated using the same

data that was used to compute the association statistics from those, where the estimated LD

matrix is obtained based on a suitable population reference panel. The reference panel

approach is implemented in popular web-based association analysis platforms, such as

“VEGAS” [8] or “Pascal” [9]. Based on a user-provided list of L SNPs, with the corresponding
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association P-values, VEGAS queries an online reference panel resource to obtain the matrix

of LD correlations. P-values are then transformed to normal scores Pi! Zi, i = 1, . . ., L, and

vector Z is assumed to follow zero-mean MVN distribution under the null hypothesis of no

association. The individual statistics in VEGAS are then combined as TQ ¼
PL

i¼1
Z2

i , (where

TQ stands for “Test by Quadratic form”) and the overall SNP-set P-value is derived empirically

by simulating a large number (j = 1, . . ., B) of zero-mean MVN vectors, adding their squared

values to obtain statistics TQ(j) and computing the proportion of times when TQ(j) > TQ. The

statistics similar to TQ are ubiquitous and appear in many proposed tests that aggregate associ-

ation signals within a genetic region.

As exemplified by VEGAS, the distribution of TQ must explicitly incorporate LD. However,

an alternative approach that implicitly incorporates LD can be based on first decorrelating the

association summary statistics, and then exploiting the resulting independence to evaluate the

distribution of the sum of decorrelated statistics, which we call Decorrelation by Orthogonal

Transformation (DOT). This general idea is straightforward and have been used in many con-

texts, including methods that utilize individual records [10]. For instance, Zaykin et al. sug-

gested a variation of this approach for combining P-values (or summary statistics) but have

not studied power properties of the method in detail [11].

Here, we propose a new decorrelation-based method for combining single-SNP summary

association statistics. We derive theoretical properties of our method and explore asymptotic

power of both DOT and TQ type of statistics. To the best of our knowledge, we are the first

ones to derive the asymptotic distributions of DOT and TQ under the alternative hypothesis.

Our results show that decorrelation can provide surprisingly large power boost in biologically

realistic scenarios. However, high statistical power is not the only advantage of the proposed

framework. Once statistics are decorrelated, one can tap into a wealth of powerful methods

developed for combining independent statistics. These methods, among others, include

approaches that emphasize the strongest signals by combining the top-ranked results [11–16].

Our theoretical analyses also reveal an unexpected result, showing that in many practical

settings tests based on the statistic TQ do not gain power with the increase in L (assuming the

same pattern of effect sizes for different values of L), while the proposed method steadily gains

power under the same conditions. Specifically, the proposed decorrelation method gains

power when the effect sizes and/or pairwise LD values become increasingly more heteroge-

neous. The reasons behind the respective behaviors of tests based on TQ and DOT are

explored here theoretically and confirmed via simulations. We further derive power approxi-

mations that are useful for understanding power properties of the studied methods.

To showcase our method, we evaluate associations between breast cancer susceptibility and

SNPs in estrogen receptor alpha (ESR1), fibroblast growth factor receptor 2 (FGFR2), RAD51

homolog B (RAD51B), and TOX high mobility group box family member 3 (TOX3) genes,

without access to raw genotype data. We first test for a joint association between SNPs in those

four genes and breast cancer risk by decorrelating summary statistics based on the overall LD

gene structure. We then describe how to follow up on the joint association results and identify

one or more SNPs that drive joint association with disease risk. To further validate the utility

of DOT, we also applied it to summary statistics of a recent GWAS of cleft lip with and without

cleft palate. Both of our real data analyses confirmed previous associations and revealed new

associations, suggesting new potential breast cancer and cleft lip SNP markers.

Results

As an introductory example of power analysis, we considered two simulated SNPs and a linear

regression model Y = βX + �, where X has a bivariate normal distribution, β = {0.3, 0}, and �
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has a Laplace distribution with unit variance. Thus, in this model Y does not have a normal

distribution, however we expect that the theoretical powers for TQ and DOT tests, as derived

in “Materials and Methods” section, will match the empirical power. We assumed sample size

of 500. In the first simulation experiment with 10,000 simulated regressions, we assumed the

bivariate correlation R = 0.99. Although two β coefficients are distinct, the mean values of asso-

ciation statistics induced by this model are similar to each other and they both are approxi-

mately equal to 0.29. These values can be obtained via Eq 2. Our noncentrality analysis in that

section suggests that similarity of the mean values may lead to power advantage of the test TQ.

The respective powers of the two tests were 0.87 and 0.80, empirically, and 0.86 and 0.80 by the

theoretical calculation. In the second simulation experiment, we lowered R to 0.5. This caused

the mean values to become distinct (0.29 and 0.14) and this difference of the two means caused

the order of power to change, in agreement with our theoretical analysis. Powers now became

0.72 and 0.80, for TQ and DOT, respectively. In this case, empirical and theoretical powers

matched to two digits. There is still difference in power at R = 0.2 (0.75 vs. 0.80), but of course,

in the case R = 0, the two methods are identical. The power of DOT here is constant, and this

reflects a special case, when only a single SNP has a non-zero effect size and, in addition, all

correlations between SNPs are the same. We provide R software script which can not only

reproduce these results, but is also capable of power analysis with larger correlation matrices,

i.e., cases with multiple SNPs. Correlation matrices are generated as symmetric matrices of

random numbers and then converted to positive definite ones using the package “Matrix”

[17]. Using this script, we evaluated the type-I error of both methods, assuming α-level 0.05,

10 SNPs, and β = 0. We found the type-I error to be close to the nominal level, using 100,000

simulations (0.04815 for DOT and 0.05002 for Tq). We note that the calculations are very fast

and that the 100,000 simulation runs were completed in less than ten minutes on a typical

laptop.

Further, we conducted a different set of extensive simulation experiments to study statistical

power of the proposed method based on the decorrelation statistic DOT, and to compare it to

the statistic TQ. We also included a recently proposed method “ACAT” by Liu and colleagues

[18], where association P-values for individual SNPs are transformed to Cauchy-distributed

random variables, then added up to obtain the overall P-value. ACAT was included into com-

parisons because it has robust power across different models of association. Specifically, Liu

et al. found ACAT to be competitive against popular methods, including SKAT and burden

tests for rare-variant associations [19–22]. A distinctive feature of ACAT is its good type-I

error control in the presence of correlation between P-values, which, interestingly, improves

as the α-level becomes smaller, due to its usage of transformation to a moment-free Cauchy

distribution. Among other similar approaches is MAGMA [23]. MAGMA analyzes summary

association statistics by considering the mean of the chi-square statistic for the SNPs in a gene

or the largest statistic among the SNPs in a gene. The mean of statistics method is equivalent to

Fisher’s method for combining dependent P-values [24, 25]. The method based on the top chi-

square statistic among the SNPs in a gene is equivalent to the Bonferroni correction for depen-

dent tests. There have been extensive studies comparing these two methods [26]. Note that TQ

is very similar to the Fisher method.

We used two distinct scenarios in our simulation experiments:

1. First, we assumed that the summary statistics and the sample correlation matrix among sta-

tistics are estimated from the same data set. This allowed us to validate power properties

derived in “Materials and Methods.”
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2. Second, we assumed that the sample correlation LD matrix was obtained from external ref-

erence panel. We included this scenario into our simulations due to the concern that the

type-I error rate of the methods considered here may be inflated if the correlation matrix is

computed based on a separate data set.

Simulations assuming that the LD matrix and the summary statistics are

obtained from the same data

To compare methods with and without decorrelation of statistics, we considered several dis-

tinct settings. In settings 1-4, the results of each row of the tables were based on one million

simulations. Association statistics were simulated directly, namely, a 106 by L matrix of MVN

vectors was simulated first, and then each row of the matrix was analyzed by the competing

methods. The empirical powers were obtained as the proportion of times that a particular sta-

tistic value exceeded α = 0.05.

Setting 1. The decorrelation method (DOT) is expected to gain power as the number of

SNPs increases in scenarios where effect sizes vary markedly from SNP to SNP.

However, if effect sizes for all SNPs are in fact very close to each other, the

power of DOT may decrease. To illustrate this property, our first, and purposely

contrived simulation setup is where the induced effect sizes (mean values of sta-

tistics) were all non-zero but very close to each other in their magnitude, varying

uniformly from 2.3 to 2.4 (these are the values of the means of normally distrib-

uted standardized statistics). Table 1 shows the results of the simulations study

under this setting, in which the decorrelation method was deliberately set up to

fail. In the table, the columns labeled “Theoretic.” provide power calculated

based on the distribution of the test statistics under the alternative hypothesis

that we derived above. The columns labeled “Empiric.” provide results based on

the empirical evaluation of power by computing P-values under the null. The

columns labeled “Approx.” provide power calculated based on the Eq (17). The

column labeled �g provides the average noncentrality value.

The table illustrates that our analytical calculations under the alternative

hypothesis are correct. That is, the empirical power of both TQ and DOT statis-

tics matches nearly exactly the analytical calculations. The approximation based

on Eq (17) apparently works well as well, emphasizing the fact that the distribu-

tion of the TQ statistic can be well approximated by a one-degree of freedom

chi-square distribution.

Table 1. Power comparison of TQ, DOT, and ACAT, assuming very similar effect sizes in magnitude and equicorrelation LD structure with ρ = 0.7.

Number of SNPs Empiric. Theor. Approx. Empiric. Theor. ACAT �g

L TQ TQ TQ DOT DOT

500 0.802 0.802 0.802 0.090 0.090 0.832 0.02

300 0.801 0.801 0.801 0.101 0.100 0.830 0.03

200 0.801 0.801 0.801 0.112 0.112 0.829 0.04

100 0.799 0.800 0.800 0.144 0.145 0.826 0.08

50 0.798 0.799 0.799 0.196 0.197 0.821 0.16

30 0.795 0.796 0.796 0.253 0.252 0.814 0.26

20 0.794 0.793 0.794 0.307 0.306 0.809 0.39

https://doi.org/10.1371/journal.pcbi.1007819.t001
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Further, the table confirms that the decorrelation method is under-performing

relative to TQ if there is very little heterogeneity among effect sizes. However,

power of all methods would increase under lower correlation. For example, for

ρ = 0.3 and L = 20, the powers for TQ and DOT become 0.98 and 0.67, respec-

tively. Additional insight into power behavior of methods under this scenario

can be gained by examining Eq (19). The asymptotic power for TQ can be

simply computed in R as 1-pchisq(qchisq(1-0.05, df = 1),
df = 1, ncp = 2.35^2/0.7). This gives 0.802 TQ power as L!1 for

Table 1 and 0.99 for the situation when ρ is lowered to 0.3. This simple approxi-

mation is surprisingly precise and works well for the rest of the settings.

Scenario 1 is admittedly unrealistic in practice. Furthermore, the table also illus-

trates that as the average non-centrality value increases, the power of DOT

increases as well, while the power of TQ is relatively constant and about 80%.

Finally, Table 1 shows that the power of TQ (although higher than that of DOT)

does not change with L, highlighting the ceiling property of this method and the

fact that combining more SNPs would not lead to higher power of TQ.

Setting 2. One of the features of the decorrelation method is that it benefits from hetero-

geneity in pairwise LD. To illustrate this property, we added jiggle to the equi-

correlation matrix as described in the “Materials and Methods” section, while

keeping the effect size (mean values of statistics) vector the same as in Setting 1

(within the range of 2.3 to 2.4). Again, effect sizes were all non-zero. In this sec-

ond set of simulations, uniformly distributed perturbations (in the range 0 to 5)

were added through U, which made the pairwise correlations range from 0.14 to

0.98.

Table 2 summarizes the results and once again, illustrates the ceiling feature of

TQ power. However, the power of the statistic DOT now starts to climb up with

L and the proposed test based on DOT eventually becomes more powerful than

the one based on TQ. This phenomenon can be explained by examining the

eigenvectors of the correlation matrix in Scenario 1. When eigenvectors are wri-

ten in the form of the Helmert eigenvectors, the first contributing DOT statistic

is formed as the mean of original (non-transformed) statistics. The rest of con-

tributing statistics are weighted sums of the original statistics with weights given

by the entries of (2, . . ., L) Helmert eigenvectors. However, the structure of each

vector is such that its entries add up to zero (and may contain zeros as well).

Thus, when the means are very similar (as in Scenario 1), there is cancellation of

individual terms when the sum is formed. Moreover, note that although the

Table 2. Power comparison of TQ, DOT, and ACAT, assuming very similar effect sizes but heterogeneous LD structure.

Number of SNPs Empiric. Theor. Approx. Empiric. Theor. ACAT �g

L TQ TQ TQ DOT DOT

500 0.729 0.730 0.726 0.973 0.973 0.793 0.251

300 0.731 0.730 0.726 0.883 0.883 0.791 0.256

200 0.731 0.730 0.726 0.810 0.811 0.789 0.281

100 0.730 0.731 0.726 0.599 0.599 0.786 0.295

50 0.732 0.733 0.728 0.577 0.576 0.782 0.418

30 0.736 0.735 0.729 0.504 0.502 0.778 0.488

20 0.737 0.737 0.731 0.541 0.540 0.776 0.661

https://doi.org/10.1371/journal.pcbi.1007819.t002
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average noncentrality value does not increase with L, the DOT-test still gains

power with L!

Setting 3. This setting is analogous to the equicorrelation scenario in Setting 1, except that

the mean values of statistics were lowered: in Setting 1, the range in μ was 2.3 to

2.4, while here, the range was set to vary uniformly between 1 and 2.3, and effect

sizes were all non-zero. Thus, the maximum effect size was lower than that in

the previous simulations but the heterogeneity among effect sizes was higher.

We emphasize again that while the equicorrelation assumption is unrealistic, it

serves as a very useful benchmark scenario that highlights power behavior and

features of the statistics TQ and DOT and allows one to introduce departures

from equicorrelation in a controlled manner.

Table 3 presents the results. The “Approx.” column in this table was removed

and replaced by power values based on a “P-value”-approximation to the distri-

bution of TQ as in Eq (16). This switch highlights the idea that both the power

and the P-value for the TQ test can be reliably estimated based on the one degree

of freedom chi-squared approximation. Importantly, Table 3 demonstrates that

the power of the DOT-test reaches 100% as L increases (despite the fact that

effect sizes were lower than in the previous settings), while the power of the TQ-

test stays in the range 51.2 to 52.5%.

Setting 4. This setting is similar to the scenario in Setting 2, except that we allowed higher

heterogeneity in pair-wise LD values. Effect sizes were all non-zero. LD was con-

structed as perturbation of Rr¼0:7 þ UU0 (as described in “Materials and Meth-

ods”), with U set to be a random sequence on the interval from -5 to 5. This

resulted in LD values ranging from -0.93 to 0.99. The effect sizes (mean values

of statistics) were sampled randomly within each simulation from (-0.15, 0.15)

interval.

Table 4 presents the results and shows that in this setting, the power of DOT is

dramatically higher than that of TQ and ACAT. In fact, power values for the TQ

and ACAT tests barely exceed the type-I error, while the power of the decorrela-

tion method steadily increases with L, eventually exceeding 90%.

Settings 5–7. In these sets of simulations we used biologically realistic patterns of LD. Also,

rather than specifying mean values of association statistics directly, we utilized a

regression model for the effect sizes, as described in Eqs (1) and (2). Details of

these simulations are given in “LD patterns from the 1000 Genome Project” in

“Materials and Methods.” We re-iterate that when association of SNPs with a

Table 3. Power comparison of TQ, DOT, and ACAT, assuming heterogeneity in effect sizes but equicorrelated LD.

Number of SNPs Empiric. Theor. P-approx. Empiric. Theor. ACAT �g

L TQ TQ TQ DOT DOT

500 0.525 0.525 0.526 1.000 1.000 0.626 0.479

300 0.526 0.525 0.526 1.000 0.999 0.624 0.486

200 0.526 0.525 0.524 0.993 0.993 0.622 0.494

100 0.525 0.524 0.524 0.919 0.920 0.616 0.518

50 0.522 0.523 0.522 0.762 0.762 0.607 0.566

30 0.521 0.521 0.521 0.648 0.648 0.599 0.630

20 0.519 0.519 0.520 0.578 0.579 0.592 0.709

https://doi.org/10.1371/journal.pcbi.1007819.t003
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trait is present (under the alternative hypothesis), the correlation among statis-

tics is not equal to LD, because it also has to incorporate effect sizes, as illus-

trated by Eq (5). This point is important if one wants to simulate statistics

directly from the MVN distribution rather than computing them based on sim-

ulated data followed by regression.

The results are presented in Table 5. Columns labeled “Regr.” represent scenar-

ios, in which data were generated and statistics were computed. Columns

labeled “MVN” represent scenarios, in which statistics were simulated directly.

The rows of Table 5 show power values for three different α-levels. We expected

the power values in “Regr.” and “MVN” columns to match, and they do,

highlighting another utility of our analytical derivation of the distribution of the

test statistic under the alternative hypothesis. That is, using our results, one can

significantly reduce computational and programming burden in genetic simula-

tions. Also note that power values in Table 5 do not decrease as α-level becomes

smaller (Settings 6 and 7). This is due to the fact that we deliberately discarded

effect size and LD configurations where power was expected to be too low,

because we wanted to assure a good range of power values across methods.

As in previous simulations, power values of TQ and ACAT are similar. The

power approximation by Eq (17) remains close to the predicted theoretical

power, as well as to empirically estimated powers. We also observed that power

of the decorrelation test, DOT, is substantially higher than the powers of either

TQ or ACAT.

Patterns of LD and effect sizes in Settings 1–4 are not necessarily realistic biologically, how-

ever, they serve as benchmark scenarios that help to understand and highlight differences in

the respective statistical power of the methods. Simulations for Settings 1–4 were performed at

Table 4. Power comparison of TQ, DOT, and ACAT with effect sizes randomly sampled from -0.15 to 0.15 and heterogeneous LD.

Number of SNPs Empiric. Theor. P-approx. Empiric. Theor. ACAT �g

L TQ TQ TQ DOT DOT

500 0.0500 0.0503 0.0508 0.9226 0.9222 0.0564 0.2118

300 0.0506 0.0503 0.0509 0.7688 0.7689 0.0570 0.2107

200 0.0504 0.0503 0.0508 0.5970 0.5967 0.0570 0.2025

100 0.0504 0.0503 0.0509 0.3040 0.3038 0.0568 0.1655

50 0.0502 0.0503 0.0508 0.3074 0.3070 0.0555 0.2397

30 0.0505 0.0503 0.0507 0.1485 0.1487 0.0562 0.1527

20 0.0501 0.0503 0.0508 0.1191 0.1189 0.0557 0.1399

https://doi.org/10.1371/journal.pcbi.1007819.t004

Table 5. Power comparison of TQ, DOT, and ACAT using realistic LD patterns from 1000 Genomes project.

Theor. Approx. Regr. MVN Theor. Regr. MVN

TQ TQ TQ TQ DOT DOT DOT ACAT

Setting 5

α = 10−3 0.34 0.34 0.34 0.34 0.60 0.60 0.60 0.40

Setting 6

α = 10−4 0.42 0.42 0.42 0.43 0.77 0.77 0.77 0.43

Setting 7

α = 10−7 0.24 0.24 0.24 0.24 0.76 0.76 0.76 0.18

https://doi.org/10.1371/journal.pcbi.1007819.t005
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the 5% α-level based on 2 × 106 evaluations. Settings 5–7 used realistic patters of LD derived

from the 1000 Genomes Project data. Test sizes varied from 0.001 to 10−7 with at least 10,000

simulations for power estimates. Type-I error rates were well controlled for TQ and DOT.

However, as noted by Liu et al., because the ACAT P-value is approximate, the null distribu-

tion of its statistic is evaluated under independence, and we found that at the nominal 5% α-

level, the type-I error for the ACAT was somewhat higher and could reach 7% for some corre-

lation settings. Nonetheless, the advantage of ACAT is that the approximation improves as the

α-level becomes smaller.

Simulations assuming that the correlation matrix is estimated using

external data

When only summary statistics are available, the correlation matrix S can be estimated from a

reference panel of genotyped individuals. However, the type-I error of tests based on both TQ

and DOT may potentially be affected due to substituting the sample estimate Ŝ by an estimate

obtained from external data. To study the effect of this mis-specification on the type-I error,

we conducted a separate set of simulations. In these experiments, we again utilized LD struc-

tures derived from the 1000 Genomes Project data. Reference panels for these simulations

were obtained as follows. Each LD matrix derived from real data was assumed to represent the

population matrix. Next, a sample was drawn, and the corresponding sample LD matrix was

calculated. That matrix should have been used for calculations of the gene-based test statistics.

Instead, we drew a separate sample of size N, assuming the same population LD matrix. In the

calculation of the tests, that sample correlation matrix was used in place of the correct one.

The type-I error rates, given in Tables 6–8, show that both ACAT and TQ have close to the

nominal type-I error rates, but the error rate for the decorrelation method (DOT) can be

inflated, unless the sample size of the reference panel is 50 to 100 times larger than the number

of SNPs (L). For the statistic DOT, the type-I error rates appear to be more inflated at smaller

α-levels, such as 10−7. Power values for TQ are not shown, however they closely followed pre-

dicted theoretical power for the scenarios where the same data are used for both LD estimation

Table 6. Type-I error rates (α = 10−3) using a reference panel to estimate LD. Population LD patterns are modeled

using 1000 Genomes project data.

Sample size TQ DOT ACAT

N = 5L 1 × 10−3 3 × 10−3 1 × 10−3

N = 10L 1 × 10−3 3 × 10−3 1 × 10−3

N = 50L 1 × 10−3 2 × 10−3 1 × 10−3

N = 100L 1 × 10−3 1 × 10−4 1 × 10−3

https://doi.org/10.1371/journal.pcbi.1007819.t006

Table 7. Type-I error rates (α = 10−4) using a reference panel to estimate LD. Population LD patterns are modeled

using 1000 Genomes project data.

Sample size TQ DOT ACAT

N = 5L 9 × 10−5 5 × 10−4 1 × 10−4

N = 10L 9 × 10−5 4 × 10−4 1 × 10−4

N = 50L 1 × 10−4 1 × 10−4 1 × 10−4

N = 100L 1 × 10−4 1 × 10−4 1 × 10−4

https://doi.org/10.1371/journal.pcbi.1007819.t007
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and computation of association statistics. There was only 1 to 2% drop in power when the size

of the panel was only 2 to 5 times larger than L.

Combining breast cancer association statistics within candidate genes

We applied our decorrelation method to a family-based GWAS study of breast cancer [27, 28].

The data set was comprised of complete trios, i.e., families where genotypes of both parents

and the affected offspring were available. With complete trios, previously reported statistics

become equivalent to statistics from the transmission-disequilibrium test and correlation

among them is expected to follow the LD among SNPs [8]. We selected four candidate genes

(TOX3, ESR1, FGFR2 and RAD51B), for which Shi et al. [27] and O’Brien et al. [28] replicated

several previously reported risk SNPs in relation to breast cancer.

For the joint association, we restricted our analysis to blocks of SNPs surrounding breast

cancer risk variants that were previously reported in the literature. Specifically, we selected

TOX3 rs4784220 [29], ESR1 rs3020314 [30, 31], FGFR2 rs2981579 [29], and RAD51B rs999737

[32–34], and then included blocks of SNPs around these ‘anchor’ risk variants with the LD cor-

relation of at least 0.25. These blocks included 13 SNPs around rs4784220, 36 SNPs around

rs3020314, 18 SNPs around rs2981579, and 30 SNPs around rs999737. As an illustration, Fig 1

displays 81 SNP P-values that were available for ESR1 gene, the vertical dashed line highlights

the position of ‘anchor’ rs3020314, the red dots highlight 36 SNPs within LD-block of

rs3020314, and the LD matrix displays sample correlation matrix among 36 SNPs. Once SNP

blocks were identified for each gene, we applied four combination methods to assess their

association with breast cancer.

Table 9 present the joint association analysis results. The first row of Table 9 shows P-val-

ues for the association between the LD block of 13 SNPs in TOX3 region and breast cancer,

derived from 1277 Caucasian triads. All methods conclude a statistically significant link but

our decorrelation method provides the most robust evidence with a substantially lower P-

value. The third row of Table 9 shows joint association P-values for the LD block of 18 SNPs

in FGFR2. Three out of four methods conclude an association at 5% level, with DOT

approach, once again, providing the most significant result. We note that the last column of

Table 9 gives the Bonferroni-style adjustment that is expected to be more conservative rela-

tive to the combination tests. Thus, it is not surprising that out of the four methods consid-

ered, the Bonferroni method failed to conclude an association. Lastly, the second and the

fourth rows of Table 9 provide joint association P-values for LD block in ESR1 and RAD51B,

respectively. For both ESR1 and RAD51B our decorrelation approach was the only one that

concluded a statistically significant association between SNP-set in those genes with breast

cancer.

Table 10 details a list of top SNPs that are associated with breast cancer within the selected

candidate genes. The top ranked SNPs were identified by considering the top three compo-

nents in the linear combination DOT ¼
PL

i¼1
X2

i , where Xi’s are the decorrelated summary

Table 8. Type-I error rates (α = 10−7) using a reference panel to estimate LD. Population LD patterns are modeled

using 1000 Genomes project data.

Sample size TQ DOT ACAT

N = 5L 2 × 10−7 3 × 10−4 1 × 10−7

N = 10L 2 × 10−7 2 × 10−4 1 × 10−7

N = 50L 2 × 10−7 2 × 10−4 1 × 10−7

N = 100L 2 × 10−7 1 × 10−4 1 × 10−7

https://doi.org/10.1371/journal.pcbi.1007819.t008
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Fig 1. Overview of DOT method in application to breast cancer data. We compute gene-level score by first

decorrelating SNP P-values using the invariant to order matrix H and then calculating sum of independent chi-

squared statistics. We utilize our DOT method to obtain a gene-level P-value. In the breast cancer data application, we

chose an anchor SNP—a SNP that has previously been reported as risk variant (highlighted by a vertical dashed line),

—and then combine SNPs in an LD block with the anchor SNP by the DOT. SNP-level P-values highlighted in red are

those in moderate to high LD with the anchor SNP.

https://doi.org/10.1371/journal.pcbi.1007819.g001
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statistics. Once the highest three values of X2
i were identified for each gene, we considered indi-

vidual components of Xi ¼
PL

j¼1
hjZj that are formed as a linear combination of the original

statistics weighted by the elements of matrix H. The top individual components hjZj (with the

same sign as Xi) were corresponding to individual SNPs presented in Table 10.

For the LD block in TOX3 gene, the top three individual Xi’s in DOT statistic were all

formed by having a very large weight assigned to a single SNP, i.e., the largest value, X2
ð1Þ

, was

formed by assigning a large weight to rs4784220 statistic; the second largest value, X2
ð2Þ

, was

formed by assigning a large weight to rs8046979 statistic; and the third largest value, X2
ð3Þ

, was

formed by assigning a large weight to rs43143 statistic. The first few rows of Table 10 detail

these results and identify rs43143 as a new possible association with breast cancer.

For the LD block in ESR1 gene, the top Xi’s were quite different. Specifically, the largest

value, X(1), was formed as a linear combination of 6 SNPs that all got assigned large weights.

These 6 SNPs were rs2982689/rs3020424/rs985695/rs2347867/rs3003921/rs985191. The sec-

ond highest linear combination, X(2), was formed by assigning high weights to 5 out of 6 SNPs

Table 9. Breast cancer candidate gene association P-values.

Gene TQ DOT ACAT min(P) × L
TOX3/rs4784220 [29] (L = 13) 0.0005 0.0004 0.001 0.001

ESR1/rs3020314 [30, 31] (L = 36) 0.20 0.0001 0.19 0.96

FGFR2/rs2981579 [29] (L = 18) 0.01 0.003 0.01 0.07

RAD51B/rs999737 [32–34] (L = 30) 0.56 0.009 0.76 1

https://doi.org/10.1371/journal.pcbi.1007819.t009

Table 10. Breast cancer SNPs identified by DOT in the analysis of GWAS data.

Gene Number of SNPs in

analysis (L)

rs number Reference

TOX3 13 rs4784220 This SNP was previously reported in the literature to be associated with breast cancer [29, 35].

rs8046979 This SNP was also linked to breast cancer [29].

rs43143 A new association with susceptibility to breast cancer.

ESR1 36 rs2347867 This SNP was previously reported to be involved in breast cancer risk [36, 37].

rs985191 This SNP was previously reported to be associated with endocrine therapy efficacy in breast cancer [38], as well as

with the overall breast cancer risk [39].

rs3003921 A new association with susceptibility to breast cancer. This SNP was previously linked to the effectiveness of

androgen deprivation therapy among prostate cancer patients [40].

rs985695 A new association with susceptibility to breast cancer.

rs2982689 A new association with susceptibility to breast cancer.

rs3020424 A new association with susceptibility to breast cancer.

rs926777 A new association with susceptibility to breast cancer.

FGFR2 18 rs1219648 This SNP was previously reported to be associated with premenopausal breast cancer [41] and the overall breast

cancer risk [42–45].

rs2860197 This SNP was previously suggested to have an association with breast cancer [46].

rs2981582 This SNP was previously reported in the literature to be associated with breast cancer [43, 47–49].

rs3135730 This SNP was previously suggested to have an interaction between oral contraceptive use and breast cancer [50].

rs2981427 A new association with susceptibility to breast cancer.

RAD51B 30 rs999737 This SNP was previously reported in the literature to be associated with breast cancer [32–34, 51, 52].

rs8016149 This SNP was previously suggested to have an association with breast cancer [53].

rs1023529 This SNP has been patented as one of susceptibility variants of breast cancer [54].

rs2189517 This SNP was showed to be associated with breast cancer in Chinese population [55].

rs7359088 A new association with susceptibility to breast cancer.

https://doi.org/10.1371/journal.pcbi.1007819.t010
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listed above: rs2982689/rs3020424/rs985695/rs2347867/rs3003921. We note that the signs of

X(1) and X(2) were in different directions and that is why it was possible for the same set of

SNPs to be prioritized. Finally, the third largest value, X(3), also prioritized the same set of

SNPs, with the exception of the single new addition of rs926777. Table 10 provides a detailed

discussion of these SNPs and identifies rs3003921/rs985695/rs2982689/rs3020424 and

rs926777 as new possible associations with breast cancer.

Finally, for the LD blocks in FGFR2 and RAD51B we repeated the procedure detailed above

and also identified top-ranking SNPs. Table 10 reviews these results and points FGFR2
rs2981427 and RAD51B rs7359088 as two more additional newly found associations.

Combining cleft lip association statistics within candidate genes

To further validate the utility of DOT, we applied it to summary statistics of a recent GWAS of

cleft lip with and without cleft palate [56]. Summary statistics were based on transmission-dis-

equilibrium test on autosomal SNPs in 1908 case-parent trios of European and Asian ancestry.

We selected four genetic regions (ABCA4, chr. 8q24, IRF6, and MAFB) that were prioritized

by Beaty et al. [56] for gene-based analysis. Anchor SNPs were chosen based on significant risk

markers previously reported in literature. Specifically, rs560426 was chosen as an anchor for

ABCA4 region [57] and formed an anchor block of L = 30 SNPs; rs987525 for chr. 8q24 [58]

with L = 29 SNPs in a block; rs10863790 for IRF6 [59] with L = 6 SNPs in a block; and

rs13041247 for MAFB [60] with L = 14 SNPs in a block. Table 11 provides summary of gene-

based P-values and indicates that all four combination methods concluded significant associa-

tions. Results in Table 11 can also be viewed as a gauge of the relative power of the four combi-

nation methods. As such, Table 11 confirms that DOT may result in smaller P-values then

those of competitors.

Table 12 details a list of top SNPs that were associated with non-syndromic cleft lip with or

without cleft palate within four genetic regions. For the LD block around rs560426 in ABCA4
gene, X2

ð1Þ
was formed by assigning large weights to two SNPs (rs4847196/rs563429) both of

which were previously considered in association with cleft lip but were found to be not statisti-

cally significant [56]. The second highest DOT linear combination, X2
ð2Þ

, prioritized the same

two SNPs (rs4847196/rs563429), thus reinforcing the idea that these two markers may be gen-

uinely associated with cleft lip. The third highest linear combination, X2
ð3Þ

, was formed by

assigning high weights to rs2275035 and rs546550, the former of which was recently identified

to be associated with orofacial clefting [61], while the latter may be a new association with cleft

lip.

For the LD block on chr. 8q24 region, X2
ð1Þ

was formed by assigning a large weight to the

anchor SNP (rs987525). X2
ð2Þ

prioritize two SNPs: rs882083 that was already suggested to be

associated with cleft lip [56, 58], and rs12547241 that may be a new risk marker. Finally, X2
ð3Þ

prioritized a set of three SNPs (rs1157136/rs12548036/rs1530300), all of which were previously

studied in connection to cleft lip [57, 63–65]. For the last two LD block considered (IRF6 and

Table 11. Cleft lip candidate gene association P-values.

Gene TQ DOT ACAT min(P) × L
ABCA4/rs560426 [57] (L = 30) 8.9 × 10−8 1.3 × 10−13 7.2 × 10−11 7.2 × 10−11

chr. 8q24/rs987525 [58] (L = 29) 1.0 × 10−9 8.7 × 10−22 4.7 × 10−15 3.2 × 10−15

IRF6/rs10863790 [59] (L = 6) 4.7 × 10−9 1.8 × 10−19 2.1 × 10−14 2.1 × 10−14

MAFB/rs13041247 [60] (L = 14) 1.5 × 10−8 2.9 × 10−8 2.4 × 10−11 3.6 × 10−11

https://doi.org/10.1371/journal.pcbi.1007819.t011
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MAFB genes), Table 12 details a list of top SNPs contributors to the DOT statistic. In brief, all

of the prioritized SNPs were previously reported in association with cleft lip.

Discussion

In this research, we have proposed a new powerful decorrelation-based approach (DOT) for

combining SNP-level summary statistics (or, equivalently, P-values) and derived its theoretical

power properties. To the best our knowledge, we were the first to derive analytical properties

of the traditional approach, TQ (e.g., as implemented in VEGAS), as well as of the DOT, with

the help of new theory that incorporates effect sizes of SNPs into mean values of association

statistics and correlations among them. Through extensive simulation studies, we have dem-

onstrated that our decorrelation approach is a powerful addition to the tools available for

studying genetic susceptibility to disease.

Our analysis of breast cancer and cleft lip data illustrates unique properties of DOT. Our

results revealed novel potential associations within candidate genes that would have not been

found by previously proposed methods. These novel SNPs were identified by examining the

top three linear-combination contributors to the overall value of the DOT-statistic. We note

that the top contributions may give large weights to genetic variants that are truly associated

with the outcome or to SNPs in a high positive LD with true causal variants. Caution is needed

when interpreting such results because our method cannot distinguish between causal and

proxy associations. Further studies would be needed to confirm these findings.

Table 12. Cleft SNPs identified by DOT in the analysis of GWAS data.

Gene Number of SNPs in

analysis (L)

rs number Reference

ABCA4 30 rs4847196 This SNP was previously studied in connection to cleft lip [56] but the association was found to be not statistically

significant.

rs563429 This SNP was also previously considered in association with cleft lip [56] but found to be not statistically

significant.

rs2275035 Was recently identified to be associated with orofacial clefting [61].

rs546550 A new association with susceptibility to cleft lip. This SNP was previously suggested to be linked to esophageal

cancer [62].

chr.

8q24

29 rs987525 One of the top results was the anchor SNP [58].

rs882083 Was previously suggested to be associated with cleft lip [56, 58].

rs1157136 Was previously suggested to be associated with cleft lip in Brazilian population [63].

rs12548036 Was previously studied in connection to susceptibility to cleft lip in Japanese population [64] but the association

was found to be not statistically significant.

rs1530300 Was previously suggested to be associated with cleft lip in Brazilian population [57] and Brazilian population with

high African ancestry [65].

rs12547241 A new association with susceptibility to cleft lip.

IRF6 6 rs10863790 One of the top contributions was the anchor SNP [59].

rs861020 Was previously reported to be associated with cleft lip [59, 66, 67].

rs2236906 Was considered to be associated with cleft lip in a Kenya African Cohort [68] and in general population [69].

rs2073485 Was reported to be associated with cleft lip in Western China [70] and Taiwanese population [71].

MAFB 14 rs11696257 Was previously reported to be associated with cleft lip [56, 72].

rs6102085 Was previously reported to be associated with cleft lip in Han Chinese population [73].

rs6065259 Was previously reported to be associated with cleft lip in a population in Heilongjiang Province, northern China

[74].

rs6102074 Was previously reported to be associated with cleft lip in Han Chinese population [73, 75].

https://doi.org/10.1371/journal.pcbi.1007819.t012

PLOS COMPUTATIONAL BIOLOGY Combining association summary statistics via decorrelation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007819 April 14, 2020 14 / 25

https://doi.org/10.1371/journal.pcbi.1007819.t012
https://doi.org/10.1371/journal.pcbi.1007819


The most important feature of the proposed method is that it may provide substantial

power boost across diverse settings, where power gain is amplified by heterogeneity of effect

sizes and by increased diversity between pairwise LD values. Genetic architecture of complex

traits is far from being homogeneous, making our method applicable in various settings. We

have developed new theory to explain unexpected and remarkable boost in power. This theory

allows one to predict behavior of the tests in simulations with high accuracy and to explain

unexpected scenarios, where the decorrelation method may give dramatically higher power

compared to the traditional approach. Yet, there are important precautions to the decorrela-

tion approach. When reference panel data are used to provide the LD information and, more

generally, correlation estimates for all predictors, including SNPs and covariates, Ŝ, sample

size of the external data should be several times larger than the number of predictors. Ideally,

the same data set should be used to obtain association statistics, as well as Ŝ. Nevertheless,

association statistics and Ŝ are compact summaries of data and are much more easily trans-

ferred between separate research groups than raw data, due to privacy considerations and

potentially large size of the raw data sets. Also, caution is needed if missing data are present in

the original data set because the estimate (Ŝ) may no longer reflect the sample correlation

between predictors. Imputation of missing values is a suitable solution, if missing values are

independent of the outcome. With the usage of reference panel data, the type-I error inflation

for the statistic DOT can be affected by many factors, and this statistic is expected to be sensi-

tive not only to the size of a reference panel, but to population variations in LD, especially for

highly correlated blocks of SNPs. Overall, it appears to be difficult to give specific recommen-

dations, except that the reference panel size has to be at least 50 times larger than the number

of SNPs to be combined. Therefore, we recommend to limit applications of the decorrelation

method to situations, where the LD matrix is obtained from the same data set as the summary

statistics. Note that all pairwise LD values can be obtained from sample haplotype frequencies

of SNPs, thus the LD matrix can be reconstructed. Utility of this approach remains to be

investigated, in particular, one concern is that the correlation between the SNP values reflect

the composite disequilibrium values [76], while frequencies of sample haplotypes are often

reported following likelihood maximization, e.g., by the EM algorithm. An important issue

that still remains to be investigated is a systematic analysis of the performance of our method

utilizing real genome-wide data. Such analysis would allow one a more thorough assessment

of both the type-I error rate, as well as power to detect genetic regions already implicated in

susceptibility to disease.

In our simulations, the recently proposed method ACAT and the test based on the distribu-

tion of the sum of correlated association statistics (VEGAS, or TQ) had similar power. In

many situations, power of these two tests was substantially lower than that of the DOT. The

main advantage of ACAT is that it does not require any LD information. Our theory and simu-

lations also revealed previously unknown robustness of the TQ method with respect to LD

mis-specification: the method is valid and remains nearly as powerful when the sample LD

matrix is substituted by a single value, summarizing the extent of all pairwise correlations. TQ

also remains valid when the LD summary is obtained from a representative reference panel.

We stress again that compared to ACAT and TQ, our method’s limitation is that in order to

avoid possible bias, the LD information and the summary statistics should ideally come from

the same data set and missing genotypes should be imputed prior to its application. In general,

one should avoid utilization of external data as a source of LD information, as well as high

rates of unimputed missing genotypes. Although not pursued here, a possible way to improve

robustness of the DOT is to merge it with ACAT, that is, decorrelate the summary statistics

first, convert the results to P-values and then combine them with ACAT.
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Materials and methods

Genetic association tests based on summary statistics are often presented as a weighted sum [2,

4]. Let wi denote the weight assigned to individual statistic. The weighted statistics can then be

defined as Y2
i ¼ wiZ2

i with Z* MVN(μZ, SZ) and Y *MVN(μ, S), where μ = WμZ, S =

WSZW, and W ¼ diagð
ffiffiffiffi
w
p
Þ. The statistics Y2

i are marginally distributed as one degree of free-

dom chi-square variables with noncentralities m2
i . The overall statistic is then typically defined

as TQ ¼
PL

i¼1
Y2

i .

Joint distribution of association summary statistics

In this section, we derive parameters μ and S of the joint MVN distribution of summary statis-

tics. Under the null hypothesis, when none of the SNPs are associated with an outcome, μ = 0.

If individual SNP models do not include covariates, SZ equals the LD matrix, i.e., the correla-

tion matrix between the SNP values coded as 0, 1, or 2, reflecting the number of minor alleles

in a genotype. In the presence of covariates, SZ is a Schur complement of the submatrix of the

matrix of all predictor variables [6]. That is, the estimated correlation between association sta-

tistics ŜZ can be obtained by inverting the covariance or correlation matrix of all predictors,

selecting the SNP submatrix, inverting it back, and standardizing the result to correlation.

Under the alternative hypothesis, when some SNPs are associated with a trait y, let βj be the

regression coefficient for the j-th SNP. Then, a typical linear model that determines the trait

value is defined as:

y ¼ b0 þ
XL

j¼1

bj SNPj þ �; ð1Þ

where �* N(0, 1). The mean value of the summary statistics (i.e., noncentralities) can be

expressed as:

mj ¼
ffiffiffiffi
N
p Sjβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0Sβþ 1

p ¼
ffiffiffiffi
N
p

bj; ð2Þ

where Sj is the j-th column of S, bj = cor(y, SNPj) and N is the sample size. An intuitive expla-

nation of Eq (2) can be gained by considering the case of independent predictors, i.e.,S = IL. If

both the outcome and the set of predictors are standardized, then
Sjβffiffiffiffiffiffiffiffiffiffi
β0Sβþ1

p ¼
bjffiffiffiffiffiffiffiffiffiffiffiffiffiP

j
b2
j þ1

q , which

is a standardized regression coefficient. We note that Eq (2) is valid outside of the linear model

settings. For example, consider a latent variable model, where the continuous unobserved

(latent) variable yl is linear in predictors according to Eq (1), and the observed variable (disease

status) is y = 1 whenever yl> l and y = 0 otherwise, where l is some threshold. When such

binary outcome is analyzed by logistic regression, a good approximation to the noncentrality

values will be:

mj �
ffiffiffiffi
N
p
ðd � bjÞ: ð3Þ

If error terms � are assumed to be normally distributed, the reduction in correlation due to

dichotomization by the factor d can be expressed as d ¼ �ðlÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðlÞð1 � FðlÞÞ

p
, where ϕ(�),

F(�) are the probability and the cumulative densities of the standard normal distribution [77].

Under association, surprisingly, the correlation matrix between statistics is no longer S. Let

σij be the i, j-th element of S, and ρij be correlations between predicdictors and the outcome.

By using the multivariate delta method, we derived the i, j-th element of the correlation matrix
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R as follows:

Rij �
ðmimjðm

2
i þ m

2
j � NÞ � 2ðm2

i þ m
2
j � NÞNsij þ mimjNs2

ijÞ

ðm2
i � NÞðm2

j � NÞ
;

� rij þ r
2
ij

mimj

2N
� rij

m2
i m

2
j

N2
�
mimj

2N
;

ð4Þ

¼ rij þ r
2
ijbibj � rijb2

i b
2
j � bibj: ð5Þ

Details of the derivation of these equations are given in [78]. An alternative derivation of the

asymptotic covariance that includes the first two terms of Eq (5) has been given by Reshef et al.

[79], assuming Gaussian genotypes, an assumption justifiable provided that there is a lower

bound for minor allele frequency relative to sample size. Note that when some of SNP pairs

(i, j) are associated, summary statistics may become correlated even if there is no LD between

the SNPs, due to the last term, −bibj, in Eq (5). Eqs (2), (3), (4) and (5) allow one to study

power properties of the methods based on sums of association statistics, as well as to design

realistic simulation experiments, where summary statistics can be sampled directly from the

MVN distribution under the alternative hypothesis. That is, given effect sizes and the correla-

tion matrix among predictors, statistics can be immediately sampled from the MVN ðμ;RÞ
distribution. This approach avoids both the data-generating step and the subsequent computa-

tion of summary statistics from that data, leading to a substantial gain in computation time. In

certain situations, the difference in speed can be dramatic. For example, it is not trivial to sim-

ulate discrete (genotype) data given a specific LD matrix. Current state of the art methods tend

to be slow, because they rely on ad hoc iterative techniques, such as generation of multiple ran-

dom “proposal” data sets to fit the target correlation matrix [80].

Results of simulation experiments presented here were performed based on effect sizes

specified via the linear model (Eq 1). However, we verified (not presented here) the validity of

the proposed theory assuming logistic, probit, and Poisson regression models. We also note

that Conneely et al. presented theoretical arguments supporting the validity of the MVN joint

distribution of summary statistics under no association for a broad class of generalized regres-

sion models [6].

Distribution of sums of association summary statistics

As we noted at the beginning of the “Materials and Methods” section, weighted sums of sum-

mary statistics can be re-expressed as unweighted sums, where the mean and the correlation

parameters are modified to absorb the weights. The distribution of
PL

i¼1
Y2

i follows the

weighted sum of independent one degree of freedom non-central chi-square random variables.

Although this result is standard, the components of this weighted sum depend on the joint dis-

tribution of association summary statistics under the alternative hypothesis, and this distribu-

tion has not been previously derived. In the previous section, we provide the components of μ
and R that determine the weights and the noncentralities of chi-squares. Therefore,

PrðY0Y > tÞ ¼ Pr
XL

i¼1

Y2

i > t

 !

¼ Pr
XL

i¼1

liw
2

1;gi
> t

 !

; ð6Þ

g ¼ μ0 E
1
ffiffiffi
λ
p I
� �� �

� μ0 E
1
ffiffiffi
λ
p I
� �� �

; ð7Þ

where the weights, λ, are the eigenvalues of R and γ is the vector of non-centrality parameters.
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The columns of the matrix E are orthogonalized and normalized eigenvectors of R. The P-

value for the statistic TQ = Y0Y is obtained by setting μ to zero and then calculating this tail

probability at the observed value TQ = t. Note that the elements in R, and therefore the eigen-

vectors, the eigenvalues λi, and the noncentralities explicitly depend on the β-coefficients

through Eqs (2) and (5).

Our decorrelation approach uses a symmetric orthogonal transformation of the vector of

statistics Y to a new vector X, with the new joint statistic based on the sum of elements of X,

DOT ¼
PL

i¼1
X2

i . The orthogonal transformation is defined as follows. Let D ¼ 1ffiffi
λ
p I
� �

and

define X = H Y, where H = E D E0. The squared values, X2
i , are one degree of freedom indepen-

dent chi-square variables, thus DOT = X0X is a chi-square random variable with L degrees of

freedom and noncentrality value of:

gc ¼
XL

i¼1

gi ¼ μ0R� 1μ ¼ ðH μÞ0ðHμÞ: ð8Þ

The cumulative distribution of the new test statistic is thus,

PrðX0X > tÞ ¼ Prðw2
L;gc

> tÞ: ð9Þ

There are many ways to choose an orthogonal transformation, but a valid one for our pur-

poses needs to have the following “invariance to order” property. Suppose we sample an equi-

correlated MVN vector Y with a common correlation ρ for all pairs of variables. Before

decorrelating the vector, we permute its values to a different order. A permutation in this

example is a legitimate operation, because an equicorrelation structure does not suggest a par-

ticular order of Y values. After an orthogonal transformation of Y to X, the order of X entries

may change due to permutation but their values should remain the same. Moreover, for the

method to be useful in practice, we need the invariance to hold for a more general class of sta-

tistics than a simple sum of chi-squares,
PL

i¼1
X2

i . For example, the Rank Truncated Product

(RTP) is a powerful P-value combination method [12] that emphasizes small P-values:

the RTP statistic TRTP is the product of the k smallest P-values, k< L, or equivalently,

TRTP ¼
Pk

i¼1
½� lnðPiÞ�, where P1� P2 � � � �Pk. Note that −ln(Pi) is no longer a one degree of

freedom chi-square variable. Since DOT produces a set of independent one degree of freedom

chi-squares, to use it with with RTP, one can convert the set of chi-squares to P-values and

take the product of the first smallest values, which is the RTP statistic.

The “invariance to order” requirement implies that the value of DOT-statistic should not

change due to a permutation of (equicorrelated) values in Y. Not all orthogonal transforma-

tions meet the invariance to order criteria. It can be easily verified that neither the inverse Cho-

lesky factor (C−1) transformation, X = C−1 Y, nor another commonly used transformation

X ¼ E 1ffiffi
λ
p I
� �

Y, have the invariance to order property, except in the special case of the sum of

L chi-squared variables
PL

i¼1
X2

i . To clarify, we call this statistic “the special case,” because, for

example, in the case of RTP with k = L, the statistic
PL

i¼1
� lnðPiÞ is no longer the sum of one

degree of freedom chi-squares. Moreover, some transformations of equicorrelated data to

independence, such as the Helmert transformation, may change values of X depending on the

order of values in Y, even in a special equicorrelation case of ρ = 0 (i.e., when variables in Y are

independent). The proposed H, as defined above, has both the invariance to order property

and can be used with P-value transformations other than that to the one degree of freedom

chi-square.
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Theoretical analysis of power

For exploration of power properties, it is useful to first consider the equicorrelation case,

because in this case it is possible to derive illustrative equations that relate power to: (1) the

number of SNPs, L; (2) the common correlation value for every pair of SNPs, ρ; and (3) the

mean values of association statistics, μ. In the equicorrelation case, the correlation matrix can

be expressed as Rr ¼ ð1 � rÞIþ r11
0. The eigenvalue vector of Rr has length L but only two

distinct values, λ = {1 + ρ(L − 1), 1 − ρ, . . ., 1 − ρ}.

For decorrelated statistic DOT, we derived a simple form of L noncentralities by utilizing

the Helmert orthogonal eigenvectors [81, 82] as follows:

d1 ¼
ð
PL

i¼1
miÞ

2

Lð1þ ðL � 1ÞrÞ
¼

L �μ2

1þ ðL � 1Þr
; ð10Þ

dj>1 ¼
Xj� 1

i¼1

ðmi � mjÞ
2

Lð1 � rÞ
; ð11Þ

where �μ is the average of the values in μ. Next, let

ds ¼
XL

j¼2

dj ¼ ðL � 1Þ
�d

2ð1 � rÞ
; ð12Þ

where �d is the average of dij = (μi − μj)2, over all pairs of μi and μj, such that i< j. The values in

dij are the pairwise squared differences in the standardized effect values as captured by the vec-

tor μ. This representation yields the noncentrality of DOT as a function of the common corre-

lation and the mean standardized effect size as:

gc ¼
L �μ2

1þ ðL � 1Þr
þ ds: ð13Þ

Note that as L increases, the first term in Eq (13) approaches �μ2=r, while the sum of the

remaining noncentralities, δs, increases linearly with L, as long as the average of the squared

effect size differences, �d, does not depend on L. Thus, the noncentrality of the decorrelated

statistic DOT is expected to steadily increase with L and become approximately

�μ2=rþ ðL � 1Þ
�d

2ð1� rÞ
.

Next, we consider the distribution of the statistic TQ = Y0Y. Note that
PL

i¼1
di ¼

PL
i¼1
gi,

where γi’s are the noncentralities for TQ and δi’s are the noncentralities of DOT. In the equi-

correlation case, the distribution TQ reduces to the weighted sum of two chi-square variables,

because there are only two distinct eigenvalues that correspond to Rr, namely:

PrðY0Y > tÞ ¼ Prfð1þ ðL � 1ÞrÞw2
1;g1
þ ð1 � rÞw2

L� 1;gc � g1
> tg ð14Þ

¼ Pr w2
1;g1
þ

1 � r

1þ ðL � 1Þr
w2

L� 1;gc � g1
>

t
1þ ðL � 1Þr

� �

: ð15Þ

The term 1� r

1þðL� 1Þr
w2
L� 1;gc � g1

in Eq (15) approaches the constant
�dð1� rÞ

2r2 þ
1� r

r
as L increases. There-

fore, under the null hypothesis, the distribution of the quadratic form Y0Y can be well approxi-

mated by the location-scale transformation of the one degree of freedom chi-squared random
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variable:

Pr
Y0Y � ðL � 1Þð1 � rÞ

ðL � 1Þrþ 1
> w2

a

� �

� a; ð16Þ

where w2
a

is 1 − α quantile of the one degree of freedom chi-square distribution.

To summarize, we just showed that the distribution of the decorrelated set of variables

gains in the total noncentrality with L, while the distribution of the sum Y0Y depends heavily

only on the noncentrality of the first term, γ1. The approximate power of the test based on the

statistic TQ = Y0Y can be computed as:

PrðTQ > tÞ � 1 � CðtÞ; ð17Þ

t ¼ w2
a
þ

1 � r�

r�
þ

1

2

ð1 � r�Þ�d
ðr�Þ

2
; ð18Þ

where r� ¼

ffiffiffiffiffi

r2
ij

q

, m� ¼ ð �jμjÞ2 and C(�) is a one degree of freedom chi-square CDF with the

noncentrality Lμ�/((L − 1)ρ� + 1), evaluated at t. The ceiling noncentrality value γ�, as L!1,

is thus

g� � m�=r�: ð19Þ

Let us re-emphasize the point that a test based on the distribution of the TQ statistic is

expected to be less powerful than DOT in the presence of heterogeneity among effect sizes.

Heterogeneity in LD will contribute to the difference in power. Starting with an equicorrela-

tion model, we can introduce perturbations to the common value, ρ> 0, by adding noise

derived from a rank-one matrix U U0, where U is a vector of random numbers. Specifically,

perturbations can be added as B ¼ Rr þ UU0. Next, B should be standardized to correlation

as BR ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=DiagðBÞ

p
IgBf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=DiagðBÞ

p
Ig. When elements in U are close to zero, the

matrix BR deviates from Rr by only a small jiggle around ρ. Matrix BR provides a way to con-

struct random correlation matrices in a controlled manner, where the degree of departure

from the equicorrelation is controlled via the range of the elements in U. The utility of BR is

that it represents a perturbation of Rr, and we expect our power results under equicorrelation

case to hold approximately, at least for small jiggles around ρ. Nevertheless, it turns out that

even for a more general correlation structure, our power approximations still hold, which we

show via extensive simulation studies.

LD patterns from the 1000 Genome Project

In a separate set of simulation experiments, we utilized realistic LD patterns using data from

the 1000 Genomes Project [83]. For every simulation experiment, we selected a random set of

consecutive SNPs from a chromosome 17 region, that was spanning over 100 Kb and included

SNPs from the gene FGF11 to the gene NDEL1. There was no particular reason for choosing

this chromosome, but we expect our results to be generalizable to other regions of the genome

in the sense that LD structure among SNPs on chromosome 17 is representative of LDs

throughout the genome. Perhaps more important, and a potential limitation of our simula-

tions, is the choice of the association model. That is, the model assumed high heterogeneity in

effect sizes and statistics were combined for only proxy SNPs (those SNPs with zero effect

sizes). Each stretch of consecutive SNPs contained from 10 to 200 SNPs with the minimum

allele frequency 0.025. A random portion of SNPs in every set carried no effect on the outcome
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on its own, and we considered these SNPs to be proxies for causal variants due to LD. The

median LD correlation varied from approximately -0.6 to 0.98 between random stretches of

SNPs. The number of proxy SNPs varied from 3 to 197 across simulations. The sample size

was also set to be random and varied from 500 to 3000 across simulations. Effect sizes for

causal variants were modeled by β-coefficients, as given by Eq (1), and drawn randomly from

the interval [-0.4, 0.4]. Different combinations of the number of causal SNPs, their individual

effect sizes and LD patterns among them resulted in total proportion of phenotypic variance

explained (i.e., the multiple correlation coefficient) varying from 10−5% (fifth percentile) to 7%

(ninety-fifth percentile) with the mean value of 2.5% and the median value of 1%. Summary

statistics were sampled from the MVN distribution with parameters given by Eqs (2) and (4).

To check the validity of our approach of sampling the summary statistics directly, we first con-

ducted a separate set of extensive simulation experiments, in which power and type-I error

rates were obtained by simulating individual data and then TQ and DOT statistics were com-

puted by running the actual regression analysis. We confirmed excellent agreement between

the two approaches, thus most of the subsequent simulations were conducted by sampling the

summary statistics directly (these results are not shown here).
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60. Imani MM, Lopez-Jornet P, Pons-Fuster López E, Sadeghi M. Polymorphic Variants of V-Maf Muscu-

loaponeurotic Fibrosarcoma Oncogene Homolog B (rs13041247 and rs11696257) and Risk of Non-

Syndromic Cleft Lip/Palate: Systematic Review and Meta-Analysis. International journal of environmen-

tal research and public health. 2019; 16(15):2792.

61. Liu H, Leslie EJ, Carlson JC, Beaty TH, Marazita ML, Lidral AC, et al. Identification of common non-cod-

ing variants at 1p22 that are functional for non-syndromic orofacial clefting. Nature communications.

2017; 8:14759. https://doi.org/10.1038/ncomms14759 PMID: 28287101

62. Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang ZZ, et al. Genome-wide association study in esophageal

cancer using GeneChip mapping 10K array. Cancer research. 2005; 65(7):2542–2546. https://doi.org/

10.1158/0008-5472.CAN-04-3247 PMID: 15805246

63. Bueno M. Association of GWAS loci with nonsyndromic cleft lip and/or palate in Brazilian population.

Luciano Abreu Brito. 2016; p. 99.

64. Hikida M, Tsuda M, Watanabe A, Kinoshita A, Akita S, Hirano A, et al. No evidence of association

between 8q24 and susceptibility to nonsyndromic cleft lip with or without palate in Japanese population.

The Cleft Palate-Craniofacial Journal. 2012; 49(6):714–717. https://doi.org/10.1597/10-242 PMID:

21981552
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