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Microbial pathogens have evolved numerous mechanisms to hijack host’s systems,
thus causing disease. This is mediated by alterations in the combined host-pathogen
proteome in time and space. Mass spectrometry-based proteomics approaches
have been developed and tailored to map disease progression. The result is
complex multidimensional data that pose numerous analytic challenges for downstream
interpretation. However, a systematic review of approaches for the downstream analysis
of such data has been lacking in the field. In this review, we detail the steps of a typical
temporal and spatial analysis, including data pre-processing steps (i.e., quality control,
data normalization, the imputation of missing values, and dimensionality reduction),
different statistical and machine learning approaches, validation, interpretation, and the
extraction of biological information from mass spectrometry data. We also discuss
current best practices for these steps based on a collection of independent studies
to guide users in selecting the most suitable strategies for their dataset and analysis
objectives. Moreover, we also compiled the list of commonly used R software packages
for each step of the analysis. These could be easily integrated into one’s analysis
pipeline. Furthermore, we guide readers through various analysis steps by applying
these workflows to mock and host-pathogen interaction data from public datasets. The
workflows presented in this review will serve as an introduction for data analysis novices,
while also helping established users update their data analysis pipelines. We conclude
the review by discussing future directions and developments in temporal and spatial
proteomics and data analysis approaches. Data analysis codes, prepared for this review
are available from https://github.com/BabuLab-UofR/TempSpac, where guidelines and
sample datasets are also offered for testing purposes.

Keywords: temporal proteomics, spatial proteomics, host-pathogen interactions, clustering, principal component
analysis, self-organizing maps, data imputation, normalization

INTRODUCTION

Intracellular pathogens, including viruses, bacteria (Auweter et al., 2011; Schweppe et al., 2015;
Lopez et al., 2016), parasites, and fungi (Iyer et al., 2007; Gilbert et al., 2015; May and Casadevall,
2018; Eisenreich et al., 2019), cause numerous deaths and impose staggering healthcare costs
(Kamaruzzaman et al., 2017). Spatially and temporally intricate progression of interplay between
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the host and the pathogen results in disease. This interplay
in host-pathogen interactions (HPI) is highly complex and
dynamic. Although mechanistic details vary, all intracellular
pathogens need to enter the host cell, avoid or exploit the
host’s defense mechanisms, and exploit the host’s resources (e.g.,
lipids, proteins, and metabolites) for replication and spread to
neighboring cells (Jean Beltran et al., 2016). Studies of HPI-
dependent alterations to the host cell’s proteome not only reveal
components required for pathogenesis but also provide critical
insights into host processes (e.g., see Alto and Orth, 2012; Jo, 2019
and references therein).

A major key to combatting intracellular pathogens lies in
the understanding of how they hijack host systems. This, in
turn, requires the mapping the spatial and temporal proteome
changes underlying disease progression. These may include
changes in protein abundance, interactions, localizations,
or posttranslational modifications (Ribet and Cossart, 2010;
Gagarinova et al., 2017; Scott and Hartland, 2017; Grishin
et al., 2021). For example, Weekes et al. (2014) mapped
proteome changes occurring during the course of the human
cytomegalovirus infection, thereby identifying key temporal
changes and potential new targets for antiviral therapies.
Likewise, pathogens actively regulate organelle dynamics
(Auweter et al., 2011; Schweppe et al., 2015; Lopez et al., 2016;
Selkrig et al., 2020).

Technological advances in mass spectrometry (MS)-based
proteomics and bioinformatics allow achieving temporal and
spatial resolution of the infection process at previously unseen
levels (e.g., see Lopez et al., 2016; Jean Beltran et al., 2017;
Selkrig et al., 2020 and references therein). See Kumar and
Mann (2009) and Jean Beltran et al. (2016) for an overview of
quantitative proteomic approaches and relevant computational
methods. The typical output of a quantitative MS experiment
that maps temporal and/or spatial changes during an infection
includes highly complex, multi-dimensional data matrices with
protein abundances across space or time represented by ion
intensities or spectral counts, depending on the MS approach.
Such data are challenging to analyze and interpret. However,
a review covering such downstream analyses has been lacking.
We present frameworks for the analysis of temporal (section
“Temporal Analysis of Proteome Changes in an Infected
Cell”) and spatial (section “Exploring Subcellular Proteome
Organization During Infection”) proteomic data from HPI
studies, focusing on specific examples and robust methods
adapted from statistics and machine learning. We also discuss
measures for validating the results and describe how these
frameworks can be implemented in R programming language,
suggesting appropriate software packages where applicable
(all packages are summarized in Table 1). Moreover, we
combined useful functions into workflows in R programming
language. These are available at https://github.com/BabuLab-
UofR/TempSpac. The workflows we discuss and present can
be used to extract biological meaning from MS data to model
disease progression and drive therapeutics discovery. Although
examples in this review focus on intracellular pathogens, the
same pipelines can be used, e.g., in the analysis of genetic or
environment-induced disease.

TABLE 1 | List of packages and useful functions.

Sections Packages Descriptions and useful
functions

References

Unsupervised
clustering
(section
“Clustering
Analyses”)

stats hclust() = agglomerative
hierarchical clustering

RStudio
Team, 2020

cuttree() = control the number of
generated clusters

kmeans() = K-mean clustering

cluster diana() = divisive hierarchical
clustering

Maechler
et al., 2019

agnes() = agglomerative
hierarchical clustering

fanny() = fuzzy clustering

hybridHclust mutualCluster() = mutual cluster Chipman and
Tibshirani,
2006

Mfuzz mfuzz() = fuzzy clustering Kumar and
Futschik,
2007

e1071 cmeans() = fuzzy clustering Meyer et al.,
2020

ppclust fcm() = fuzzy clustering Cebeci, 2019

pracma Kmeanspp() = k-means++
clustering algorithm

Borchers,
2019

Kohonen som() = self-organizing map (som)
clustering

Wehrens and
Kruisselbrink,
2019

clValid clValid() = clMethods argument
specifies clustering methods e.g.,
“hierarchical,” “kmeans,” etc.

Brock et al.,
2011

clValid() = validation argument
specifies validation measures e.g.,
“biological,” “internal,” etc.

ClusterR external_validation() = external
measures

Mouselimis
et al., 2020

factoextra fviz_nbclust() = define optimal
number of clusters

Kassambara
and Mundt,
2020

ggfortify autoplot() = output appropriate
plots based on the type of
unsupervised clustering

Tang et al.,
2016

Supervised
clustering
(section
“Predicting
Protein
Localizations in
Each
Condition”)

pRoloc knnClassification() = k-nearest
neighbors (k-NN) algorithm

Gatto et al.,
2014b

knnOptimisation() = classification
parameter optimization for k-NN

svmClassification() = support vector
machine (svm) algorithm

svmOptimisation() = classification
parameter optimization for svm

nnetClassification() = neural net
(nnet) algorithm

nnetOptimisation() = classification
parameter optimization for nnet

nbClassification() = naïve bayes (nb)
algorithm

nbOptimisation() = classification
parameter optimization for nb

(Continued)
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TABLE 1 | Continued

Sections Packages Descriptions and useful
functions

References

caret train() = to fit a model Kuhn et al.,
2020

trainControl() = control parameters
for training
predict() = predict probability
scores

Data
normalization
(sections
“Quantitative
Temporal Data
Visualization,
Preprocessing,
and Quality
Control” and
“Data
Normalization”)

edgeR caclNormFactors() = method
argument specifies the type of
normalization (e.g., TMM)

Robinson
et al., 2010

DESeq2 estimateSizeFactors() = compute
scaling factor for normalization by
RLE method

Love et al.,
2014

counts() = retrieve normalized
matrix counts

DEP normalize_vsn() = perform
normalization using that variance
stabilization normalization (Vsn)

Zhang et al.,
2018

vsn Justvsn() = perform normalization
using variance stabilization
normalization (Vsn)

Huber et al.,
2002

MASS lm() = perform linear regression Venables and
Ripley, 2002

Missing value
imputation
(sections
“Quantitative
Temporal Data
Visualization,
Preprocessing,
and Quality
Control” and
“Missing Value
Imputation”)

pcaMethods llsImpute() = perform imputation of
missing value using local least
squares approach (LLS)

Stacklies
et al., 2007

bnstruct knn.impute() = perform imputation
of a missing value using k-NN

Franzin et al.,
2017

DEP impute() = missing value imputation;
fun argument specifies imputation
method e.g., k-NN, “QRILC,” etc.

Zhang et al.,
2018

mice mice() = perform imputation of
missing values using mice

Van Buuren
and
Groothuis-
Oudshoorn,
2010

MSstats MBimpute() = impute missing
values

Choi et al.,
2014

Differential
expression
analysis
(Section
“Statistical
Analysis of
Quantitative
Temporal
Proteomics
Data”)

MSstats detect differentially expressed
proteins in both label-free and
labeling-based experimental
approaches

Choi et al.,
2014

(Continued)

TABLE 1 | Continued

Sections Packages Descriptions and useful
functions

References

MSstatsTMT detect differentially expressed
proteins in experiments with
isobaric labeling

Huang et al.,
2020

DEP detect differentially expressed
proteins in experiments from both
label-free and labeling-based
experimental approaches

Zhang et al.,
2018

limma detect differentially expressed
proteins when sample sizes are
small (<10)

Ritchie et al.,
2015

DESeq2 detect differentially expressed
proteins when sample sizes are
small (<10)

Love et al.,
2014

edgeR detect differentially expressed
proteins when sample sizes are
small (<10)

Robinson
et al., 2010

Dimensionality-
reduction
techniques
(sections
“Quantitative
Temporal Data
Visualization,
Preprocessing,
and Quality
Control” and
“Dimensionality
Reduction
Tools for
Visualizing
Organellar
Map”)

tnse tnse() = t-SNE dimensionality
reduction

Donaldson,
2016

umap umap() = UMAP dimensionality
reduction

Konopka,
2020

stats prcomp() = PCA dimensionality
reduction

RStudio
Team, 2020

princomp() = PCA dimensionality
reduction

Additional scripts, written for this review are provided at https://github.com/
BabuLab-UofR/TempSpac.

TEMPORAL ANALYSIS OF PROTEOME
CHANGES IN AN INFECTED CELL

Several temporal studies employed quantitative whole-cell
proteomics in order to quantify changes occurring during the
course of a productive viral infection, helping elucidate HPI
mechanisms, immune responses, and mechanisms of immune
system evasion by the pathogen (Weekes et al., 2014; Greenwood
et al., 2016; Clements et al., 2017; Caller et al., 2019; Soday et al.,
2019). For instance, Soday et al. (2019) achieved extensive host
and viral proteome coverage, and their downstream analyses
revealed multiple pathways dysregulated in response to Vaccinia
virus infection. These included antiviral factors, collagens, and
interferon-stimulated genes (e.g., IFITM3) (Soday et al., 2019).

Moreover, quantitative temporal whole-cell proteomics in
the presence and absence of a specific viral protein has been
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used to elucidate how the selected viral protein contributes to
disease (e.g., Lapek et al., 2017; Greenwood et al., 2019). For
instance, Lapek and colleagues reported that Vpr, a human
immunodeficiency virus protein, mediated the modulation
of serine/arginine-rich protein-specific kinases, spindle and
centromere proteins, and others (Lapek et al., 2017). Thus,
a potential role for Vpr in RNA splicing via serine/arginine-
rich protein-specific kinases has been suggested (Lapek et al.,
2017). Although other approaches would need to be employed
to distinguish direct vs. indirect effects of specific viral proteins,
this approach provides a framework for dissecting the activities
of specific proteins in pathogenesis.

Although whole-cell temporal quantitative proteomic analyses
reveal key pathways and proteins affected by infection, they do
not contain spatial information about protein dynamics within
subcellular compartments, which is essential to understand the
organization of proteome upon infection and the underlying
mechanisms. Organelle temporal proteomics reveal dynamic
changes on sub-cellular level with higher resolution than whole-
cell proteomics due to better ability to detect low-abundance
proteins. Moreover, temporal proteomic data from whole cells
and subcellular fractions can be integrated in order to compare
the total abundance of a given protein in whole-cell lysate vs.
a specific organelle to better understand disease progression
and pathogenesis strategies. For instance, Weekes et al. (2014)
quantified temporal human cytomegalovirus-induced changes
both in whole-cell lysates and at cell surface. The results
indicated that human cytomegalovirus infection resulted in
rapid depletion of CD155 (poliovirus receptor, PVR) from the
cell surface at the same time as the total amount of CD155
in the whole cell increased (Weekes et al., 2014). CD155
is a ligand involved in the activation of natural killer cell-
mediated immunity against human cytomegalovirus (Tomasec
et al., 2005). Therefore, sequestration of CD155 may be
one of the pathogenesis strategies of human cytomegalovirus
(Weekes et al., 2014).

In a temporal proteomic HPI study, infected and uninfected
cells or organelles are collected and processed for quantitative
MS (Figure 1). The MS data are then analyzed by specialized
software, such as MaxQuant (Cox and Mann, 2008; Chen et al.,
2020). As a result, multidimensional data with information about
protein identities and abundances in infected vs. uninfected cells
across time are obtained. Sections “Quantitative Temporal Data
Visualization, Preprocessing, and Quality Control”–“Evaluation
Measures for Temporal Clustering” present a robust workflow for
the downstream analysis of such data (Figure 2).

Quantitative Temporal Data Visualization,
Preprocessing, and Quality Control
The data generated by temporal profiling can be represented in
a matrix format with features (i.e., proteins) and different time
points along rows and columns, respectively Figure 2A. The first
step in data analysis is to check data quality by using a set of
metrics or through visualization. Here, first, data distribution,
variation, and other descriptive statistics are assessed (e.g., using
box plot, line chart, histogram, and density plot). There is a
handy multipurpose function called summary() in R language

(RStudio Team, 2020) that provides descriptive statistics for each
variable or column and reports the number of missing values in
the dataset. One can also directly visualize the temporal profile
of each protein by plotting its abundance or relative intensity
across different time points (Figure 2Bi). Such plots help detect
misidentified features (i.e., proteins) with inconsistent temporal
quantitative profiles or missing values.

Data preprocessing includes the imputation of missing
values and the normalization of the data (Figures 2Bi,ii).
Data preprocessing is essential in the analysis of quantitative
proteomics data (Karpievitch et al., 2012). For example, data
may be missing for low-abundance proteins (Karpievitch et al.,
2012). These missing values may be removed or imputed. The
easiest way to impute a missing value in temporal data is to
fit a curve to the incomplete temporal data, and then missing
abundance could be imputed based on the fitted values in the
curve. However, this method has a disadvantage of introducing
potential artifacts as the time series will be constrained to follow
the fitted curve (Du et al., 2008). It is usually assumed that there
is no dramatic change in abundance values between nearest time
points; therefore, abundance values at the nearby time points
could be used to impute each missing abundance value (Du
et al., 2008). The imputation of missing values in time-series
datasets and the effect of different imputation methods on the
resulting inferences have been extensively studied for microarray
analyses. The same methods can be applied to the temporal
proteomic data. For instance, Chiu et al. (2013) evaluated the
performance of nine different imputation algorithms. LLS-like
algorithms [local least squares (LLS), iterative local-least-squares
(ILLS), and sequential local-least-squares (SLLS)] outperformed
other algorithms for time-series datasets. The LLS imputation
algorithm (Kim et al., 2005) first identifies genes similar to the
gene with a missing value by applying a distance measure (e.g.,
Euclidean Distance or Pearson correlation coefficient). Then, the
missing value is estimated by representing the target gene as a
linear combination of similar genes. This method is implemented
as llsImpute() function in the pcaMethods Bioconductor package
(Stacklies et al., 2007) in the R environment.

Data normalization aims to eliminate systematic biases to
allow statistical inferences (Karpievitch et al., 2012). MS-based
data are typically biased due to a number of factors. One of
them is inadequate normalization before LC/MS (Wisìniewski
and Mann, 2016; Chen et al., 2020). Therefore, selecting an
appropriate normalization method is essential. The concept of
data normalization in transcriptomics and proteomics has been
explored extensively (see Karpievitch et al., 2012; Välikangas et al.,
2018; Chen et al., 2020), albeit not in the context of temporal
quantitative proteomics data. The dynamic pattern of protein
abundances is a key measure in a time-course study. Different
time points can be normalized against the same reference sample,
included in each MS run (Du et al., 2008; Li et al., 2018; Nusinow
and Gygi, 2020). For instance, the relative intensity for each
protein can be normalized to the sum or average of all protein
intensities in the reference sample (Nusinow and Gygi, 2020).
However, in this case, biases may persist (see Murie et al., 2018
and references therein). Therefore, data may instead be adjusted
for protein loading across all channels/samples by normalizing
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FIGURE 1 | Temporal MS-based proteomic HPI studies combine advanced experimental platforms, instrumentation, and software to study alterations in protein
abundances over the course of an infection. Following infection, cells (whole-cell temporal proteomics) or organelles (organelle temporal proteomics) are harvested at
different time points post-infection, followed by lysis and proteolysis. The resulting peptides are then analyzed by label-free or multiplexed label-based (e.g., TMT or
SILAC) quantitative MS (for a review, see Jean Beltran et al., 2017). Software, such as MaxQuant can be used to process the data and generate a multidimensional
matrix that contains information about protein identities (N) and their relative abundances across X time points in infected vs. uninfected samples. This is then used to
assess temporal changes in cell proteome during infection.

the intensity of each particular protein to mean, median, or
overall sum of all intensities across all channels/samples (Jean
Beltran et al., 2016; Soday et al., 2019; Nusinow and Gygi,
2020). For instance, the “total count” approach aims to equalize
protein loading across all channels/samples using a normalization
factor, which is the sum of all intensities (or spectral counts)
in a given MS run.

However, the application of a more sophisticated
normalization method would be welcome when comparing
multiple experimental conditions (e.g., “infected” vs.
“uninfected”) to identify differentially expressed proteins.
When multiple conditions are included in the analysis, the
“total count” approach can bias the results to be skewed toward
one experimental condition if proteins between biological
conditions are disproportionately represented. The TMM
[“weighted trimmed mean of M-values (i.e., log-intensity

ratios)”] normalization may provide a more robust approach to
calculate a normalization factor (Robinson and Oshlack, 2010).
The TMM normalization method is based on the hypothesis
that most features (e.g., proteins) are not differentially expressed.
It selects one sample as a reference and computes a TMM
normalization factor for the remaining non-reference samples
(Robinson and Oshlack, 2010). This approach is employed in
the edgeR Bioconductor package as the default normalization
method (Robinson et al., 2010). Like TMM, “relative log
expression” (RLE) normalization assumes that most genes or
proteins are not differentially expressed. For a given sample, the
RLE scaling factor is determined by dividing the observed counts
of each feature (e.g., protein) by its geometric mean across all
samples. This normalization method is included in the DESeq
and DESeq2 Bioconductor packages (Anders and Huber, 2010;
Love et al., 2014). The TMM and RLE have been thoroughly
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FIGURE 2 | A schematic of temporal proteomic data analysis pipeline. After upload (A), data pre-processing and quality control steps are performed (B). These
include the imputation of missing values (i), normalization (ii), and sample-level quality control, e.g., using principal component analysis (PCA, iii). (C) Differential
expression analysis can then be performed to identify proteins with significantly altered expression between states, for example, different relative (infected/mock)
expression between time points. Results can be visualized in (i) an MA plot [log fold change, M, vs. log of the mean expression level between conditions, (A)] or in (ii)
a volcano plot. Subsequently, clustering analysis can be performed to group proteins with similar temporal expression patterns (D). Here, we applied hierarchical
clustering, which is displayed in conjunction with a heat map visualization of the clustered data. The dendrogram was cut at the level indicated by the dashed line to
yield five clusters. (ii) Each cluster’s temporal profiles can be visualized in a simple plot with relative abundances (y-axis) of proteins within each cluster across all time
points (x-axis). Finally, functional enrichment analysis of each of these clusters could provide information on pathways and cellular processes rewired in response to
an infection (E). (i) Groups for the analysis can be derived from annotations (e.g., gene ontology; Gene Ontology Consortium, 2004), a pathway database (e.g.,
KEGG; Kanehisa et al., 2012, Reactome; Croft et al., 2011), or a combination of these (e.g., DAVID; Sherman et al., 2007, PANTHER; Mi et al., 2013, and g:Profiler;
Reimand et al., 2007). (ii) Since many inter-dependent gene sets may be enriched, organizing results into a network, e.g., by means of EnrichmentMap (Merico et al.,
2010) can be useful. Here, gene sets that share many proteins are grouped together, thereby offering an intuitive visualization of the results. We used 1,000 randomly
selected proteins from Weekes et al. (2014) experiment 1 to exemplify data analysis steps.
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investigated. They effectively eliminate biases in RNA sequencing
data due to unequal library size (Dillies et al., 2013), as well
as in proteomic data (Branson and Freitas, 2016). They have
been developed for spectral count data but should be applicable
to intensity measurements as well. Indeed, normalization
methods applicable to count data (e.g., RNA sequencing, peptide
counts) have been successfully used with proteomic intensity
measurements (Gatto et al., 2014a). Note that both, spectral
counts and ion intensity values, should be log2 transformed
[i.e., log2(value+1)] to normalize their distributions prior to
using DESeq2 Bioconductor package (Huang et al., 2020). Log2
normalization is included in edgeR package, so it is not required
prior to TMM normalization by means of edgeR package.

The selection of the optimum normalization approach is
greatly dependent on the experimental design. The efficiency
of each normalization method can be evaluated using box
(Figure 2Bii) or MA (log fold change, M, vs. log of the mean
expression level between conditions, A) plots (Figure 2Ci). The
MA plots are a convenient pairwise representation of conditional
data commonly employed in proteomics (Breitwieser et al., 2011;
Gatto and Lilley, 2012). After appropriate normalization, most
data points in an MA plot will be clustered around M = 0, while
points away from M = 0 identify differentially expressed proteins
(Figure 2Ci; Chen et al., 2020). Moreover, if data preprocessing
and normalization were effective, patterns are expected to emerge
in subsequent analyses steps (see below).

Following data normalization, visualizing entire dataset in one
figure is often needed to evaluate data quality and structure.
Principal component analysis (PCA) allows the visualization of
high-dimensional data in a reduced set of dimensions, generally
in two or three, while retaining as much of the initial information
as possible (Figure 2Biii). It does this by transforming correlated
variables into fewer uncorrelated variables called principal
components (PCs), which are then arranged according to the
amount of variability described in each component. The first PC
accounts for the most variation in the original data, the second
PC accounts for most of the residual variation, etc. (Lever et al.,
2017). Each succeeding component represents as much of the
remaining variability as possible: it represents more variability
than the PC after it and less than the one before, with the last PCs
containing mostly noise and very little information. Therefore,
well-structured datasets could be visualized as a projection of
the first two or three PCs in a 2-D or a 3-D plot (Figure 2Biii);
such a plot is a simple yet informative depiction of the whole
dataset. If data structure exists, proteins with similar informative
characteristics (e.g., with similar functional annotations) will be
grouped together in a 2-D or a 3-D plot, and dissimilar groups
(i.e., with divergent unrelated functions) would be located far
from each other. However, if normalization and the correction
of technical artifacts were insufficient, proteins from different
technical replicates may form distinct clusters instead.

PCA is an unsupervised machine learning technique, meaning
samples are not associated with a class label. Instead, a pattern in
the graphical representation results from similarities in attributes.
The use of an unsupervised PCA clustering without external
information is an efficient quality control and data analysis
approach. For example, PCA helps detect the presence of batch

effects and outliers: it will reveal how replicates cluster together.
If, for example, a batch effect is apparent, normalization was not
sufficient and needs to be adjusted. Furthermore, PCA allows
an unbiased representation of the main patterns in the data
before biologically relevant parameters are mapped (e.g., subjects
clustering in line with predicted treatment group) (Figure 2Biii).
If no structure is evident, one would not expect well-defined
temporal clusters, and hence, the statistical inferences from
such data will be challenging. PCA has been widely applied in
the analysis of proteomic data (Purohit and Rocke, 2003; Hou
et al., 2017; Itzhak et al., 2019; Santana-Codina et al., 2020),
as well as in temporal proteomic HPI studies (Diamond et al.,
2010; Weekes et al., 2014; Greenwood et al., 2019). However,
if more than three PCs are required to describe at least 60%
of variance in the data (Hair et al., 2009), other dimensionality
reduction tools must be used to visualize the dataset (see sections
“Self-Organizing Map” and “Dimensionality Reduction Tools for
Visualizing Organellar Map”). The stats (RStudio Team, 2020)
package in R has two built-in functions including prcomp() and
princomp() that can be used to perform PCA analysis. Other
packages, such as factoextra (Kassambara and Mundt, 2020) and
ggfortify (Tang et al., 2016) also offer users ggplot2-based elegant
visualization capabilities.

Statistical Analysis of Quantitative
Temporal Proteomics Data
Following data pre-processing, the next step is to accurately
identify proteins with significantly different expression between
samples. The outcome of differential analysis is often visualized
via MA or Volcano plots (Figures 2Ci,ii; Kucukural et al., 2019).
The identification of differentially expressed proteins across time
points can help pinpoint predictive factors or biomarkers for
disease. A traditional t-test; its nonparametric equivalent, the
Wilcoxon test; or the analysis of variance (ANOVA) are the
most standard approaches to delineating significantly altered
protein abundances (Diamond et al., 2010; Weekes et al., 2014;
Itzhak et al., 2019; Soday et al., 2019). Another method to
identify differentially expressed proteins from both label-free and
labeling-based experimental approaches is offered by MSstats.
MSstats is a Bioconductor package in R environment that
relies on linear mixed models. It takes the data input, detects
study design, and, based on the design, fits an appropriate
linear mixed model to discover differentially expressed proteins
(Choi et al., 2014). The MSstatsTMT Bioconductor R package
is also available for applying Empirical Bayes procedure in R
to detect differentially expressed proteins in experiments with
isobaric labeling (Huang et al., 2020). Furthermore, the DEP
Bioconductor package in R can be used to detect differentially
expressed proteins from both label-free and labeling-based
experimental approaches (Zhang et al., 2018).

However, in a shotgun discovery-based proteomics
experiment, sample sizes are often small (<10), which results
in ambiguity in the estimation of variability. This, in turn, may
result in a non-significant p-value for proteins with a substantial
fold change due to large sample variance and a significant p-value
for proteins with small fold change due to small sample variance.
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To overcome this issue, Kammers et al. (2015) improved
the detection of differentially expressed proteins by applying
moderated t-test statistics from an empirical Bayes method called
“Linear Models for Microarray Data” (limma). Limma adjusts
variances toward a pooled estimate based on all sample data. This
results in a more powerful detection of differences, especially for
experiments with a relatively small sample size (Smyth, 2004)
while still allowing a distribution of variances (Kammers et al.,
2015). Limma is available as a Bioconductor package in R (Ritchie
et al., 2015), and has been frequently used for proteomics data
analyses (Brusniak et al., 2008; Margolin et al., 2009; Ting et al.,
2009; Schwämmle et al., 2013; Zhao et al., 2013; Greenwood
et al., 2019). DESeq (Anders and Huber, 2010) and edgeR
(Robinson et al., 2010) are Bioconductor R packages suitable for
differential expression analyses with relatively small proteomic
datasets (Branson and Freitas, 2016). Differential expression
can likewise be assessed by the generalized linear mixed-effects
model (GLMM) (Choi et al., 2008), linear mixed-effects model
(Hill et al., 2008), or quasi-likelihood modeling generalized linear
model (GLM) (Li et al., 2019).

Isobaric-labeling based MS approaches are suffering from
“ratio compression,” i.e., the estimated protein abundance ratio
level across samples is typically underestimated. This occurs
due to interference with quantification from co-fragmented
peptides (Rauniyar and Yates, 2014). This undermines the ability
of isobaric labeling to be genuinely quantitative (Li et al.,
2019). Methods exist to correct for “ratio compression” (Savitski
et al., 2013), but detailed discussion of the topic is outside
the scope of this manuscript. Several statistical models have
been developed to accurately measure and correct the technical
variability of isobaric-labeling based MS approaches (Huang
et al., 2020). Some of these models depend on either prior
knowledge or separate experiments to evaluate noise levels in
the data (Zhang et al., 2010; Breitwieser et al., 2011; Zhou et al.,
2012, 2014a). “Model-based analysis of proteomic data” (MAP)
is also available for label-based experimental workflows. Unlike
earlier algorithms that required technical replicates to determine
experimental error and identify proteins with significantly altered
expression, MAP uses regression analysis to calculate local error.
These error estimates are then employed in the detection of
proteins with significantly altered expression without the need
for technical replicates to model technical and systematic errors
(Li et al., 2019). In comparative analyses, MAP outperformed
other, replicate-based algorithms (Zhang et al., 2010). It is
therefore the currently preferred tool for the analysis of label-
based proteomics data.

For all statistical tests above, it is essential to correct
for multiple hypothesis testing, as many tests are conducted
simultaneously. This can be done by controlling the false
discovery rate (FDR). Here, FDR is calculated and then a
selected threshold is applied. Otherwise, the number of false
positives will be increased with the number of tests. Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995) and
permutation-based FDR estimates (Tusher et al., 2001) can be
used to efficiently compute FDRs from p-value s to reduce the
number of false positives. Such approaches can be performed
using the p.adjust() function in R language (RStudio Team,

2020). In order to further remove background noise and
identify the most significant differentially expressed proteins,
fold-change can be used along with adjusted p-value cutoff.
Fold change calculation is typically followed by log2 numerical
transformation to center the distribution of the resulting values
around 0. In all cases, follow-up studies are required to accurately
describe biological phenomena underlying the detected changes
(Dalman et al., 2012).

Clustering Analyses
Identifying individual proteins differentially expressed
between time points or conditions is often insufficient for
extracting biologically relevant information from a proteomics
experiment. Instead, grouping similar items (i.e., proteins or
samples/conditions) may be necessary to enable the exploration
of data patterns without getting lost in lists (Figure 2D). The
biological basis for this is that proteins often act in groups and
the expression of proteins participating in the same processes
may be co-regulated (Do and Choi, 2008). Clustering can help
with the necessary data grouping. Clustering is a machine
learning technique used in pattern recognition, data mining, and
bioinformatics. The goal of clustering is to distinguish similar
from different. Specifically, similar items (e.g., proteins) are
grouped into the same cluster based on a common parameter
or parameters (e.g., relative fold expression change across time),
while different items are found in distinct clusters.

There are two types of clustering: supervised and
unsupervised. In supervised clustering, class labels are
provided and are used to guide learning (see section “K-
means Clustering”). In contrast, in unsupervised clustering,
observations are not associated with class labels. Unsupervised
algorithms are primarily used for pattern discovery. For example,
they can be used for exploratory data analysis, where the aim is
to generate hypotheses rather than verify them.

Clustering of temporal proteomic HPI data is primarily
performed by unsupervised learning, due to the lack of
information about known expression patterns at different time
points. A fundamental weakness of unsupervised approaches
is that they assume there is an underlying pattern within
the data; therefore, outputs from such methods should be
carefully statistically and experimentally validated (Do and Choi,
2008). Temporal quantitative proteomic HPI data can be most
appropriately clustered based on protein expression differences
(see section “Statistical Analysis of Quantitative Temporal
Proteomics Data”). For instance, relative fold expression change
could be included in the data matrix used for clustering
(Figure 2D). Meunier et al. (2007) demonstrated the application
of unsupervised hierarchical clustering for proteomic data
mining and its potential for characterizing tumor samples.
Likewise, clustering is frequently used in temporal proteomic
studies to uncover temporal trends and molecular signatures for
infectious disease (Olsen et al., 2006; Weekes et al., 2014; Yang
et al., 2015; Hou et al., 2017; Lapek et al., 2017; Itzhak et al., 2019;
Soday et al., 2019; Hashimoto et al., 2020).

Clustering of a matrix containing relative fold expression
changes for N proteins across X time points can be achieved
in one of three ways (Oyelade et al., 2016). One option is to
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cluster proteins with similar relative fold expression changes
across X time points. Here, proteins are considered objects, while
samples are regarded as features. The goal in this case is to
identify groups of proteins with similar pattern of relative protein
expression change across time. Such groups may indicate co-
function or co-regulation (Thalamuthu et al., 2006). Another
option is to cluster samples/time points across all proteins. In this
case, samples are regarded as objects and proteins are regarded
as features, and the goal may be to reveal, for example, the
phenotypic structure of samples (e.g., cyclic changes with groups
of samples from different time points exhibiting similar changes).
The third option is to cluster the data matrix along both, protein
and sample axes.

Grouping similar items into the same clusters and dissimilar
items into different clusters requires ways to measure the
(dis)similarity or distance between each pair of items. This is
accomplished by means of distance (aka proximity, dissimilarity,
or similarity) measures, which are at the core of distance-
based clustering algorithms. The performance of the clustering
algorithm depends on the efficiency of its distance measures,
and the results may change depending on the distance measure
(Shirkhorshidi et al., 2015) and the algorithm. The choice of the
distance measure and the clustering algorithm depends on the
dataset (e.g., if the data is log transformed). For example, Gibbons
and Roth (2002) reported superior performance of Euclidean
distance measure for ratio-based data and Pearson distance
measure for non-ratio measurements. The most commonly
used distance measures are: Minkowski, Euclidean, Manhattan,
Cosine, Pearson correlation, and Spearman correlation distances.
Their performance with high-dimensional datasets has been
extensively reviewed elsewhere (D’haeseleer, 2005; Brusniak et al.,
2008; Kerr et al., 2008; Shirkhorshidi et al., 2015).

Understanding clustering algorithms is a prerequisite for their
proper application to the clustering of temporal HPI proteomics
data. Clustering algorithms can be classified by a number of
parameters (Oyelade et al., 2016). For example, Clustering
algorithms can be categorized as exclusive (hard, or crisp) or
overlapping (soft). Exclusive clustering assigns each input item
(e.g., protein) to a single cluster, whereas overlapping (soft)
clustering allows a data point to belong to more than one group
(Kerr et al., 2008). In the remainder of this section, we discuss
the principles of selected unsupervised clustering algorithms. We
focus on algorithms frequently used in the analysis of temporal
proteomic HPI data as well as on the algorithms we believe to be
particularly useful for the analyses of such data.

Hierarchical Clustering
In hierarchical clustering, all proteins are joined into clusters
that form a nested dendrogram (aka a tree-shaped data structure,
Figure 3A, right panel). The dendrogram reflects how similar or
different objects (i.e., proteins and/or samples/time points) are
across all features. The most similar objects are connected by
clusters near the tree’s terminal branches (i.e., leaves. Figure 3B);
root cluster connects objects that are most different. Therefore,
in a hierarchical cluster, rows and/or columns, depending on
the analysis option, are re-ordered placing similar objects close
to each other. The data are transformed to color scale to

help visualize the matrix (Figures 2D, 3A). The tree can
be cut at varying levels to obtain the desired number of
clusters (Figure 3A).

Hierarchical clustering algorithms work on distance measure
matrices, which are calculated for each pair of objects using the
input data matrix and the selected distance measure. Depending
on how the clusters are formed, hierarchical clustering can be
classified as agglomerative or divisive. Agglomerative clustering,
also called agglomerative nesting (AGNES), or bottom-up
clustering, works from the bottom up. It starts by treating
individual objects as clusters, followed by computing distance
measures between all pairs of clusters and then recursively
joining the closest pairs according to their distance until
a single cluster is made (Figures 3B,C). Here, intercluster
distance, or “linkage function,” determines how distances
between clusters are calculated, and which clusters are connected.
The most common linkage functions are: minimum/single,
maximum/complete, average/UPGMA (unweighted pair-group
method using arithmetic averages), and centroid/UPGMC
(unweighted pair-group method using centroids) (D’haeseleer,
2005). The distance between two clusters per minimum linkage
function equals the distance between the closest two members
of each of the two clusters; conversely, per maximum function
it equals the distance between the furthest two members of each
of the two clusters. Average and centroid functions calculate the
distance between any two clusters as average distance between
cluster members and as the distance between cluster centroids,
respectively (D’haeseleer, 2005). Unlike agglomerative clustering,
divisive clustering, aka divisive analysis (DIANA), is a top-
down approach. It starts by including all objects in a single
cluster and works to iteratively split the most heterogeneous
cluster into components. This is repeated until all clusters are
made up of single indivisible objects (i.e., proteins, Figure 3B;
Karimpour-Fard et al., 2015). There are several methods for
splitting clusters, see Roux (2018) for review. Agglomerative
clustering is strongest at identifying small clusters and may
deliver suboptimal performance in the detection of large clusters.
Conversely, divisive clustering is best at identifying large clusters
(Chipman and Tibshirani, 2006). To combine the strengths of
the two approaches, Chipman and Tibshirani (2006) proposed
a combined “mutual cluster” approach that informs the divisive
approach by the results of an agglomerative analysis.

R has some useful built-in functions for performing
hierarchical clustering. For instance, the hclust() function in
stats R package (RStudio Team, 2020) and agens() function in
cluster package (Maechler et al., 2019) are commonly used to
perform agglomerative hierarchical clustering. Both functions
include parameters that allow one to select the appropriate
linkage and distance measures. Divisive clustering is often
performed using diana() function in cluster package (Maechler
et al., 2019). The number of generated clusters (Figure 3A)
can be controlled by the cutree() function in stats package
(RStudio Team, 2020). The mutual cluster approach is also
available as mutualCluster() function in hybridHclust package in
R (Chipman and Tibshirani, 2006).

The main weakness of hierarchical clustering lies in the
dependence of results on various parameters, including distance
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FIGURE 3 | Hierarchical clustering. (A) Relative abundances of 50 proteins across three time points were clustered by hierarchical clustering (left panel). The
dendrogram reflects relationships between proteins. The tree was cut at two levels indicated by colored circles and a dashed line to yield 3 and 9 clusters,
respectively. The separation of subclusters is illustrated in the PCA plot in the right panel. Here, each dot represents a protein. (B) Agglomerative and divisive are the
two types of hierarchical clustering. The agglomerative works in bottom-up manner, recording the sequence of cluster merges. The divisive algorithm works in a
top-down manner, recording the sequence of cluster splits. (C) Flowchart of unsupervised hierarchical clustering algorithm (agglomerative).

measures and algorithm type. As a consequence, there is no
one correct and true result (Oyelade et al., 2016). Therefore,
the parameters of hierarchical clustering need to be tuned
and the resulting clusters must be validated (see section
“Evaluation Measures for Temporal Clustering”). Moreover,
calculations can be computationally intensive, but previous steps
(e.g., erroneous merging/division decisions) cannot be undone
(Karimpour-Fard et al., 2015).

Despite its weaknesses, hierarchical clustering is a method
of choice for visualizing and exploring large datasets, including
temporal proteomic HPI data (Diamond et al., 2010; Weekes
et al., 2014; Jean Beltran et al., 2016; Hou et al., 2017; Soday
et al., 2019). For example, a study of Vaccinia Virus (VACV),
the causative agent of smallpox, used multiplexed proteomics
to quantify the changes of viral and host proteomes over a
series of time points in infected vs. mock samples (Soday
et al., 2019). Subsequently, agglomerative hierarchical clustering
with centroid linkage and Pearson correlation distance measure
revealed clear separation between infection stages, with the
greatest changes occurring at late time points. Moreover, protein-
level clustering identified multiple dysregulated pathways. This
included, for example, the down-regulation of proteins involved

in "cell attachment site" during infection, which suggested that
VACV targets cell surface proteins to evade host’s defensive
immune responses. Thereby, clustering helped make insights into
biological processes modulated by VACV infection.

K-Means Clustering
K-means clustering is an iterative algorithm that partitions the
dataset into a predetermined k number of clusters, in a way
that intra-cluster and inter-cluster similarities are maximized
and minimized, respectively (D’haeseleer, 2005). The algorithm
first shuffles the dataset and then randomly chooses k patterns
as initial centroids for each cluster. After that, each data point
(in our case, protein) is assigned to the cluster by finding the
pattern’s closest centroid (a centroid is a data point at the
center of a cluster) using proximity measures (e.g., Euclidean
distance). The new centroid is then computed for each cluster
by taking the average of all proteins assigned to that cluster.
This process repeats until no more proteins change the cluster
(Figures 4A,Bi).

To exemplify the application of K-means clustering to
temporal HPI proteomics data, we randomly selected 3,000
host proteins from experiment 1 data by (Weekes et al., 2014).
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FIGURE 4 | Clustering temporal HPI data using K-means (crisp clustering) and Fuzzy C-means (FCM, soft clustering) methods. (A) Flowchart of the unsupervised
K-means algorithm. Initialization, iterations, and termination in FCM are the same as in the K-means algorithm. However, FCM uses a weighted centroid based on
memberships of data points within each cluster because membership scores can vary from 0 to 1. (B) We illustrate the difference between K-means (i) and FCM (ii)
by using mock temporal HPI data with 3-time points and principal components to display the data. (i) K-means divides data into three distinct clusters. (ii) On the
other hand, FCM assigns each data point coefficients that reflect memberships in each of the clusters and range from 0 to 1. Then, each data point is assigned to
the cluster in which its membership is highest. Some proteins (yellow dots) are assigned high membership coefficients to more than one cluster. (C) To demonstrate
the application of K-means and FCM, we randomly selected 3,000 proteins from experiment 1 data by Weekes et al. (2014) and used the Elbow method to define 5
as the optimal number of clusters for both K-means and FCM; the plot for K-means is shown (i). We then used K-means (ii–v) and FCM (vi–viii) to cluster the data.
The results of the K-means clustering are displayed (iii) as centroid (or average) temporal profiles of each cluster, and (iv) as heatmaps. (v) Each cluster can also be
visualized by displaying the data for all proteins in the cluster, and coloring the corresponding protein profiles based on how well they correlate with the cluster’s
centroid (red line); examples for clusters 1 and 5 are shown. Here, proteins with similar profiles to the cluster’s centroid have a score approaching 1 (yellow), while
those with divergent patterns have a correlation score closer to 0 (blue). This plot can help filter proteins whose profiles don’t fit well into the selected cluster or
identify core proteins of particular interest with profiles closely matching the centroid. Likewise, FCM results are displayed as the centroid temporal profile of each
cluster (vii). (viii) Clusters can also be visualized by displaying each protein and color-coding its profile according to its membership in the respective cluster; plots for
clusters 2, 3, and 4 are shown. Here, proteins with a profile close to the cluster’s centroid (black lines) have a membership score close to 1 (purple). These proteins
are prominent members of a cluster (viii). In contrast, proteins with divergent patterns have a score closer to 0 (green). One may wish to apply a membership score
threshold to eliminate proteins with divergent patterns from the downstream analyses of the cluster.

The first step in K-means clustering is to define the optimal
number of clusters, which is critical for generating biologically
meaningful groupings (Yang et al., 2015). For instance, the
overestimation of parameter k will partition related proteins into

different clusters, thereby confounding downstream inferences
(Yang et al., 2015). The two most commonly used k-value
selection algorithms are the Elbow method and the Average
silhouette method (Yuan and Yang, 2019). The Elbow method,
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for instance, measures the variability within each cluster (i.e.,
within cluster-sum of a squares, WSS) as a function of the
number of clusters (Figure 4Ci; Yuan and Yang, 2019). One
should choose the number of clusters at but not after elbow
point (Figure 4Ci). Here, we used fviz_nbclust() function
in factoextra R package (Kassambara and Mundt, 2020) to
define 5 as the optimal number of clusters (Figure 4Ci). We
then applied kmeans() function in stats R package (RStudio
Team, 2020) to cluster host proteins into five distinct clusters
(Figure 4Cii). To observe the temporal profiles of each cluster,
one may wish to visualize centroid profiles (Figure 4Ciii).
Furthermore, temporal profiles of each group can be visualized
using heatmap via heatmap() function in stats R package
(RStudio Team, 2020) (Figure 4Civ). To identify core proteins
whose expression closely matches the cluster’s centroid, one
can correlate each protein in the cluster with the cluster
centroid (Figure 4Cv).

K-means is one of the most straightforward clustering
methods due to the ease of programming and computational
efficiency. However, one of its drawbacks is that it generates
hard and unrelated clusters. Therefore, it is not suitable for
expression datasets containing overlapping clusters, or for
assessing between-cluster relationships (Oyelade et al., 2016).
Moreover, it works well in capturing the structure of the data
if clusters have a spherical-like shape but performs poorly if
clusters have complex geometric shapes. Therefore, it is not a
good candidate for high-dimensional data and highly connected
clusters (Oyelade et al., 2016). Furthermore, since K-means
clustering is sensitive to outliers, it is always appropriate to
remove the outliers before clustering. Additionally, K-means
clustering is sensitive to initialization, meaning that the final
clustering result depends on the position of the initial cluster
centroid (i.e., seed). Therefore, it is essential to run the algorithm
several times by applying different random seeds, or use
an advanced version of K-means. For example, K-means++,
available in pracma R package (Borchers, 2019), which runs
a preliminary iterative algorithm to determine the most
appropriate initial seeds.

K-means algorithm has been used in the analysis of temporal
proteomic HPI data, rendering intuitively clear summaries of
temporal patterns (Weekes et al., 2014; Clements et al., 2017; Hou
et al., 2017; Lapek et al., 2017). For example, the aforementioned
Soday et al. (2019) used K-means to cluster temporal profiles of
co-expressed viral proteins. Subsequent functional enrichment of
clusters revealed the co-expression of viral proteins involved in
"Host interaction" and "DNA replication" at early time points,
followed by virion-associated proteins at later times. Therefore,
these temporal clusters revealed patterns in the expression
of proteins with specific biological functions. Furthermore,
the functions of uncharacterized pathogen proteins may be
inferred via their associations with known proteins in their
respective clusters, or by analyzing their expression in the
context of changes occurring within the host. For instance,
the authors compared viral temporal profiles with the inverted
temporal profile of the host’s cellular protein HDAC5 using
Euclidean distance. This matched C6 viral and HDAC5 host
profiles, suggesting that C6 targets HDAC5 for proteasomal

degradation. This was subsequently experimentally confirmed.
Therefore, K-means clustering helped gain direct insights into
viral-host interactions.

Fuzzy Clustering
Although hard clustering methods, including hierarchical and K-
means, can accurately group distinct expression patterns, they are
unable to identify input items (e.g., proteins) with similarities to
multiple distinct clusters (Gasch and Eisen, 2002). For example,
inaccurate clusters may be produced in the analysis of large
datasets, where a protein has expression pattern similar to one
group in one set of biological samples and another group for the
remaining samples.

Several fuzzy clustering algorithms, including the fuzzy
C-means clustering (FCM), have been developed to deal with
such complicated relationships between objects (Bezdek et al.,
1984, 1999; Friedman et al., 2000; Oyelade et al., 2016). FCM
is very similar to K-means, and is likewise widely used. As
in K-means, the number of clusters must be pre-determined.
However, unlike K-means, FCM does not simply assign an
input item (e.g., a protein) to a single cluster. Instead, FCM
facilitates the identification of overlapping groups of data points
by allowing each input item to belong to more than one cluster
with a probability (membership coefficient) ranging from zero
to one (Figure 4Bii). Proteins whose expression patterns are
very similar to the center (or centroid) of a cluster will be
assigned a high membership in that cluster (i.e., 1). Conversely,
proteins that lie far away from the center of the cluster (i.e.,
with little similarity to the centroid) will have a low degree of
membership to that cluster (i.e., 0). Therefore, FCM reveals the
relative degree of each input item belonging to each of the clusters
(Figures 4Bii,Cviii).

Like K-means clustering, FCM is sensitive to initialization and
is affected by initial parameter values. One of these parameters
is the c-value (Kerr et al., 2008; Oyelade et al., 2016), which
defines the number of clusters and is equivalent to the k-value
in K-means clustering. Approaches like the Elbow method are
recommended to determine the optimal number of clusters.
Another parameter is the fuzziness parameter m (Dembéle and
Kastner, 2003). This parameter needs to be tuned, and one should
apply validity indices to determine the optimal value of m (Zhou
et al., 2014b). FCM is available as cmeans() in e1071 (Meyer
et al., 2020), fanny() in cluster (Maechler et al., 2019), fcm() in
ppclust (Cebeci, 2019), and mfuzz() in Mfuzz R packages. To
demonstrate the application of FCM, we used mfuzz() function
in Mfuzz R package (Kumar and Futschik, 2007) with the default
value for parameter m to re-analyze data used for K-means
clustering (Figure 4Cvi).

Despite limitations, FCM is frequently used particularly
in phosphoproteomics studies to elucidate the dynamics of
phosphorylation signaling events. Indeed, partitioning the
identified phosphorylation sites into distinct clusters can help
identify corresponding kinases and important regulatory events
(Blagoev et al., 2004; Zhang et al., 2005; Olsen et al., 2006;
Schmutz et al., 2013; Zhuang et al., 2013). For instance, Schmutz
et al. (2013) used LC-MS/MS and FCM to study quantitative
phosphorylation changes during Shigella flexneri infection. Most
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of the early phosphorylation events clustered together and were
related to the regulation of cytoskeleton and cell adhesion.

Self-Organizing Map
Self-organizing map (SOM; aka Kohonen map, or self-organizing
feature map, SOFM) is a an artificial neural network approach
for reducing the dimensionality of input data in an organized
manner that preserves the similarities between original input
items (Kohonen, 1990). Since the output dimensionality is pre-
defined for SOM, it is capable of reducing dimensionality further
than PCA. Indeed, 2 or 3 components of PCA may not explain
variability, but a SOM may provide a 2-dimensional rendering
of relationships within the original data. Furthermore, like
K-means clustering, SOM may not reproduce each item one-
to-one from the original data on the output grid (i.e., mapping
may be many-to-one). However, unlike K-means clustering,
relationships between clusters are preserved. Therefore, SOMs
allow for better visualization and interpretation of high-
dimensional datasets than K-means, FCM, or PCA (Tamayo et al.,
1999; Kohonen, 2014).

SOMs are particularly recommended for large and complex
datasets, as simpler clustering approaches are available for small
datasets (Kohonen, 2013). In other words, if simpler approaches
do not produce satisfactory groupings for small datasets (e.g.,
hundreds of input items), SOMs should be applied. Conversely,
with millions of input data items, clustering approaches described
above may be less efficient than SOMs, and SOM analyses can
be used at the outset. SOMs are useful, for instance, in medical
image processing (Chang and Teng, 2007), astrophysics (Naim
et al., 1997), industry (Simula et al., 1999), robotics (Sayers, 1991),
and data mining. In biology and biochemistry (Tamayo et al.,
1999; Olsen et al., 2006), it is frequently used for reducing data
dimensionality: high-dimensional data is displayed in a reduced,
usually two-dimensional space. In a SOM, similar objects are
located close to each other and different objects are far apart,
based on the characteristics of the input data. SOMs have
been applied in proteomics (Schmidt et al., 2007; Peng et al.,
2012) and temporal phosphoproteomics. For example, Zhang
et al. (2005) identified modules of phosphorylation sites with
similar temporal patterns within the epidermal growth factor
receptor signaling network. Moreover, the potential functions
of uncharacterized phosphorylation sites were inferred based
on the functions of other components within the modules. For
instance, hypothetical protein FLJ30532 was predicted to be
involved in the immediate-early response to epidermal growth
factor stimulation. Likewise, the algorithm can be applied to
temporal proteomic HPI studies.

Various SOM variants are available. They all typically require
users to specify the size and shape of the grid or array on
which the output will be mapped. The size of the grid (with
the corresponding number of nodes) needs to be determined by
trial and error. If an output with fine details is expected, a larger
grid should be used; however, if only coarse details are expected,
a smaller grid will suffice. Indeed, too few output nodes (i.e.,
too few positions in the grid) can result in sizeable intra-cluster
variation. In contrast, too many nodes can result in meaningless
clusters (Kerr et al., 2008). A good starting point is 50 input

data items per node (or location) on the grid (Kohonen, 2013).
For example, a grid with 100 nodes (e.g., a 10 × 10 grid) would
be used for five thousand input items. Various array shapes are
possible, including a 2D rectangle or hexagon, or a 3D torus.
From among 2D shapes, a hexagon is recommended for its
visual clarity and accuracy (Kohonen, 2013). Oblong shapes are
recommended due to faster convergence in learning with length
and width corresponding to the two largest principal components
(Kohonen, 2013). Depending on the data, a special shape of
the output array may be justified. For example, relationships
of data on the edges of a standard 2D rectangular output
may not be represented effectively (Kohonen, 2013). Options
exist to dynamically modify the shape and the size of the
output array depending on the input data (Fritzke, 1994).
However, in practice, border distortions should not pose issues
for the use of SOM in proteomic data analysis or interpretation
(Kohonen, 2014). Moreover, SOM algorithms rely on distance
or similarity measures for determining how input items relate
to each other. Euclidean distance is an example of a good
measure that can be used for clustering proteomics HPI data
(Giraudel and Lek, 2001).

There are two main types of SOM algorithms. The first
one is the sequential, or step-wise recursive SOM algorithm.
The SOM using a step-wise recursive algorithm is constructed
as follows (Figure 5A). One first selects a size and geometry
of the output grid (e.g., a 2D 9 × 7 rectangle). A model is
associated with each node of the grid. These models must be
initialized before the algorithm is run (Kohonen, 2012). After
SOM algorithm is completed, models essentially become the
projections of the original data onto the output grid of the
SOM. Random numbers can be used for initializing models.
Alternatively, PCs (see PCA, in section “Quantitative Temporal
Data Visualization, Preprocessing, and Quality Control”) can be
used to initialize the models, thus speeding up the analysis. Here,
PCs that describe the most variation are used. Subsequently, a
random input item (xi, Figures 5A,B) is presented and compared
to all the models. The distance between the input item and
each model is calculated (e.g., using Euclidean distance) to
find the best-matched model, or Best Matching Unit (BMU)
(Figures 5A,B). The BMU’s neighborhood is then identified using
a neighborhood function. Right after, BMU and its neighborhood
models are updated to better match the input data item (xi).
This is repeated for all input items (x1–xn) multiple times
(Figure 5B). Neighborhood function and learning rate, which
defines how adjustments are made to the model(s) at each
step, are reduced with SOM algorithm iterations (see Kohonen,
2013). Hence, over time, the amount by which models are
adjusted decreases. Therefore, SOM converges to show nonlinear
projections of the input items (vectors) on the 2D output
array (Figure 5C). Moreover, the correlation between each
protein in the cluster and cluster’s centroid can be computed
to identify core proteins whose expression closely matches
the cluster’s centroid (Figure 5D). Several different options
for defining learning rates and neighborhoods are available.
A nonlinear learning rate and Gaussian neighborhood function
typically produce robust results and are good starting points
(Stefanovič and Kurasova, 2011).
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FIGURE 5 | Self-Organizing Map (SOM). (A) Flowchart of a sequential SOM algorithm. (B) SOM input and output layers. Input items (x1 - xn) will be compared
individually to models/nodes. The red model represents the best match, and the surrounding models (yellow, within the larger circle) are its neighbors. (C) Mock
3-time-point data was grouped into 42 clusters in a hexagonal 6 × 7 output grid using SOM. Points in each hexagon represent proteins. (D) Temporal profiles of
proteins from panel (B) clusters 10, 29, and 36 are shown. Profile colors reflect the correlation of the protein profiles to cluster’s centroid (red line). This can help to
select or filter proteins from clusters. Proteins with similar profiles to the cluster’s centroid have the correlation score approaching 1 (yellow), while those with
divergent patterns have a correlation score closer to 0 (blue).

The second main type of SOM algorithm is the batch
algorithm. There are several benefits to using the batch SOM
algorithms for the analyses of proteomic HPI data instead
of the sequential SOM algorithm. Firstly, the learning rate
parameter is eliminated. Therefore, the result is more robust
and less affected by the user’s input. Secondly, it is faster than
the step-wise method. When running a batch algorithm with
Euclidean distance measure, it is recommended that the models
be initialized by PCs. This speeds up the completion of the
algorithm. In the beginning of the first training cycle of a
batch SOM algorithm, all input data items are passed to each
of the nodes in a grid. The input items matching each model
at each node are saved in association with that corresponding
node. Again, neighborhood function defines how and which
nodes adjacent to the node with the best matching model will

be modified. Then, adjusted model values are calculated for
all nodes in all neighborhoods in one concurrent operation.
The models are then updated, concluding one training cycle
and brining values closer to the equilibrium. For datasets of
up to a few thousand nodes, it is generally recommended
that a training process incorporate the coarse and the fine
training stages (Kohonen, 2014). Here, during the coarse stage
a large neighborhood function equaling about 20% of the
larger grid dimension is initially used. It should be reduced
to about 5% of the smaller dimension over a few dozen
training steps. During the fine training stage, the smallest
neighborhood function that was reached during the coarse
stage should be used. Each of the two training stages usually
continues for several dozen steps until equilibrium is reached
(Kohonen, 2014).
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Some versions of SOMs combine the strengths of artificial
neural networks (i.e., speed and robustness to noise) with
other types of analyses to improve the overall performance
of the algorithm (Dopazo and Carazo, 1997; Dogan et al.,
2013). For example, the Self-Organizing Tree Algorithm (SOTA)
integrates SOM and hierarchical clustering to quickly produce a
dendrogram output while eliminating the need for pre-selecting
the size of the output grid (Dopazo and Carazo, 1997; Yin
et al., 2006; Kerr et al., 2008). The SOTA algorithm has a
binary tree topology structure, in which the algorithm first selects
a node with the largest heterogeneity and splits it into two
nodes, called daughter cells. The tree’s growth continues until all
observations (in our case proteins) map onto a unique leaf node
(Kerr et al., 2008). The SOTA algorithm is implemented in the
clValid R package (Brock et al., 2011). Another algorithm, called
the adaptive double SOM (ADSOM) combines SOM and two-
dimensional position vector analyses with parameter training
(Ressom et al., 2003). This eliminates the biases arising from user-
specified parameters while allowing quick and efficient clustering.

Evaluation Measures for Temporal
Clustering
The evaluation and validation of clustering are frequently
excluded from analysis. However, they are essential for obtaining
meaningful clusters (Bhargavi and Gowda, 2015). The quality
of clusters can be evaluated computationally by external and/or
internal measures. External measures evaluate the quality of
clusters by comparing clustering-derived partitions to known
labels, e.g., a gold standard dataset. Conversely, internal
validation measures evaluate the quality of the clusters without
any external data, by simply evaluating intra- and inter-cluster
variation. The same internal methods are used to define, for
example, the optimal number of clusters in K-means clustering
(see section “K-means Clustering”). See Handl et al. (2005); Liu
et al. (2010), Bruno and Fiori (2013), and Oyelade et al. (2016)
for a comprehensive overview of internal and external measures
and their biases.

Moreover, several biological measures are available for
assessing the ability of clustering algorithms to generate
biologically meaningful groupings. The most widely used
biological measure is the functional enrichment analysis
(Figure 2E). It typically assesses the overrepresentation of
biologically meaningful categories within clusters, i.e., whether
more members of a category belong to a cluster than expected
by chance (Boyle et al., 2004). See Huang et al. (2009);
Karimpour-Fard et al. (2015), and Chen et al. (2020) for an
overview of relevant statistical and bioinformatics methods. Two
additional biological measures are the biological homogeneity
index, which evaluates the homogeneity of clusters, and the
biological stability index, which captures cluster stability through
clustering iterations with similar data sets (reviewed in Bruno and
Fiori, 2013). The lists of biological categories and the assessment
methods are determined by the study’s research question as
well as the data.

Many temporal proteomics studies utilized functional
enrichment analysis to evaluate the quality of clusters (Blagoev

et al., 2004; Zhang et al., 2005; Diamond et al., 2010; Weekes
et al., 2014; Jean Beltran et al., 2016; Hou et al., 2017; Lapek et al.,
2017; Breen et al., 2018; Li et al., 2018; Soday et al., 2019; Itzhak
et al., 2019; Hashimoto et al., 2020; Santana-Codina et al., 2020).
Conversely, external measures are rarely considered. This could
stem, in part, from the lack of suitable gold standard datasets.
However, whenever possible, all three measures should be used
to evaluate clustering results (Bruno and Fiori, 2013). There
is a useful package in R called clValid (Brock et al., 2011) that
includes many built-in functions for internal and biological
measures. Moreover, this package contains built-in-functions
for various clustering algorithms, including hierarchical, K-
means, SOMs, and FCM. External validation can be performed
by external_validation() function in the ClusterR package
in R, which also includes a number of clustering algorithms
(Mouselimis et al., 2020).

EXPLORING SUBCELLULAR PROTEOME
ORGANIZATION DURING INFECTION

Localization of proteins within subcellular niches enables them
to find their partners and substrates, and thus become functional.
These subcellular niches include macromolecule assemblages,
such as the ribosome or centrosome, as well as organelles, which
are physically demarcated by a lipid bilayer (Christoforou et al.,
2014). These organelles can change their number, localization,
structure, and composition in response to an infection or an
external stimulus (Jean Beltran et al., 2016). The corresponding
compartmentalization of proteins is likewise highly dynamic,
enabling a quick response (Borner, 2020). Indeed, controlled
protein localization is crucial to cellular hemostasis and its
aberrations are associated with disease (Kau et al., 2004; Luheshi
et al., 2008; Laurila and Vihinen, 2009; Park et al., 2011; Valastyan
and Lindquist, 2014; Beltran et al., 2017; Siljee et al., 2018).

Pathogen-induced localization alterations can occur
throughout the course of an infection. These often include
the placement of a pathogen’s proteins in the compartment as
well as the reorganization of the host proteome. These changes
must be mapped to understand disease progression. Here, we
focus on the spatial proteomics (aka organelle proteomics)
that uses fractionation and MS (Figure 6, reviewed by Gatto
et al., 2010; Borner, 2020). Label-based localization of organelle
proteins by isotope tagging (LOPIT) (Dreger, 2003) and label-
free protein correlation profiling (PCP) (Foster et al., 2006) are
two spatial proteomics approaches. They allow the detection
of thousands of proteins in multiple subcellular compartments.
Moreover, they improve the detection of low-abundance proteins
compared to whole-cell proteomics. By thus increasing the depth
of proteome coverage, they can help access specialized pathways
manipulated by pathogens.

The output of both of these approaches are relative protein
abundances across fractionations. These can be displayed, for
example, as a matrix (Figures 6, 7A). Subsequently, pattern
recognition is used to assign proteins to specific sub-cellular
compartments by relating their localizations to known organelle
markers (Gatto et al., 2010). At the same time, actual residents of
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FIGURE 6 | Schematic overview of gradient fractionation-based spatial proteomics. Infected and uninfected cells are lysed, and lysates are fractionated (Borner,
2020). The resulting fractions are then analyzed by label-free or multiplexed label-based quantitative MS. Proteins are then identified and quantified using specialized
software (e.g., MaxQuant). This generates a data matrix containing relative protein abundances across fractions for N proteins along X fractions for infected and
uninfected samples. Additional metadata (e.g., manually curated organelle markers) are added to the matrix to facilitate subsequent analyses. “Unknown” in the
“marker” column indicates non-marker proteins with unknown localization.

organelles are distinguished from contaminants without the need
for high-purity organelle isolations (Gatto et al., 2014a). Below,
we present a robust workflow for spatial proteomics data analysis.
It is implemented in pRoloc Bioconductor package (Gatto et al.,
2014b) in R. Moreover, we update the existing workflows by
presenting additional statistical approaches and algorithms, along
with their principles, pros, and cons. In addition, we illustrate
how these steps work by applying them to in silico-generated or
published HPI datasets.

Preparatory Steps
Organelle Markers

The prediction of protein localization in spatial proteomics
traditionally depends on supervised machine learning (see
section “Predicting Protein Localizations in Each Condition”),
wherein a list of “bona fide” organelle markers (i.e., proteins
with known localizations) retrieved from public databases (i.e.,
labeled training dataset) is utilized to map proteins of unknown
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FIGURE 7 | A schematic of spatial proteomic data analysis workflow for mapping localization changes in response to an infection. (A) After uploading the data (from
Figure 6), (B) data pre-processing is carried out. This includes the imputation of missing values and normalization. Subsequently, (C) quality control is performed. (i)
Here, first, unsupervised clustering can be applied to assess the overall data structure. (ii) Then organelle markers can be overlaid on the PCA plot to assess marker
separation (ER, endoplasmic reticulum; PM, plasma membrane). (D) The organelle markers are then used to train a model (in supervised machine learning). The
model will assign the profiles of proteins with unknown localization to organelles based on their similarity to the profiles of markers. Here, we randomly selected
3,000 proteins from Jean Beltran et al. (2016) uninfected and 48 h post-infection samples, and used SVM in pRoloc package in R (Gatto et al., 2014b) to assign
protein localizations. (i) Profiles for four organelles from each condition are shown; marker key is same as in panel (C). The plots demonstrate that non-marker and
marker proteins that were predicted to colocalize by SVM exhibit similar profiles across the gradient. (ii) The whole multivariate data can then be visualized in two
dimensions using PCA or t-SNE to portray organelle separation. Here, all proteins with localizations predicted by SVM as well as markers are colored according to
the organelle they are assigned to; marker key is same as in panel (C). (E) Finally, localizations in infected and uninfected cells are compared to determine (i) the most
affected organelles, and (ii) candidate proteins with significantly shifted subcellular localization (red stars) by computing movement and reproducibility scores for each
protein. Note, data from (D) was used for panel (Ei); mock data was used for panel (Eii).

localization to subcellular compartments. See Christoforou
et al. (2014); Gatto et al. (2014a), and Borner (2020) for a
detailed explanation on organelle markers and how to curate
a set of reliable markers. Mapping spatial protein dynamics
during an infection represents a special challenge as marker
localizations may change. Therefore, it is essential to carefully
select and validate markers for spatial proteomic HPI studies
(Beltran et al., 2017).

Supervised methods, such as support vector machines (SVM)
have been used to map proteins to organelles with good accuracy
(Trotter et al., 2010). The application of such methods, however,
is limited by the availability of the organelle marker training

datasets. Specifically, all localizations existing in the experimental
output must be represented in the training dataset. If this
condition is not met, protein localizations may be predicted
incorrectly (Breckels et al., 2013; Christoforou et al., 2014;
Gatto et al., 2014a). To address this, Breckels et al. (2013)
developed phenoDisco—a semi-supervised machine learning
schema to identify putative subcellular phenotype groupings
in spatial proteomics experiments (Figure 8). The phenoDisco
algorithm first uses novelty detection (unsupervised learning)
to cluster the training data and expose the representative labels
of each cluster/phenotype. Secondly, the algorithm examines
and extracts points closest to cluster centroid for use as
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FIGURE 8 | PhenoDisco algorithm helps assign localizations to proteins. First, the algorithm uses a minimal set of markers and unlabeled data as input to detect
new phenotypes (i.e., clusters) via unsupervised learning. These are then used in supervised learning to predict protein localizations. (A) Drosophila melanogaster
data (Tan et al., 2009) and ER/Golgi, Mitochondrion, and PM markers were used as input (ER, endoplasmic reticulum; PM, plasma membrane). (B) The phenotypes
we identified by using phenoDisco correspond to ribosomal subunits (phenotypes 1 and 3), proteasome (phenotype 2), nucleus (phenotype 4), peroxisome
(phenotype 6), and proteins with uncertain localization (phenotypes 5, 7, 8).

labeled training instances (Christoforou et al., 2014). These
labeled training instances need to be carefully validated before
the subsequent round of supervised learning that will use
them alongside markers to assign protein localizations. The
phenoDisco algorithm is available in pRoloc R Bioconductor
package (Gatto et al., 2014b). The ability to identify and
examine clusters offered by this algorithm is particularly useful
in the study of infectious disease, which might trigger protein
localization changes.

Dimensionality Reduction Tools for Visualizing
Organellar Map
Dimensionality reduction techniques are a convenient tool
for visualizing high-dimensional spatial proteomics data
(Figure 9). There are two types of dimensionality reduction
techniques: linear transformation (e.g., PCA, refer to section
“Quantitative Temporal Data Visualization, Preprocessing,
and Quality Control” for more details on PCA) and non-
linear transformation (e.g., t-SNE, t-distributed stochastic
neighborhood embedding, or UMAP, uniform manifold
approximation and projection). t-SNE finds a pattern in the data
by calculating pairwise similarities between points in the high-
dimensional space, and projects this onto a low-dimensional
space, progressively minimizing the difference between the
two sets of similarities while preserving the local structure
of the data (Van Der Maaten and Hinton, 2008). Due to the
probability distribution used to measure the embedding, t-SNE
produces better-resolved clusters in a map, which makes it
popular for visualizing subcellular clusters (Jean Beltran et al.,
2016; Orre et al., 2019). Unlike PCA, t-SNE does not work
on global variance and instances that contribute the most to
the variability. Instead, t-SNE groups similar input items and

emphasizes the separation of different input data items; thereby,
the neighboring points in the high-dimensional space end up
close to each other in low-dimensional space (Van Der Maaten
and Hinton, 2008). However, the t-SNE algorithm is sensitive
to its tunable parameters (i.e., perplexity, learning rate, and
maximum iterations). Indeed, even slightly different parameter
values can generate different output, making such maps difficult
to compare (Figures 9B–D). Therefore, tunable parameters must
be optimized. Furthermore, higher iterations of t-SNE result in
better quality maps at the expense of longer runs; while too few
iterations may not resolve clusters (McInnes et al., 2018). The
best practice involves optimizing parameters using a grid-search
(i.e., testing all combinations of parameters, refer to section
“Predicting Protein Localizations in Each Condition”), and
choosing the best combination for a given dataset (Orre et al.,
2019). t-SNE algorithm is implemented in the tsne package
(Donaldson, 2016) in R, as well as the pRoloc Bioconductor
package (Gatto et al., 2014b).

Unlike t-SNE, which is a locally focused method, the UMAP
preserves both local and global structure. It also boasts shorter
run times and applicability to big datasets (Allaoui et al., 2020).
Briefly, UMAP uses the k-nearest neighbor concept and builds a
high-dimensional graph of the input data. It then optimizes the
layout of the low-dimensional output graph to make it as similar
as possible to the high-dimensional graph of the input data.
The constructed high-dimensional graph is weighted, with edge
weights showing the possibility that two points are connected.
The UMAP algorithm extends the radius around each point
and connects each point and its neighbors with intersecting
radii to determine connectedness. The choice of the radius is
essential, as isolated clusters can result from radii that are too
small, and vice versa. However, UMPA deals with this issue
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FIGURE 9 | Visualization of high-dimensional spatial proteomics data using PCA and t-SNE. (A) Data can be displayed along principal component values (PCs) of
PCA in two or more dimensions. (B–D) Better resolution of clusters can be achieved by t-SNE. However, the results of the t-SNE algorithm depend on the values of
its tunable parameters. For instance, the perplexity parameter typically ranges between 5 and 50 (Van Der Maaten and Hinton, 2008). Perplexity settings of 5, 30,
and 50 are shown in panels (B–D). All other parameters were kept constant. Human Embryonic Kidney (HEK293T) sample data from pRoloc package was used for
all plots.

by restricting the size of the local neighborhood when learning
the manifold structure of data. Once the high-dimensional
graph is constructed, it optimizes the graph’s low-dimensional
embedding through stochastic gradient descent (Sainburg et al.,
2020). Like t-SNE, the UMAP algorithm is sensitive to its tunable
parameters (i.e., n_neighbors, the number of nearest neighbors;
min_dist, minimum distance between two points), which can
affect the balance between the local and global structure in the
final projection. Similar to t-SNE, the tunable parameters must
be optimized by using grid-search. The UMAP algorithm is
implemented in the umap package (Konopka, 2020) in R. Since
UMAP preserves both, the local and the global data structure, and

is faster than t-SNE, it is typically preferred in data dimensionality
reduction applications.

Note that the aforementioned techniques are mainly used to
visualize the overall structure of the data and should not be
used for assigning localizations to proteins. In particular, they
can be used to evaluate marker proteins, to assess the resolution,
tightness, and similarity of clusters, and to inspect whether the
data has a well-defined structure (Figure 7Cii).

Data Preprocessing and Quality Control
Proteins identified by spatial proteomics are first annotated
based on their localization as markers or non-marker proteins
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(Figure 7A). Marker proteins will subsequently be used
as reference points to find new proteins with the same
localization pattern (Gatto et al., 2014a). The next step in the
analysis is to evaluate the quality of the dataset and collect
descriptive statistics as detailed for temporal data in section
“Quantitative Temporal Data Visualization, Preprocessing, and
Quality Control”. Similarly to temporal proteomic data analysis,
missing values must be imputed, and data normalized to
generate reliable and comparable results for downstream
analyses (Figure 7B).

Missing Value Imputation
A number of algorithms used for spatial proteomics data
analysis cannot deal with incomplete data. However, the
impact of imputation has not been thoroughly addressed in
spatial proteomics literature. The raw quantitative data may
contain missing ion intensity values for a number of reasons.
These include low protein abundance and low instrument
sensitivity (Karpievitch et al., 2012). For low abundance proteins,
missing values can be imputed by substituting lowest observed
intensity or peptide count (Karpievitch et al., 2012). This is
computationally easy and fast. However, this does not take into
account the patterns in the data and may introduce bias in
the data as the number of imputed values increases. Another
approach is to exclude proteins with missing values (Dunkley
et al., 2006; Du et al., 2008; Hall et al., 2009; Tan et al., 2009).
This is a suitable approach if only a small number of such
proteins were identified; however, if many proteins are missing
data, simply dropping them may increase the bias.

The effect of imputation on the downstream analysis of
microarray data has been studied (see Oh et al., 2011 for an
overview of different imputation methods). The same approaches
are used in spatial proteomics. For instance, the k-nearest
neighbors (k-NN) approach uses feature similarity to assign a
value to a random missing point. It finds proteins (i.e., k-NN)
with expression profiles similar to that of the protein with
the missing data. A weighted average based on k-NN is then
used to impute the missing value. Although this approach is
accurate, it is sensitive to outliers (Kim et al., 2005). Another
useful approach for imputing missing values is the Multivariate
Imputation by Chained Equation (MICE) (Van Buuren and
Groothuis-Oudshoorn, 2010). It assumes that the data are
missing at random, and calculates multiple imputations with
their corresponding estimates of uncertainty. Both, k-NN and
MICE are suitable for datasets with a several data points
missing at random. They are implemented in bnstruct (Franzin
et al., 2017) and mice (Van Buuren and Groothuis-Oudshoorn,
2010) R packages, respectively. The k-NN approach is also
available as impute() function in the DEP Bioconductor package
(Zhang et al., 2018).

In cases when many data points are missing not at random,
for example when proteins are not quantified in a specific
condition (i.e., are below the detection limit), simply excluding
such data from analyses will introduce bias (Luo et al., 2009). The
missing values in such data can be imputed for example by using
quantile regression-based left-censored function (“QRILC”).
This approach is available as impute() function in the DEP

Bioconductor package (Zhang et al., 2018). Values missing due
to random chance (e.g., technical variability) and missing not at
random can also be imputed by MSstats Bioconductor package in
R (Choi et al., 2014).

However, all aforementioned imputation approaches are likely
introduce bias (Karpievitch et al., 2012; Wei et al., 2018;
Goeminne, 2019). For example, Gatto et al. (2014a) imputed
missing values in a spatial proteomics dataset using k-NN,
and the results generated from the imputed data indicated the
misclassification of protein localizations. The best way to obtain
unbiased estimates for missing values is to explicitly model the
missing data by using methods, such as maximum-likelihood
model (Karpievitch Y. et al., 2009; Kang, 2013), Bayesian (Luo
et al., 2009), and Expectation-Maximization (EM) approach
(Kang, 2013). These modeling approaches are applicable to
data missing at random and not at random. Irrespective of
the imputation method, the effect of data imputation must be
carefully evaluated each time.

Data Normalization
Another critical aspect of data preprocessing is data
normalization. Normalization methods must make samples
statistically comparable, while correcting for intragroup
differences (e.g., batch effects) and preserving between-group
differences (e.g., differences between organelles) (Välikangas
et al., 2018; Chen et al., 2020). The most common normalization
approach for reducing unwanted variation in spatial proteomics
involves dividing each ion intensity (or spectral counts) by
the sum or maximum of ion intensities (or spectra counts) in
each row (Gatto et al., 2014a; Breckels et al., 2016) or column
(Hu et al., 2019). Such normalization can be done quickly and
easily (Gatto et al., 2014a; Breckels et al., 2016; Hu et al., 2019).
Callister et al. compared linear regression, central tendency,
locally weighted regression, and quantile normalization methods
(Callister et al., 2006). They all decreased systematic bias in
the data, but linear regression normalization performed best.
Linear regression assumes that bias and peptide abundance are
linearly dependent. This means that as the measured peptide ion
abundance increases, the systematic bias also increases (Callister
et al., 2006). Rlr, RlrMA, and RlrMA (Välikangas et al., 2018)
are linear regression variants available in MASS (Venables and
Ripley, 2002) R package.

Similarly, Välikangas et al. (2018) systematically evaluated 11
popular normalization methods using four proteomic datasets.
Results indicated that variance stabilization normalization (Vsn)
reduced the intragroup variation the most and performed well
in differential protein expression analysis with all tested datasets.
Likewise, local regression normalization and linear regression
normalization performed well. Moreover, excellent performance
of Vsn was demonstrated by Gatto et al. (2014a), who used two
biological spatial proteomic replicates with substantial technical
variability to simulate multiple conditions. Vsn significantly
reduced variation and improved overlap between replicates. Vsn
aims to remove the dependencies between sample variances
and mean intensities, and scale the samples to the same
intensity range by using maximum likelihood estimation and
parametric transformation (Huber et al., 2002). This statistical
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method is available as justvsn() function in the Vsn Bioconductor
package (Huber et al., 2002) and normalize_vsn() function
in the DEP Bioconductor package (Zhang et al., 2018).
As in temporal proteomics experiments, the efficiency of
normalization must be evaluated, e.g., using MA plots (see section
“Quantitative Temporal Data Visualization, Preprocessing, and
Quality Control”).

Several other normalization methods are available. Among
these are LOWESS (locally weighted scatterplot smoothing)
regression, and EigenMS (Quackenbush, 2002; Bolstad et al.,
2003; Callister et al., 2006; Leek and Storey, 2007; Karpievitch
Y.V. et al., 2009; Zhang et al., 2015). EigenMS uses singular
value decomposition (SVD) on model residuals to capture trends
that lead to the formation of bias. This algorithm is capable
of handling missing values and is available as a stand-alone
function implemented in R at http://sourceforge.net/projects/
eigenms/ (Karpievitch Y.V. et al., 2009; Karpievitch et al., 2014).

After data preprocessing, the best practice is to use
unsupervised clustering to assess the overall structure of the data
(see section “Clustering Analyses”; Figure 7Ci). According to
the De Duve’s principle (De Duve and Beaufay, 1981), proteins
belonging to the same organelle will co-fractionate, thereby
leading to the formation of distinct groups upon clustering.
The whole dataset can also be visualized using dimensionality
reduction techniques, such as PCA or t-distributed stochastic
neighbor embedding (tSNE) without the addition of organelle
markers to the map (Figure 7Cii; left panel). Indeed, overlaying
markers at this stage can confer a false sense of structure
to the data, precluding the visualization of the data’s overall
structure (Gatto et al., 2014a). The lack of structure in the data
is indicative of the clustering algorithm’s inability to separate
clusters at later analysis stages. Next, organelle markers are
overlaid (on plots or clusters) to assess the resolution in the data
(Figure 7Cii; right panel). Here, a clear separation of markers by
organelle membership is expected. Its absence will undermine
all subsequent analyses and interpretation. Such a situation
may be remedied by adjusting imputation and normalization
methods. Furthermore, these overlaid maps can also be inspected
for outliers, for instance an unexpected marker position. These
may indicate unreliable protein quantitation, identification, or
annotation as a marker (Gatto et al., 2014a).

Predicting Protein Localizations in Each
Condition
Supervised machine learning is the method of choice for
predicting the subcellular localizations of proteins (Figures 7D,
10). During training, a supervised learning algorithm will learn to
associate independent variables (i.e., protein abundances across
fractions) and protein labels (i.e., marker assignments). After
training, the algorithm predicts the labels for proteins with
unknown localizations (Swan et al., 2013). Supervised learning
algorithms can be subdivided into two groups based on the
characteristics of the label: classification (labels are discrete
categories) and regression (labels are continuous numeric
values). In spatial proteomics, multiclass classification algorithms
are typically used: labels are discrete and cover many (i.e.,

three or more) possible localizations. The first step in multiclass
classification is selecting the algorithm (Figure 10A). Among
common multiclass classification algorithms are naïve Bayes,
k-nearest neighbor, SVM, random forest, and artificial neural
networks. See Kotsiantis et al. (2007) and Crisci et al. (2012)
for a comprehensive overview of supervised machine learning
algorithms and their biases. However, it is widely accepted that
how the algorithm is applied and the quality of the training data
have a greater effect on the final result than the choice of the
algorithm (Gatto et al., 2014a).

The second step in multiclass classification is defining
the range of possible hyperparameter values (Figure 10Bi).
Hyperparameters are adjustable parameters that have to be set
before training to obtain a model with optimal performance.
A model is defined by the combination of the selected
classification algorithm and a specific set of hyperparameters.
This model is then used to predict class labels. Examples of
hyperparameters are: the regulation and constant parameter C
in SVM algorithm, the number of nearest neighbors used (k)
in k-nearest neighbors, and the number of decision trees in
random forest. See Luo (2016) for a comprehensive overview
of hyperparameters for different machine learning algorithms.
Using default hyperparameter settings cannot ensure optimal
learning performance. Moreover, wrongly selected parameters
can adversely impact the resulting model’s performance (Gatto
et al., 2014a; Luo, 2016; Probst et al., 2019; Schratz et al., 2019).
Therefore, various combinations of hyperparameters must be
tested to choose the best set.

Defining which hyperparameter combinations will
be evaluated is the third step in multiclass classification
(Figure 10Bii). Manual selection can be inefficient. Random
or grid search allow for automated and efficient selection of
hyperparameter combinations. In grid search (also known as
exhaustive search), every possible combination of parameters
within a specified grid is selected for subsequent evaluation
(Rojas-Domínguez et al., 2017). In a random search, a fixed
number of random combinations of hyperparameters is selected
(Bergstra and Bengio, 2012).

Next, i.e., fourth step is the testing of all selected
hyperparameter combinations by means of cross-validation.
Cross-validation (out-of-sample testing) is a model evaluation
method that estimates how accurately the model will predict
the labels of unseen (i.e., out-of-sample) data (Payam et al.,
2009; Figures 10Biii,iv). During cross-validation, labeled data
is split into a training set (to train the classifier; Figure 10Biii)
and a testing set (Figure 10Biv), which is used to evaluate the
model’s performance with each pre-selected combination of
hyperparameters. Subsequently, different evaluation metrics
(see below) are used to evaluate the model’s performance
(Figure 10Bv), and the hyperparameter combination resulting in
the best model performance is selected (Figure 10Bvi).

Among the most common cross-validation techniques are
the: (i) holdout, (ii) k-fold, (iii) leave-one-out, and (iv) leave-
p-out methods. See Payam et al. (2009) for an overview of
cross-validation techniques and their biases. For example, k-fold
cross-validation has been used frequently in proteomic studies
(Granholm et al., 2012; Swan et al., 2013; Hu et al., 2019).
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FIGURE 10 | Schematic overview of supervised learning for subcellular localization mapping. (A) The first step in multiclass classification is to select an algorithm
with its corresponding hyperparameters. Here, we show SVM. (B) Next, the hyperparameters must be tuned. This includes: (i) defining the range of possible
hyperparameter values, (ii) selecting a method for sampling hyperparameter values (i.e., manual, grid, or randomized), and choosing a cross-validation technique
(e.g., k-fold) for evaluating the model’s performance with labeled data correspondingly divided into training (iii) and testing (iv) datasets. Moreover, (v) a metric to judge
the model’s performance with each set of hyperparameters must be defined. Based on the metric, the best set of hyperparameter values is chosen (vi). For instance,
(v) the two SVM hyperparameters (i.e., cost and sigma) were optimized over 50 rounds of 5-fold cross-validation through a grid search, and then the best pair of
hyperparameters was chosen based on the evaluation of F1 score. Once the best combination of hyperparameters has been selected (vi), it can be used to build the
final model (vii). (C) Proteins with unknown localizations are then presented to the model (i), and the model predicts their labels (i.e., localizations; ii). (iii) Classification
scores for unlabeled instances that correspond to their most likely subcellular compartment are reflected by point sizes. Each point here represents a protein.
Uninfected data from Figure 7 was used throughout this figure. The same workflow can also be applied to the infected data.

In k-fold cross-validation, the data is randomly split into k
number of equally sized folds (i.e., groups). Then k iterations
of training and testing are performed with a single combination
of hyperparameters, such that at each iteration a different k
fold is held-out as the test data set to evaluate the model’s
performance, and the remaining (k - 1) folds are put together to
form a training set. After each iteration, testing accuracy metric
(see below) is computed using the testing dataset (i.e., the left-
out fold). The overall out-of-sample accuracy is the average of
all k iterations performed with a given set of hyperparameters
(Payam et al., 2009).

During cross-validation, a confusion matrix is typically
used to gain insight into the model’s performance and errors
(Kautz et al., 2017). A confusion matrix is an N2 matrix
(N is the number of classes) that compares the number of

actual assignments to N classes with the number predicted
by the model (Table 2). Based on whether the classes were
correctly predicted by the model, observations can be categorized
as true positive (TP, correctly identified), false positive (FP,
incorrectly identified), true negative (TN, correctly rejected), and
false negative (FN, incorrectly rejected). Then, based on the
confusion matrix-derived categorization, performance metrics
(Table 3) can be calculated and used to assess how well a
given model performs on a testing data set (Figure 10Bv).
The fifth step in multiclass classification is to choose the best
combination of hyperparameters that maximize the model’s
performance (Figure 10Bvi) and use that combination to build
the final model from the training data (Figure 10Bvii). The
sixth step is predicting class labels for unseen testing data
(Figures 10Ci,ii). Here, proteins with unknown localizations
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TABLE 2 | A confusion matrix with N = 2.

Predicted: No Predicted: Yes

Actual: No TN FP

Actual: Yes FN TP

TABLE 3 | Performance metrics.

Performance
metrics

Definition Formula

Accuracy The ratio of the number of correctly
predicted observations to total
observations

TP+ TN
TP+ FP+ FN + TN

Sensitivity or
recall

The proportion of positives that are
correctly identified as positive by
the model

TP
(FN + TP)

Specificity The proportion of negatives that are
correctly identified as negative by
the model

TN
(TN + FP)

Precision The proportion of true positives out
of all predicted positives

TP
(TP+ FP)

F1 Score The harmonic mean of precision
and recall 2

precision × recall
precision+ recall

are assigned classification scores that reflect their most likely
localization (Figure 10Ciii). The seventh step is evaluating model
performance with the testing dataset. This can be done for
example, by performing functional enrichment analyses (see
section “Evaluation Measures for Temporal Clustering”).

All classification algorithms mentioned in this section have
been implemented in the pRoloc package (Gatto et al., 2014b).
Moreover, the caret R package (Kuhn et al., 2020) has 233
built-in classification algorithms and several functions for cross-
validation and hyperparameter tuning using grid and random
search. To demonstrate the application of supervised learning,
we took the data from infected (i.e., 48 h post infection)
and uninfected samples from Jean Beltran et al. (2016). We
then randomly selected 3,000 host proteins and used the
aforementioned framework to predict subcellular localizations
(Figures 7D, 10). First, the labeled training data were constructed
by mapping the markers available in the pRoloc package to
the selected 3,000 proteins (Figure 10A). We chose to use the
SVM implemented in the pRoloc Bioconductor package (Gatto
et al., 2014b) to assign protein localizations (Figure 10A). Two
hyperparameter values of the SVM model, cost and sigma, were
optimized over 50 rounds of 5-fold cross-validation through
a grid search (Figures 10Bi,ii,iii,iv). F1 score metric was then
used to evaluate the model’s performance and select the best
parameters that result in the highest out-of-sample testing
accuracy (Figure 10Bv). The optimized model was then utilized
to predict the label for each protein with unknown localization
(Figures 10Bvii,C).

Detecting Protein Translocation Events
One of the main applications of spatial proteomics in the context
of infectious disease is comparing organellar proteome maps

(e.g., infected vs. uninfected) to identify proteins with altered
subcellular localization (Jean Beltran et al., 2016). A simple
contingency table tracking the total number of assignments to
each of the compartments in each map can be used to assess the
global pattern of change (Figure 7Ei). However, this method is
prone to error. For instance, situations when identities of proteins
in each compartment change but their numbers remain would be
missed (Borner, 2020).

A more sensitive assessment of localization changes evaluates
each protein individually (Figure 7Eii; Gatto et al., 2014a;
Itzhak et al., 2016; Borner, 2020). Indeed, if a protein’s
localization changes during an infection, it’s profile, or
abundance/enrichment across compartments would change
as well. Conversely, if a protein’s localization were not affected,
its profile would remain the same in infected and uninfected
samples. Moreover, the profile’s change (or lack thereof) should
be reproducible across replicates. This is the basis for detecting
protein localization changes by means of MR plots (Figure 7Eii).
Here, M stands for the magnitude of translocation score, which
compares the profiles between two conditions, and R stands for
the reproducibility of translocation score. See Itzhak et al. (2016)
for details and formulas. Note that replicates are essential for the
statistical power of this test, and cut-offs are determined based
on the comparison of two sets of control data (e.g., uninfected)
samples. In an MR plot, significantly translocating proteins are
found in an upper right-hand quadrant (Figure 7Eii; red stars).

However, when infection results in drastic morphological
alterations, and significant changes in profiles of most proteins
are observed, it might be better to identify translocation
events based on altered predicted compartment association
(Jean Beltran et al., 2016).

DISCUSSION

Advances in sample preparation methods, mass spectrometry, as
well as computational facilities and approaches allow producing
and analyzing a plethora of proteomic HPI data to reveal changes
occurring across space and time in response to an infection.
Analyses of spatial and temporal proteomic HPI data can be
especially challenging due to the data’s high complexity. In this
review, we present the workflow pipelines for the analysis of such
datasets. Moreover, we discuss the pros, cons, best practices, and
challenges associated with each step. Novices in the field can use
this review as a workflow tutorial, while experienced users may
find it helpful for updating their data analysis pipelines.

Numerous pathogenesis strategies exist. Since only a small
portion of spatial or temporal infection-related proteome changes
has been mapped, and only for a small subset of pathogens
(Sánchez-Quiles et al., 2011; Gudleski-O’Regan et al., 2012;
Weekes et al., 2014; Matheson et al., 2015; Greenwood et al.,
2016; Jean Beltran et al., 2016; Karniely et al., 2016; Soday
et al., 2019; Depierreux et al., 2020; Tiku et al., 2020), we
expect to see many more publications in the area of spatial and
temporal HPI proteomics. Moreover, since disease progression is
a dynamic process, simultaneous analyses of multiple subcellular
compartments at critical time points throughout the course of
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an infection (i.e., a combined spatiotemporal study) can help
understand disease processes on the molecular level better than
each of the approaches alone. An example of such a study is
the analysis of organelle alterations occurring during the course
of human cytomegalovirus infection (Jean Beltran et al., 2016).
Here, essentially, spatial proteomics experiments were repeated
across a series of time points post-infection. The resulting maps
defined protein trafficking in space and time, and elucidated
essential disease processes and protein roles.

The next level of complexity in investigating HPIs is the
mapping of protein complexes and protein-protein interactions
on a global scale with resolution in space and time. This is a
critical component of understanding how the observed changes
are orchestrated. Future experimental and computational efforts
will be moving in this direction. Moreover, bioinformatics
pipelines will be developing to better integrate spatial and
temporal maps of proteome and protein complex changes
during disease progression. Furthermore, since pathogens alter
multiple interconnected systems (e.g., RNA, proteins, lipids, and
metabolites), integrating proteomic with other omics datasets
is gaining traction (Nesvizhskii, 2014; Miranda-CasoLuengo
et al., 2016; Cambiaghi et al., 2018; Zhou et al., 2018; Xu
et al., 2020). Adopting such approaches can help answer
many questions about disease processes as well as the normal
functions they disrupt. Such insights cannot be derived by a
single method. Depending on the types of omics data that
are being integrated, different challenges may be faced and
different new tools may be required. For example, in comparing

transcriptomics and proteomics datasets, one main issue is the
mapping between proteins and genes. Databases, such as BioMart
(Smedley et al., 2009) and Uniprot (Magrane and Consortium,
2011) map proteins to transcriptomic/genomic identifiers, but
discrepancies remain as a result of error propagation from
legacy issues during automated data integration (Kumar and
Mann, 2009). After data are collected for various species, the
next important step in the understanding of how pathogens
hijack host systems. This will involve comparing similarities and
differences across diseases, pathogens, and hosts (for example, see
Shah et al., 2015; Gordon et al., 2020). These efforts will help
glean comparative insights about disease progression patterns,
and guide the design of pathogen-specific as well as pan-
pathogen therapies.
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