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Abstract

Several ABC exporters carry a degenerate nucleotide binding site (NBS) that is unable to
hydrolyze ATP at a rate sufficient for sustaining transport activity. A hallmark of a degener-
ate NBS is the lack of the catalytic glutamate in the Walker B motif in the nucleotide binding
domain (NBD). The multidrug resistance transporter ABCB1 (P-glycoprotein) has two
canonical NBSs, and mutation of the catalytic glutamate E556 in NBS1 renders ABCB1
transport-incompetent. In contrast, the closely related bile salt export pump ABCB11
(BSEP), which shares 49% sequence identity with ABCB1, naturally contains a methionine
in place of the catalytic glutamate. The NBD-NBD interfaces of ABCB1 and ABCB11 differ
only in four residues, all within NBS1. Mutation of the catalytic glutamate in ABCB1 results in
the occlusion of ATP in NBS1, leading to the arrest of the transport cycle. Here we show that
despite the catalytic glutamate mutation (E556M), ABCB1 regains its ATP-dependent trans-
port activity, when three additional diverging residues are also replaced. Molecular dynam-
ics simulations revealed that the rescue of ATPase activity is due to the modified geometry
of NBS1, resulting in a weaker interaction with ATP, which allows the quadruple mutant to
evade the conformationally locked pre-hydrolytic state to proceed to ATP-driven transport.
In summary, we show that ABCB1 can be transformed into an active transporter with only
one functional catalytic site by preventing the formation of the ATP-locked pre-hydrolytic
state in the non-canonical site.
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Author summary

ABC transporters are one of the largest membrane protein superfamilies, present in all
organisms from archaea to humans. They transport a wide range of molecules including
amino acids, sugars, vitamins, nucleotides, peptides, lipids, metabolites, antibiotics, and
xenobiotics. ABC transporters energize substrate transport by hydrolyzing ATP in two
symmetrically arranged nucleotide binding sites (NBSs). The human multidrug resistance
transporter ABCBI has two active NBSs, and it is generally believed that integrity and
cooperation of both sites are needed for transport. Several human ABC transporters, such
as the bile salt transporter ABCB11, have one degenerate NBS, which has significantly
reduced ATPase activity. Interestingly, unilateral mutations affecting one of the two NBSs
completely abolish the function of symmetrical ABC transporters. Here we engineered an
ABCBI variant with a degenerate, ABCB11-like NBS1, which can nevertheless transport
substrates. Our results indicate that ABCB1 can mediate active transport with a single
active site, questioning the validity of models assuming strictly alternating catalysis.

Introduction

ABC (ATP Binding Cassette) proteins form one of the largest protein superfamilies. Most
members are active transporters, which translocate their substrates across biological mem-
branes [1, 2]. Human ABC proteins are encoded by 48 genes, which are assigned to seven sub-
families designated ABC-A to ABC-G [3, 4]. The minimal functional unit of ABC transporters
comprises four domains, consisting of two nucleotide binding domains (NBDs) that hydrolyze
ATP to energize transport, and two transmembrane domains (TMDs) that form the transloca-
tion pathway [2, 5, 6]. The NBDs possess a common domain architecture that is shared among
all ABC proteins, while the TMDs show considerable differences [7-10]. The first high resolu-
tion structure of a full-length ABC exporter was that of the bacterial multidrug exporter
Sav1866, showing a domain swapped fold with the two TMDs forming contacts with both NBS
through long intracellular extensions [7]. This architecture proved prototypical for the ABCB
subfamily, and was confirmed by structures of human ABCBI1 [11-14], ABCB2/ABCB3 [15],
ABCBS, ABCB10 [16] and ABCBI1 [17]. These structures revealed three major conformations:
the outward-facing conformation with associated NBDs and separated TMDs [7], the inward-
facing state with separated NBDs and associated TMDs [12, 15, 16], and an intermediate con-
formation, in which both the TMDs and NBDs are associated [11, 14]. Binding of ATP induces
NBD dimerization [18-21], while in the absence of ATP the NBDs are mobile and separated
[21, 22]. Whether a functional separation is required for the transport cycle remains debated
[22-26]. ATP binds to two symmetrically arranged composite nucleotide binding sites (NBSs)
that are formed by both NBDs. The NBSs are formed by A-loop, H-loop, Walker A, Walker B
and Q-loop of one NBD, and the X-loop and signature sequence of the other NBD [7, 27, 28].
The catalytic glutamate of Walker B and the H-loop histidine are necessary for efficient ATP
hydrolysis [29-31], suggesting their direct involvement in the ATPase function. Interestingly,
in about half of the human ABC transporters, the sequence of NBSI has diverged, with “non-
canonical” amino acids replacing conserved amino acids such as the catalytic glutamate in the
Walker B sequence [32]. Such non-canonical NBSs are unable to hydrolyze ATP at a rate com-
parable to canonical NBSs, and therefore are ineffective in sustaining substrate transport [33,
34]. At present, the relevance and contribution of the asymmetric catalytic centers in substrate
transport remain incompletely understood.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009016  October 8, 2020 2/21


https://doi.org/10.1371/journal.pgen.1009016
https://www.fwf.ac.at/
https://www.fwf.ac.at/
https://nkfih.gov.hu/english

PLOS GENETICS

A functional human ABCB1 with a degenerate nucleotide binding site

The human ABCB subfamily contains four full transporters, among them the multidrug
resistance transporter ABCBI [35] (MDR1 or P-glycoprotein), a major player in drug disposi-
tion, and the bile salt export pump ABCB11 (BSEP) [36]. The primary sequences of ABCB1
and ABCBI1 are 49% identical, suggesting that the overall mechanics of the transport cycle
may be shared. However, whereas ABCB1 has two canonical ATP binding sites, NBS1 in
ABCBI1 is degenerate. In ABCBI, the two NBSs are functionally equivalent and the integrity
of both catalytic centers is generally believed to be needed for transport [37]. In contrast, NBS1
in ABCBI11 is inactive, as it lacks the catalytic glutamate. Importantly, the degenerate NBS1 of
ABCBI11 contains three additional amino acids that diverge from ABCBI, but are conserved
within ABCB11 sequences.

The aim of this study was to analyze the role of the non-canonical residues in the degenerate
NBS1 in sustaining transport. Our results confirm that mutation of the catalytic glutamate
(E556M) renders ABCBI inactive. However, ATP hydrolysis and transport function are
restored by introduction of all four diverging amino acids as present in NBS1 of ABCB11
(S474E, E556M, G1178R and Q1180E). Molecular dynamics (MD) simulations revealed that
the E556M mutant is locked by tight binding of ATP, whereas transport function is restored in
the quadruple mutant by weaker ATP binding and a change in the geometry of the NBD
dimer. We infer from our data that the degenerate NBS sustains substrate transport by
enabling ATP release without hydrolysis, thereby preventing an arrest of the catalytic cycle.

Results
ABCBI1 and ABCB11 share an almost identical NBD interface

All sequences annotated as ABCB1 or ABCB11 homologs in the NCBI database [38] were
aligned using clustalW [39] and the Gonnet PAM250 similarity matrix [40]; residue similarity
was mapped onto a human ABCB1 model. As expected, the NBDs showed a higher degree of
residue conservation, as compared to the TMDs. Interestingly, the NBD-NBD interface that
includes the conserved NBD motifs (See S1 Fig), proved to be the region of highest sequence
conservation (Fig 1), as most residues contributing to the interface are shared between ABCB1
and ACBI1. The difference is limited to just four residues, located within NBS1: (i) residue
E556, the catalytic glutamate of the Walker B motif of ABCBI1 conforms to a methionine in
ABCBI11 (M584); (ii) the canonical signature sequence residues G1178 and Q1180 in ABCB1
correspond to R1221 and E1223 in ABCBL11, respectively; and (iii) residue S474 in ABCBI,

Fig 1. Sequence conservation between ABCB1 and ABCB11 mapped onto a structural model of ABCB1. The NBD
in front is shown in green ribbon representation, while the NBD in the back shows the NBD interface in surface
rendering. The surface is colored according to sequence similarity between ABCB1 and ABCB11. Blue color indicates
residue identity, orange indicates maximal residue divergence. The four differing residues in NBS1 are highlighted in
magenta.

https://doi.org/10.1371/journal.pgen.1009016.g001
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which precedes the eponymous glutamine in the Q-loop, is a glutamate in ABCB11 (E502).
Strikingly, the alignment of the ABCB11 sequences alone showed that these four non-canoni-
cal NBS1 residues are conserved: the residue corresponding to M584 in human ABCBI11 is
fully conserved; residue E1223 may also be a glutamate or a glutamine; in addition, residue
1437 of the A loop is in rare cases either a serine or a threonine. This high degree of conserva-
tion indicates that evolutionary pressure remained high despite the loss of catalytic activity of
the degenerate site. The residues interacting with the second NBD across the NBD-interface
are shown in S2 Fig.

ABCBI1 conformation is regulated by nucleotides

To analyze the role of the four non-canonical, but conserved amino acids in the degenerate
NBS1 of ABCB11, we introduced the corresponding mutations into NBS1 of ABCBI. First, we
engineered a variant harboring the E556M mutation of the catalytic glutamate. To fully mimic
NBS1 of ABCBI11 in the context of ABCBI, a quadruple mutant was constructed that also con-
tains the three additional diverging residues (S474E, E556M, G1178R and Q1180E). All
ABCBI variants showed comparable cell surface expression in NIH 3T3 cells, as measured by
the conformation insensitive 15D3 antibody (Fig 2A) [41]. To assess the conformational flexi-
bility of the ABCB1 variants, we used the conformation sensitive UIC2 antibody that recog-
nizes an extracellular epitope of ABCBL1 [7, 11, 13, 28, 42]. The UIC2 antibody was shown to
bind with high affinity to the cyclosporin A (CsA) bound conformation, while it has low affin-
ity for nucleotide bound conformation(s) [43, 44]. We recapitulated this change in affinity
using NIH 3T3 mouse fibroblasts that express wild-type human ABCBI1. UIC2 labeled approx-
imately 30% of wild-type ABCBI1 transporters, while the addition of CsA resulted in complete
UIC2 labeling of cell surface expressed wild-type ABCBI. In stark contrast, the catalytic gluta-
mate mutant was not recognized by the UIC2 antibody, despite nearly equal surface expression
(Fig 2A), and the addition of CsA could only moderately promote ABCB1 recognition. Since
reactivity of nucleotide-bound ABCBI to UIC2 is generally low, these results can be explained
by tight ATP binding that results in a conformational arrest in a conformation that is not rec-
ognized by UIC2 [31, 45]. Strikingly, introducing the three additional non-canonical amino
acids in the quadruple mutant restored wild-type like UIC2 reactivity, suggesting that the
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Fig 2. UIC2 binding to ABCB1 variants carrying mutations in NBS1. (A) Total cell surface ABCBI expression levels
were determined using the conformation insensitive 15D3 anti-ABCBI antibody (means + SD of n = 5 independent
experiments). (B) Changes of UIC2 reactivity in wild-type ABCB1 (orange), the single (E556M, green) and the
quadruple (E556M/S474E/G1178R/Q1180E, blue) mutant in response to cyclosporin A (CsA, 10 uM) treatment or
ATP depletion. NIH 3T3 cells expressing the ABCB1 variants were labeled with Alexa 647 conjugated UIC2 or 15D3
mAbs (with comparable dye to antibody ratio (F/P)). The percentage of UIC2-bound ABCB1 conformers was
calculated relative to the total cell surface ABCBI1 expression levels determined by 15D3 labeling (mean + SD of n = 5
independent experiments). Significant differences compared to untreated controls or wild-type are shown by ***
(p<0.001).

https://doi.org/10.1371/journal.pgen.1009016.g002
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conformational arrest can be overcome by an ABCB11-like NBSI1. To show that the effect was
ATP dependent, we measured UIC2 binding in ATP-depleted cells (Fig 2B) and found compa-
rable UIC2 binding, suggesting that the studied ABCB1 variants adopt a similar conformation
in the absence of ATP.

Conformational changes in the NBDs are allosterically coupled to conformational changes
in the TMDs. Substrate binding to the TMDs stimulates the ATPase activity [2, 46-48], while
ATP binding and hydrolysis lead to changes in the relative orientation of the TMD helices and
substrate transport [44, 49, 50]. To characterize ATP-dependent conformational changes [6],
we systematically varied the intracellular nucleotide concentrations in semi-permeabilized
NIH 3T3 mouse fibroblasts expressing the ABCB1 variants, and determined dose-response
curves of UIC2 binding in presence of increasing concentrations of MgATP or MgATP/vana-
date (Fig 3). In accordance with an ATP-regulated switch in the TMD conformation, increas-
ing MgATP concentrations decreased UIC2 staining (Fig 3A) [51, 52]. The apparent affinity of
MgATP for wild-type ABCB1 (K, = 1.56 + 0.46 mM) was found to be 3-4 fold lower than the
reported Ky values for ATP hydrolysis (Ky; = 0.3-0.5 mM) [53]. Vanadate (V;), which is known
to trap ABCBL in a post-hydrolytic state by forming a ternary complex (ABCB1-ADP-V;),
increased the apparent nucleotide affinity of wild-type ABCB1 by 2-3 orders of magnitude (K, =
0.081 + 0.014 mM) [47, 53-55].

Mutation of the catalytic glutamate to methionine (E556M) resulted in a markedly different
behavior (Fig 3B). The apparent affinity of ATP was very high even in the absence of V; (K4 =
0.077 + 0.02 mM), while treatment with V; led to a minor increase (K, = 0.027 + 0.001 mM),
in agreement with the tight occlusion of nucleotide(s) [31, 45]. The exchange of the three addi-
tional amino acids in the quadruple mutant restored wild-type like nucleotide-sensitive con-
formational dynamics (Fig 3C). The dose-response curves and the apparent affinity for
MgATP (K, = 1.12 £ 0.6 mM) and MgATP/V; (K, = 0.038 + 0.001 mM) were almost indistin-
guishable from wild-type ABCBI1 (compare Fig 3A and Fig 3C).
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Fig 3. MgATP dependent UIC2 binding. NIH 3T3 cells expressing ABCB1 variants were permeabilized to allow for
systematic variation of intracellular nucleotide concentrations. Dose-response curves of UIC2 binding with increasing
concentrations of MgATP in the absence or presence of vanadate (V;) were obtained for (A) wild-type, (B) the catalytic
glutamate mutant and (C) the quadruple mutant. Dose-response curves were normalized to the UIC2 signal obtained
in the presence of 0 mM ATP, which was found practically equal to the F/P corrected 15D3 signal and did not differ
between the different ABCBI variants. Panel (D) summarizes the mean apparent nucleotide affinity values (K, + SD,
n =9-11) obtained in control and V; treated cells. Statistical comparison of the K, values of V; treated and untreated
samples was carried out by unpaired Student’s t-test (two-tailed test); ***p<0.001, **p<0.01.

https://doi.org/10.1371/journal.pgen.1009016.9003
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Mutation dependent changes of steady state ATPase activity

ABCBI shows a basal ATPase activity that can be stimulated by substrates such as verapamil
[56, 57]. The steady state ATPase activity of ABCBI variants was quantified by measuring inor-
ganic phosphate, a product of ATP hydrolysis, in the presence of increasing concentrations of
verapamil (Fig 4). Membranes isolated from NIH 3T3 cells expressing wild-type ABCB1
showed the expected basal ATPase activity, which could be stimulated about 4-fold by the
addition of verapamil (Fig 4B and 4C). In contrast, the catalytic glutamate mutant showed no
ATPase activity above background levels (Fig 4B). Strikingly, the quadruple mutant showed a
low steady state ATPase activity (Fig 4B) that could be stimulated by verapamil. Although the
basal catalytic activity was significantly reduced, the degree of stimulation by verapamil was
almost identical to wild-type, showing that drug-stimulation of the ATPase activity is restored
in the quadruple mutant (Fig 4C).

Transport activity of NBS1 mutants

The function of the multidrug exporter ABCBI is to prevent cellular accumulation of environ-
mental toxins through active efflux [58-60]. In addition, ABCBI also transports many chemo-
therapeutic drugs and chemicals [61], including the dyes rhodamine 123 [62] and Hoechst
33342 [63]. To directly observe the effect of the mutations on transport activity, we measured
cellular accumulation of Hoechst 33342 (Fig 5A) [64] and calcein (Fig 5B) in NIH 3T3 cells.
Transport was quantified by the transport activity factor (TAF), corresponding to the normal-
ized tariquidar dependent increase of Hoechst 33342 or calcein fluorescence intensities. As
expected, the TAF value was close to 0 in cells devoid of ABCB1, while expression of wild-type
ABCBI effectively prevented intracellular accumulation of Hoechst 33342 (Fig 5A) and calcein
(Fig 5B). Mutation of the catalytic glutamate abolished transport activity, in accordance with
the loss of steady state ATPase activity and the reduced conformational flexibility. In sharp
contrast, the quadruple mutant was able to limit Hoechst 33342 and calcein accumulation,
though not as efficiently as wild-type ABCB1. These data clearly demonstrate that despite the
absence of the catalytic glutamate, the quadruple mutant regained the ability to efflux Hoechst
33342 and calcein. We have obtained similar bell-shaped curves characterizing the
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Fig 4. Effect of the mutations on substrate-stimulated steady state ATPase activity. (A) Expression levels of the ABCB1
variants in membranes isolated from NIH 3T3 cells, detected by Western blotting using the G-1 anti-ABCB1 mAb. (B)
Steady state ATPase activity of ABCBI variants in membranes isolated from NIH 3T3 cells. Membranes were incubated for
25 min in the presence of 3 mM MgATP and the indicated concentrations of verapamil. ABCBI specific steady state ATPase
activity is defined as valspodar inhibitable vanadate sensitive ATPase activity. Mean + SD of 5 independent experiments are
shown. (Significant differences compared to untreated NIH 3T3 control membrane samples are shown by ***: P<0.001, **:
P<0.01, *: P<0.05, while significant differences between the verapamil treated and untreated samples are indicated by +:
P<0.001, t1: P<0.01, t: P<0.05). (C) Response of the ABCB1-specific steady state ATPase activities to verapamil
stimulation. Significant differences between the wild-type and the quadruple mutant ABCBI are shown by **: P<0.01.

https://doi.org/10.1371/journal.pgen.1009016.g004
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Fig 5. Transport activity of ABCBI1 variants. ABCB1 dependent (A) Hoechst 33342 (B) and calcein-AM transport
were quantified by the transport activity factor (TAF). NIH 3T3 cells expressing ABCB1 variants were incubated with
Hoechst 33342 (0.025, 0.1, 0.5, 1 and 5 pM, panel A) or calcein-AM (0.025, 0.05, 0.1, 0.25, and 0.5 uM, panel B) for 30
min at 37 °C. Mean + SD of three independent experiments are shown. Significant differences compared to
ABCBI1-negative cells: ***: P<0.001, **: P<0.01.

https://doi.org/10.1371/journal.pgen.1009016.9005

concentration dependence of transport activity in the wild-type and quadruple mutant ABCB1
variants. These bell-shaped curves were measured for many of the ABCB1 substrates, includ-
ing rhodamine 123, Hoechst 33324 and calcein-AM. The ratios of the transport activity factor
between wild-type and quadruple mutant are comparable for both Hoechst 33324 and calcein-
AM and concentration independent, suggesting that transport specificity is unchanged for
these two substrates.

The NBS1 mutations change the molecular mechanism of ATP binding

The functional assays unequivocally showed that introduction of the degenerate NBS1 of
ABCBI1 in ABCBI is compatible with drug stimulated ATPase activity and substrate trans-
port, despite the absence of the catalytic glutamate. We performed MD simulations to eluci-
date the molecular mechanism underlying restored activity. Wild-type ABCBI, the catalytic
glutamate and the quadruple mutant were inserted into a membrane bilayer using the
membed procedure [65, 66]. Each transporter variant was independently modeled, assembled,
equilibrated and simulated for 1 ys, three times. Transporters were stable in all simulations,
maintaining their secondary and tertiary structures and showing similar deviations from their
respective starting conformations. Detailed analysis showed that the Py of ATP interacts with
the Mg”" ion, the Walker A motif and the signature sequence, while the Po and PB almost
exclusively interact with the Walker A motif (Fig 6) [67, 68]. Histograms of distances measured
between the Co. atom of S434 (first turn of the Walker A helix) and the Po. of ATP showed
equally stable interactions in the three variants, with a similar degree of fluctuations (Fig 6A).
Binding of ATP to NBS1 was stable and consistent for the three replicates of wild-type ABCB1
and the E556M mutant, as measured by the root mean square deviations (RMSD) of ATP
from the respective starting structure (Fig 6B). While the phosphates of ATP show equally sta-
ble binding for all three ABCB1 variants, binding of the adenosine base of ATP is less stable in
the quadruple mutant. ATP shows increased dynamics in two replicates of the quadruple
mutant (Fig 6B), consistent with the interpretation that binding of ATP is less strong in the
quadruple mutant.

This difference in ATP dynamics correlated with the change in the overall geometry of
NBS1, which deviated in the quadruple mutant. We quantified the structural changes of NBS1
and found that the distance across NBS1 between the Co. atoms of residue S434 (helix of the
Walker A motif) and residue G/R1178 in the first turn of the signature sequence helix (Fig 6D)
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Fig 6. ATP binding to NBS1. (A) Distribution of distances between the Co. atom of residue S434 (Walker A) and the Pa of ATP. (B) Time evolution of the RMSD of
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https://doi.org/10.1371/journal.pgen.1009016.g006

increases in the quadruple mutant. Concomitantly, the distance between the Co. atom of resi-
due S1177 (signature sequence) and the Po. of ATP (Fig 6E) showed a slightly increased separa-
tion between ATP and the signature sequence. To bridge the wider gap, the Py of ATP is bent
towards the more distant signature sequence, thereby maintaining simultaneous, but weaker
interactions with NBD1 and NBD2.

Structural changes in NBS1 were linked to changes in structural alignment and dynamics of
the ATP-bound NBD dimer. We used the distance between the signature sequences of NBD1
and NBD2 and the distance between the Walker A motif and the signature sequence across
NBS1 as a measure to quantify global structural changes linked to NBD1-NBD?2 association
(Fig 7A). Wild-type ABCBI showed the largest degree of variation in both distances and there-
fore the highest dynamic range. The catalytic glutamate mutant showed a smaller dynamic
range and populated only shorter distances, consistent with a single conformation of a confor-
mationally locked state. Similarly, the quadruple mutant sampled a smaller range of shorter
distances. Fig 7A shows a simultaneous reduction in the dynamic range of NBD dimer geome-
try and NBS1 closure, indicating that mutation-associated local differences in NBS1 are corre-
lated with the global conformational changes in the NBD dimer.

The Q-loops connect the NBSs with intracellular loop 2 and 4 of the TMDs and therefore
play a role in the cross-talk between ATP hydrolysis and the TMDs. Single Q-loop mutants
(Q475A or Q1118A) were shown to maintain almost wild-type like transport function and
UIC2 binding. In contrast, the double mutant (Q475A/Q1118A) lost ATPase activity and
transport capability, and the TMDs were no longer able to adopt a nucleotide bound confor-
mation reminiscent of wild-type ABCB1 [69]. We observed a strong correlation between the
separation of the two signature sequences and the distance between the signature sequence of
NBD2 and the Q-loop of NBD1 (Fig 7B) for wild-type ABCB1. The E556M mutant samples
mainly conformations that overlay with the shortest conformations detected for wild-type
ABCBI. Also conformations at larger distances are sampled, but their probability is much
lower. Thus, the correlation seems much weaker in the catalytic glutamate mutant, presumably
because of the close proximity of the E556M mutation to the Q-loop and due to the restrained
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conformational dynamics. The quadruple mutant was characterized by a collapsed dynamic
range in the signature to Q-loop distance and an almost complete loss of the above correlation,
indicating a change in structure and dynamics of the NBD dimer. Importantly, the mean dis-
tance between the Q-loop and the signature sequence is shorter, consistent with a change in
the local geometry of NBSI1.

The studied ABCBI variants include mutations that change amino acid charges. A methio-
nine neutralizes the negative charge of the catalytic glutamate (E556M), while the quadruple
mutant adds a positive charge (G1178R) and two negative charges (S474E and Q1180E). An
important cumulative effect is a change in the sign of the overall electrostatic potential between
the Q-loops in the center of the NBD dimer. The key difference is the G1178R mutation,
which places its positively charged guanidinium group between the Q-loops. The change in
the electrostatic potential extended to the signature sequence and to the Py of ATP in NBS1
(Fig 7C and 7D), thereby also affecting electrostatic interactions between the NBDs and
MgATP. Importantly, in addition to its electrostatic effects, the guanidinium group of G1178R
also assumes a strong structural role by forming hydrogen bonds with the backbone carbonyl
oxygens of the two Q-loop glutamines Q475 and Q1118 (Fig 8A and 8D) thereby acting as a
spacer that restrains the distances between the Q-loops (Fig 8A). The main structural conse-
quence is a more defined structural arrangement of the NBDs.

Crystal structures revealed that in the ATP bound state, the D-loops are in close proximity
to each other and to the Py of ATP. Biochemical data showed that transport function is
strongly modulated by D-loop mutations in ABCBI11 [70]. Also, a D674A mutation converted
the transporter associated with antigen processing (TAP) from a strictly unidirectional trans-
porter to a nucleotide-gated facilitator [71]. In TM287/288, mutation of the D-loop aspartate
in the consensus site strongly reduced ATPase activity, while having little effect on the ATPase
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activity in the degenerate site [72]. The time evolution of the distance between the D-loop Co.
atoms of §559 and S1204 (Fig 8B) showed that their relative distance was dynamic for wild-
type and the catalytic glutamate mutant. The comparison of the simulations of the three repli-
cas showed that different interactions were formed, but these interactions were not very stable,
because changing within the time-window of the 1 ps long trajectories. In contrast, the D-loop
distance was more restrained in the quadruple mutant. The dynamics (Fig 8B) were limited
and sampled shorter distances, while side chains of the two D-loops were always in direct
contact.

Discussion

Substrate transport by ABCBI is the integral result of a sequence of molecular events that
include ATP binding and hydrolysis, drug binding and drug release. ATP hydrolysis by the
NBDs converts the chemical energy stored in the phosphate bonds of ATP into NBD motions
that are propagated to the TMDs through conformational cross-talk. Evidence for the inter-
domain cross-talk comes from i) crystal structures showing correlated conformational changes
in TMDs and NBDs [7, 42]; ii) substrate-stimulated ATPase activity, revealing that substrate-
induced conformational changes in the TMDs are propagated to the NBDs [46-48]; iii) bio-
chemical experiments showing that substrate binding to the TMDs leads to conformational
changes in the NBDs [23, 26, 49, 73]. Our data reveal that nucleotides are the main determi-
nants of the overall ABCBI conformation, as nucleotide binding (ATP, ADP or ADP + V;)
shapes transporter conformation in a mutation dependent manner, while ABCB1 variants
were equally well recognized by the UIC2 antibody in the absence of nucleotides. Accordingly,
ABCBI remains locked in a pre-hydrolytic ATP-bound state, when hydrolysis is prevented or
slowed down to an undetectable level by the E556M mutation. ATP is the primary nucleotide
controlling transporter conformation in energized cells, because within cells its concentration
is typically 10 fold above the Kp, for ABCB1 [74] and an order of magnitude higher than the
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ADP concentration. In agreement with our data, LRET [23], FRET [75] and EPR [73] experi-
ments showed that the NBDs assume larger inter-domain distances in the absence of ATP.

The mechanism of ATP hydrolysis remains debated and several catalysis models have been
proposed [21]. However, all currently proposed models suggest a prominent role for the cata-
lytic glutamates (E556 and E1201 in ABCB1), in line with the deleterious effect of mutations
affecting this residue in basically all investigated ABC transporters. The exact role of the catalytic
glutamate in ATP hydrolysis remains disputed. Higher resolution structures of ABC transport-
ers have been obtained in the presence of ATP only when the catalytic glutamate E556 is
mutated, supporting the notion that in absence of the glutamate transporters adopt a conforma-
tionally restrained state allowing ATP hydrolysis to proceed only at a low rate. A direct contact
between the negatively charged catalytic glutamate E556 and the negatively charged phosphate
moieties of ATP is not postulated in functional models. A nucleophilic attack on the phosphate
atoms leading to bond breakage between the B and y-phosphate of ATP may be mediated by an
activated OH™ nucleophile generated with the contribution from residue E556 [76, 77]. It has
been shown that the E556Q mutant has very low, but detectable residual ATPase activity in
detergent purified ABCB1 [31]. This low ATPase activity is not sufficient to sustain any detect-
able net transport. In our hands, the steady-state ATPase activity of the E556M mutant does not
show any statistically significant difference from controls (Fig 4B). It is generally believed that
inactivation of one NBS blocks the transport function of symmetric ABC transporters [31, 33].
Yet a large number of human ABC transporters, including ABCB11, harbor a degenerate NBS1
[32, 70]. These transporters are active, despite missing a catalytic glutamate. Maintained evolu-
tionary pressure on NBS1 of ABCB11 suggests that the non-canonical NBS has acquired a novel
function that allows for overcoming the conformational arrest without the need for ATP hydro-
lysis [70]. To investigate the relevance of conserved amino acids aligning the degenerate NBS1,
we created the transport deficient catalytic glutamate mutant (E556M) in ABCB1 and also
inserted the complete set of non-canonical amino acids of ABCB11 into ABCB1 (S474E,
E556M, G1178R and Q1180E). We find that ABCB1 becomes transport incompetent, confor-
mationally trapped and ATP hydrolysis deficient, when only the catalytic glutamate is mutated,
confirming earlier findings [31, 70]. Strikingly, inserting the complete non-canonical NBS1 of
ABCBL11 into ABCBI restored conformational dynamics, substrate stimulated ATPase activity
and transport function, most likely by preventing ATP occlusion in NBS1 and energizing trans-
port by hydrolysis only in NBS2. These results also challenge models assuming strictly alternat-
ing catalysis [37, 78], proposing the continuous switching of ATP hydrolysis between NBS1 and
NBS2 of ABCBI [79]. While not very likely, it remains a possibility that wild-type ABCB1
hydrolyses two or more ATP molecules per transport cycle in one NBS to sustain a higher rate
of substrate transport compared to the quadruple mutant. Experimental data [22, 45] showed
that ABCBI occludes only one ATP in an asymmetric state, suggesting that only one ATP is
primed for hydrolysis at a time. Our results argue against a model which predicts that a second
ATP hydrolysis event in the second NBS is needed to reset the transporter, because in the qua-
druple mutant only NBS2 is catalytically active at a high turnover.

We used MD simulations to probe into the molecular origin of the restored transport func-
tion. We previously showed for wild-type ABCB1 that ATP binding stabilizes the NBD dimer
by ~42 k]/mol and that the hydrolysis products ADP and inorganic phosphate create a high
energy state that induces NBD separation [67, 68]. Our simulations revealed that binding of
ATP and its interactions with NBSI are similar for wild-type ABCB1 and the catalytic gluta-
mate mutant, but showed more restricted dynamics in the E556M mutant, indicating stronger
interactions that are consistent with a locked state. ATP cannot be efficiently released, because
the free energy of ATP binding shows a deep energy well that stabilizes the ATP-bound con-
formation [67, 68]. Therefore, ATP remains tightly bound in the E556M ABCBI variant, as
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efficient hydrolysis is prevented, thereby leading to an arrest of the transport cycle. Simulations
show that creating an ABCB11-like NBS1 in ABCBI1 prevents this occlusion, thereby avoiding
the locked state observed for the E556M mutant. The quadruple mutant includes the same
E556M residue change, but these additional residue changes lead to a change in the geometry
of NBS1 (Fig 7), effectively weakening ATP binding and preventing occlusion (Fig 6). We can
infer from these data that the ABCB11-like NBS1 of the quadruple mutant allows for ATP
binding, but it prevents occlusion through altered interactions, thereby avoiding strong bind-
ing of ATP. Our results support random recruitment of the two catalytic centers for ATP
hydrolysis in ABCB1 [51]. The quadruple mutant is reminiscent of the degenerate NBS1 of
ABC transporters. Future work will reveal if in the quadruple mutant ATP remains loosely
bound to the degenerate NBS1 throughout the transport cycle, keeping the two NBDs in close
proximity, or alternatively, if ATP unbinds without hydrolysis from NBS1 in every transport
cycle, as suggested for the yeast ABC transporter Pdr5 [80, 81].

Materials and Methods
Sequence alignments and homology modeling

Sequences of the human ABCB1 and ABCB11 were aligned using clustalW (v.2.0) [39]. The
homology model of ABCB11 was created using Sav1866 as a template using MODELLER soft-
ware (version 9v12) [82]. Model quality was evaluated using Ramachandran plots and by
applying the DOPE score of energetic evaluation [83]. The best model of ABCB11 was used for
analysis. The data driven model of ABCB1, based on the Sav1866 crystal structure, has been
described previously [84].

Simulation

Production runs were carried out using the Gromacs simulations package, version 5.1.4. Ber-
ger lipids [85] were used for describing the POPC membrane. The AMBER force field [86] was
used for the protein, the parameters for ATP have been described in [68, 87]. Temperature was
maintained at 310 K using the v-rescale (t = 0.1 ps) thermostat [88], while separately coupling
protein, membrane and solvent. Pressure was maintained at 1 bar using the Berendsen baro-
stat [89]. The pressure coupling constant was set to 1.0 ps, the compressibility to 4.5x10> bar”
'. Long range electrostatic interactions were described using the smooth particle mesh Ewald
method [90] applying a cutoff of 1.0 nm. The van der Waals interactions were described using
the Lennard Jones potential applying a cutoff of 1.0 nm. Long range corrections for energy
and pressure were applied. The bonds and angles of the water molecules were constrained
using the SETTLE algorithm [91], while all other bonds were constrained by LINCS [92].

Antibody purification and labeling

The UIC2 and 15D3 anti-ABCB1 mAbs were prepared from hybridoma supernatants using
affinity chromatography and were >97% pure by SDS/PAGE [93]. Hybridoma cell lines were
obtained from the American Type Tissue Culture Collections (Manassas, VA, USA). The
UIC2 and 15D3 antibodies were labeled with Alexa 647 succinimidyl ester (A647; Life Tech-
nologies, Inc., Carlsbad, CA, USA) and separated from the unconjugated dye by gel filtration
on a Sephadex G-50 column.

Cell lines

The NIH 3T3 mouse fibroblast cell line was a kind gift from Michael Gottesman (National
Institutes of Health, Bethesda, MD). The cells were grown as monolayer cultures at 37°C in an
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incubator containing 5% CO,, and were maintained by regular passages in Dulbecco’s modi-
fied Eagle’s medium (DMEM, Sigma-Aldrich, Budapest) supplemented with 10% heat-inacti-
vated fetal calf serum, 2 mM L-glutamine, and 0.1 mg/ml penicillin-streptomycin cocktail.

Vector constructs

Sleeping Beauty transposon vectors containing the wild-type, E556M, and the quadruple
mutant (S474E, E556M, G1178R, Q1180E) human MDR1 cDNA were constructed. Site-
directed mutagenesis was performed using the QuikChange II Site-Directed Mutagenesis Kit
(Agilent Technologies, Santa Clara, CA, USA) on the pAcUW-LMDRI vector carrying the
wild-type human ABCB1 cDNA. Mutations were generated according to the manufacturer’s
instructions. Full-length ABCB1 ¢cDNAs were sequenced and mutations were confirmed in all
SB constructs.

Establishment of transgenic cell lines

The NIH 3T3 cell clones stably expressing the wild-type and mutant human ABCBI trans-
porter variants were established by the Sleeping Beauty transposon-based gene delivery system
[94, 95], using the 100 fold hyperactive SB transposase [96, 97]. NIH 3T3 mouse fibroblasts
were co-transfected with the SB transposase and SB transposon vector constructs by Lipofecta-
mine 2000 reagent (Life Technologies, Budapest, Hungary), in accordance with the manufac-
turer’s instructions. Briefly, 3 x 10° cells were seeded in 6-well-plates, 24 hours later cells were
transfected with 2 ug vector DNA per well in a 10:1 ratio for the SB transposon and transposase
constructs. 48 hours after transfection transgene positive cells were sorted by flow cytometry
(Becton Dickinson FACSAria III Cell Sorter (Becton Dickinson, Mountain View, CA, USA))
based on the cell surface expression of ABCB1. Protein expression was measured by antibody
labeling using the human ABCBI1-specific monoclonal antibodies MRK16 (Abnova GmbH
Heidelberg, Germany) or 15D3. To obtain homogeneously expressing cell populations, the
sorting procedure was repeated 2 or 3 times.

Permeabilization of cells with streptolysin O

NIH 3T3 cells (1 x 10 cells/ml) were treated with 300 U/ml streptolysin O (SLO, Sigma-
Aldrich, Budapest) in the presence of 10 mM DL-Dithiothreitol (DTT), protease inhibitor
cocktail (Sigma-Aldrich, Budapest, Hungary) and 100 ug/ml phenylmethanesulfonyl fluoride
(PMSF) in phosphate-buffered saline (PBS) containing 1% fetal bovine serum (FBS-PBS) at
37°C for 30 min, allowing permeabilization of approximately 60-80% of the cells (judged by
propidium iodide (PI) staining). The reaction was stopped with 10 ml ice-cold FBS-PBS and
the cells were centrifuged for 5 min at 525 x g at 4°C. Unbound toxin was removed by washing
the cells 3 times with FBS-PBS and the cell pellet was re-suspended in FBS-PBS.

Determination of the apparent affinity of nucleotide binding

Apparent affinity of nucleotide binding (K,) was determined as it is described in Barsony et al.
[51]. Briefly, MgATP was added in a broad concentration range to permeabilized cells (1 x 10°
cells/ml) in the presence or absence of 0.5 mM vanadate (V;) for 30 min at 37°C. Then the
samples (without washing) were further incubated with 10 pg/ml UIC2-A647 mAb for another
30 min at 37°C. Following antibody labeling, samples were washed 3 times with ice-cold
FBS-PBS and re-suspended in ice-cold FBS-PBS containing 3 ug/ml PI. The UIC2-A647 fluo-
rescence intensity of the PI positive cells was measured by flow cytometry and plotted as a
function of the nucleotide concentration. To determine the apparent affinity of ABCBI to the
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nucleotides (K,) data points were fitted with the four-parameter Hill function, where F;, and
Fnax values are the minimum and maximum fluorescence intensities.

UIC2 reactivity assay

Cells (5 x 10° cells/ml) were pre-treated with 10 uM CsA in PBS supplemented with 8 mM glu-
cose (gl-PBS) for 30 min at 37°C. ATP depletion was induced by Na-azide (10 mM) and
2-deoxy-D-glucose (8 mM) treatment for 30 min at 37°C in glucose-free PBS. The ABCB1
reactive mAbs UIC2-A647 (10 pg/ml) or 15D3 (30 pug/ml) were added directly without wash-
ing step and cells were further incubated for 30 min at 37°C. Then the samples were washed
twice with ice cold PBS and re-suspended in 250 pl ice cold PBS before flow cytometric analy-
sis. The A647-conjugated UIC2 and 15D3 antibody stocks had comparable dye to antibody
ratios (F/P = 1.75-2.5) and the fluorescence intensities were corrected for F/P values.
UIC2-reactivity (i.e. the percentage of cell surface ABCB1 molecules in a UIC2 reactive confor-
mation) was calculated as a ratio of the F/P-corrected UIC2 and 15D3 signals.

Preparation of membranes

Membrane fraction of NIH 3T3 mouse fibroblast cells expressing wild-type, E556M and qua-
druple mutant ABCBI1 and their ABCB1-negative counterpart was prepared according to Sar-
kadi et al. [56] with minor modifications previously described in [98]. Cells were harvested by
scraping them into ice-cold PBS and washed twice at 300 x g for 5 min. Subsequently, cells
were lysed and homogenized in TMEP solution (50 mM Tris, pH = 7.0, with HCl), supple-
mented with 50 mM mannitol, 2 mM EGTA, 0.5 mM phenylmethylsulphonyl fluoride
(PMSF) and protease inhibitor cocktail (Sigma-Aldrich, Budapest)) at 4°C using a glass tissue
homogenizer. Nuclear debris and intact cells were selectively removed by centrifugation at
500 x g for 10 min at 4°C. Supernatant was further centrifuged for 60 min at 28,000 x g at 4°C
and the membrane pellet was re-suspended in TMEP solution. Membrane samples were stored
at -80°C. Protein concentration of the membrane samples was determined by the Lowry
method [99].

Western blot analysis

Cell membrane samples (5 pg/slot) were subjected to SDS-polyacrylamide gel electrophoresis
on 10% polyacrylamide gel and were electroblotted to 0.45 pm pore size nitrocellulose mem-
brane (GE Healthcare Life Sciences, Little Chalfont, Buckinghamshire, UK). ABCB1 expres-
sion was detected by a monoclonal anti-ABCB1 antibody (G-1, Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA), while as a loading control actin expression was detected by a monoclo-
nal anti-actin antibody (C-2, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) at 1:5,000
dilution. As a secondary antibody a goat anti-mouse HRP-conjugated IgG (Santa Cruz Bio-
technology Inc., Santa Cruz, CA, USA) was applied at 1:5,000 dilution. Images were collected
using a FluorChem Q Alpha Innotech imaging system.

ATPase activity measurements

The ABCB1-specific ATPase activity of the membrane samples was determined by measuring
the amount of inorganic phosphate (P;) released in the ATPase reaction with modifications
described in [51, 56, 100]. Membrane samples (15 ug membrane protein/sample) were pre-
incubated in 60 pl ATPase assay premix (50 mM MOPS, 65 mM KCl, 6.5 mM NaN3, 2.6 mM
DTT, 1.28 mM ouabain, 0.65 mM EGTA, pH = 7.0) in the presence or absence of 100 uM
Na;VO, (vanadate) and 5 uM of the ABCBI inhibitor valspodar (Sigma-Aldrich, Budapest) at
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37°C. The ATPase reaction was started with the addition of 3.2 mM MgATP. After 25 min
incubation at 37°C, the reaction was stopped by 40 pl 5% SDS, then the samples were incu-
bated with 105 pl color reagent [101] at room temperature for 30 min. Absorbances of the sam-
ples were measured at 700 nm using a BioTek Synergy HT plate reader (BioTek Instruments,
Winooski, VT, USA) and the amount of released P; was calculated. To increase the signal to
noise ratio of the ATPase assay, values were corrected for the background activity associated
with other endogenous ATPases. Thus, ABCB1-specific ATPase activity is defined as the dif-
ference between the vanadate-sensitive ATPase activities measured in the absence and the
presence of valspodar.

Hoechst 33342 and calcein accumulation studies

For measurement of the transport activity of the mutant ABCB1 variants a cell based Hoechst
33342 and calcein-AM accumulation assay was used [64, 102]. Cells (5 x 10° ml™") in gl-
HEPES (20 mM HEPES, 123 mM NaCl, 5 mM KCl, 1.5 mM MgCl,, 1 mM CaCl,, 7 mM glu-
cose) for Hoechst 33342 assay or in gl-PBS for calcein-AM assay were pre-incubated in the
presence or absence of specific ABCBI inhibitor (tariquidar (1 uM)) for 10 min at 37°C and
then were loaded with different concentrations of Hoechst 33342 (5.0, 1.0, 0.5, 0.1 and

0.025 uM) and calcein-AM (0.5, 0.25, 0.1, 0.05 and 0.025 pM) for 30 min. The samples were
washed with ice-cold HEPES or PBS buffer containing 0.5% FBS at 300 x g for 5 min and were
kept on ice until flow cytometric measurement. Dead cells were excluded from the analysis on
the basis of PI staining. The transport activity of the ABCBI1 variants was described by the
Transport Activity Factor (TAF) calculated according to the following formula: TAF =
(MF;,;n,—MFIp)/MFl;,p,, wherein MFI;,, and MFI are the mean fluorescence intensity values
measured in the presence and absence of ABCBL1 inhibitor, respectively [102].

Flow cytometry

Intracellular Hoechst 33342 and calcein accumulation was measured using a Becton Dickinson
FACSAria III Cell Sorter (Becton Dickinson, Mountain View, CA, USA). Hoechst 33342 was
excited with a 365 nm UV laser and the emitted blue light was detected using a 445/40 band
pass filter. Calcein was excited with a 488 nm blue laser and fluorescence was detected using a
502 long pass dichroic mirror and a 530/20 band pass filter. PI was excited by the 562 nm line
of a solid-state laser and the emitted light was detected applying a 590 nm dichroic mirror and
a595/50 nm band-pass filter.

UIC2-A647 and 15D3-A647 labeling of cells was measured by using a Becton Dickinson
FACS Array (Becton Dickinson, Mountain View, CA, USA) flow cytometer. A 635 nm laser
was used for the excitation of the Alexa 647 dye and the fluorescence was detected in the red
channel (661/16 nm), while the 532 nm laser was used for the excitation of PI (detected at 585/
42 nm). Cell debris was excluded from analysis on the basis of FSC and SSC signals. Cyto-
fluorimetric data were analyzed by using FCS Express 4 Research Edition (De Novo Software,
Glendale, CA, USA).

Statistical analysis

Data were analyzed using SigmaStat (version 3.1, SPSS Inc., Chicago, IL, USA) and are pre-
sented as means = SD. Comparison of two groups was carried out by unpaired ¢-test, statistical
significance in the case of three or more groups was assessed using analysis of variance
(ANOVA), applying the Holm-Sidak multiple comparison test for post-hoc pair-wise compari-
son of the data. In the case of unequal variances Dunnett T3 post-hoc pair-wise comparison
method was used. Differences were considered significant at P<0.05.
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Supporting information

S1 Fig. Visualization of NBD motifs: The NBD-NBD interface of a single NBD is shown in
cartoon representation. The known motifs are highlighted by color, ATP is show in yellow,
the Mg”* ions in pink. The arrows in the lower left corner indicates the orientation of ABCB1
relative to the membrane. The green and red arrows are oriented parallel to the membrane
plane, the blue arrow indicates the direction perpendicular to the membrane.

(TIF)

S2 Fig. Residues contact across the NBD dimer interface of wild-type ABCB1. (A) Cartoon
representation of NBD1 of ABCBI, oriented as in supporting S1 Fig. ATP is shown as yellow
sticks, Mg”* as a pink sphere. Residues in direct contact with NBD2 are indicated by light
green sphere of their respective Co atoms. Residue 556 is highlighted in red. (B) Cartoon
representation of NBD2 of ABCB1, shown similar as NBD1 in panel A. Residues directly inter-
acting with NBD1 are highlighted by dark green sphere of their respective Co. atoms. Residues
1178 and 1180 are indicated in red. (C) Top view of the NBD dimer showing the Co. atoms of
all residues that are in direct contact. (D) The matrix summarize all contacts across the NBD-
dimer interface, indicating in red the residues mutated in the quadruple mutant. ATP acts as
glue [21, 67] and interaction hub, while shielding residues from direct interaction.

(TIF)
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