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ABSTRACT
With the rapid rate of Covid-19 infections and deaths, treatments and cures besides hand washing, social distancing, masks,

isolation, and quarantines are urgently needed. The treatments and vaccines rely on the basic biophysics of the complex viral
apparatus. While proteins are serving as main drug and vaccine targets, therapeutic approaches targeting the 30,000 nucleotide
RNA viral genome form important complementary approaches. Indeed, the high conservation of the viral genome, its close
evolutionary relationship to other viruses, and the rise of gene editing and RNA-based vaccines all argue for a focus on the
RNA agent itself. One of the key steps in the viral replication cycle inside host cells is the ribosomal frameshifting required
for translation of overlapping open reading frames. The frameshifting element (FSE), one of three highly conserved regions
of coronaviruses, includes an RNA pseudoknot considered essential for this ribosomal switching. In this work, we apply our
graph-theory-based framework for representing RNA secondary structures, “RAG" (RNA-As Graphs), to alter key structural
features of the FSE of the SARS-CoV-2 virus. Specifically, using RAG machinery of genetic algorithms for inverse folding adapted
for RNA structures with pseudoknots, we computationally predict minimal mutations that destroy a structurally-important stem
and/or the pseudoknot of the FSE, potentially dismantling the virus against translation of the polyproteins. Additionally, our
microsecond molecular dynamics simulations of mutant structures indicate relatively stable secondary structures. These findings
not only advance our computational design of RNAs containing pseudoknots; they pinpoint to key residues of the SARS-CoV-2
virus as targets for anti-viral drugs and gene editing approaches.

SIGNIFICANCE
Since the outbreak of Covid-19, numerous projects were launched to discover drugs and vaccines. Compared to

protein-focused approaches, targeting the RNA genome, especially highly conserved crucial regions, can destruct the virus
life cycle more fundamentally and avoid problems of viral mutations. We choose to target the small frame-shifting element
(FSE) embedded in the Open Reading Frame 1a,b of SARS-CoV-2. This FSE is essential for translating overlapping reading
frames and thus controlling the viral protein synthesis pathway. By applying graph-theory-based computational algorithms,
we identify structurally crucial residues in the FSE as potential targets for anti-viral drugs and gene editing.

1 INTRODUCTION
The novel coronavirus SARS-CoV-2, the agent of the Covid-
19 pandemic that has upended our world in a very short time,
poses an international health emergency of unprecedented
proportions. With rapid transmission and high death rates, this
virus threatens the lives and livelihood of billions of people
worldwide. Scientists have been quick to rise to the task
to investigate collaboratively many viable paths of defense.
These include development of better techniques for detection
and tracing of infection, identification of viable compounds
that mitigate the virus’s harm, and development of vaccines.

Some clues into the complex virus apparatus involved in
the infection process are available from highly related cousins
of this pathogenic coronavirus. From the SARS (SARS-CoV)
and MERS (MERS-CoV) viral outbreaks, we have a reason-

able mechanistic understanding of the SARS-CoV-2 virus
life cycle and the infection process. This includes the cellular
invasion by the viral spike (or S) protein and its binding to
the ACE2 cellular receptors, and the triad of main proteins
essential for producing a complete viral particle (envelope,
membrane, and nucleocapsid) (1–3). In addition, scientific
advances since the SARS and MERS outbreaks, along with
accumulating data about the disease since its emergence in
late 2019 from China, provide insights into the virology,
pathology, and empirical treatments of such infections (1–3).

From this information and knowledge of other viruses
like HIV-AIDS, Ebola, Influenza, Hepatitis C, or Malaria
(4, 5), we have suites of anti-viral and other compounds that
can potentially mitigate the damage of the virus on the body,
including Remdesivir, Tocilizumab, Favipiravir, Galidesivir,
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Brilacidin, and Dexamethasone (5). In particular, Remdesivir,
which resembles the structure of an HIV reverse-transcriptase
inhibitor, has shown promise for reducing recovery time of
patients in acute stages, and the steroid Dexamethasone, used
widely to fight serious inflammatory reactions, was shown to
reduce Covid-19 deaths. Drugs that block spike, membrane,
or envelope proteins on the viral shell of coronaviruses are
actively being sought, and some are being investigated in
clinical trials.

With rapid deaths, as well as second and third waves
of infection already seen in some countries, scientific data
are critically needed to help guide clinical efforts and offer
genomic, bioinformatic, and biophysical insights into effec-
tive disease treatment approaches, both short and long term.
Because a vaccine is not imminent and new coronavirus
epidemics can be anticipated, a better understanding of the
viral machinery and potential therapeutic avenues that are not
currently widely explored are warranted.

SARS-CoV-2, like other coronaviruses, has a ≈ 30,000
base-pair RNA genome. The viral RNA agent hijacks the host
cells’ ribosome machinery to replicate and assemble itself
by synthesizing a suite of viral proteins and thus continue
to invade host organs. An attractive alternative line of re-
search to protein-targeting approaches involves compounds
that degrade and thus disarm the main workhorse of the virus,
the RNA genome (6, 7). RNA-targeting approaches offer
therapeutic potentials due to the high sequence and structure
conservation of the untranslated regions of the viral genomes;
they nonetheless pose physiochemical challenges due to their
more complex structures. With rapid emergence of CRISPR
technology, however, such approaches are becoming more
viable and valuable. Indeed, CRISPR/Cas13d technology may
be used in connection with a guided-RNA delivery system to
edit the SARS-CoV-2 viral genome in strategic locations such
as the Open Reading Frame ORF1a,b and the spike gene of the
virus, with the aim of disrupting key replication or invasion
processes (7). Two vaccine candidates based on the RNA are
under advanced clinical trials (8) — an mRNA vaccine by
Moderna, and an adenovirus vector by Johnson & Johnson.

One of the critical steps in viral replication is the transla-
tion of overlapping, but shifted, ORF1a,b gene region which
codes for the unstructured polypeptides that start the cascade
of viral protein synthesis. This is achieved via the process
of −1 programmed ribosomal frameshifting, a mechanism to
stall ribosomal translation utilized by many viruses to handle
overlapping reading frames (9). The frameshifting element
(FSE) is a small region (less than 100 nucleotides) in the
middle of the ORF1a,b gene region; it is believed that such
mechanisms rely on specific structural modules and/or as-
sociated structural transitions (10). In the SARS-CoV virus,
this frame-shifting element was identified as a three-stem
structure, where Stems 1 and 2 intertwine via a pseudoknot,
or an intertwined base pair region (11, 12). Drug screening
for this structure had suggested a potential drug to a central
loop region (10, 13), and recent research suggests promise for

SARS-CoV-2 as well (14).

Here we expand upon these insights for SARS-CoV-2 ap-
plications using our graph-theoretic approach, “RAG” (RNA-
As-Graphs), that uses tree and dual graphs to represent, study,
predict, and design RNA secondary (2D) structures (15–20).
Our dual graphs represent RNA stems/helices as graph ver-
tices and loops as edges. These graph objects can handle
RNA pseudoknot motifs. By focusing on the overall con-
nectivity/shape of the RNA 2D structural elements, RAG
substantially simplifies the RNA structure, making it insen-
sitive to the number of residues in stems and loop regions.
Because our approach is general, similar techniques can be
applied to other regions of the viral genome.

Here we investigate structural features of the FSE of
SARS-CoV-2, and predict minimal mutations that destroy key
structural features thought to be critical to its function, thus
providing targets for anti-viral or gene therapy. Specifically,
we use our inverse folding procedure, RAG-IF, which utilizes
a genetic algorithm to systematically mutate RNA sequences
to fold onto a target graph motif (21). RAG-IF relies on
our computational pipeline to design RNA sequences for
target graphs from constituent building blocks (22) based on
fragment assembly of subgraphs (23, 24) using a library of
subgraphs and corresponding 3D structures of solved RNAs
(25). Such RNA design is a computationally efficient approach
that can generate hundreds of candidate of sequence pools
and then sort them for minimal mutations. The proposed
candidates from our original design pipeline have already
shown promise through experimental chemical reactivity
testing (SHAPE) (24).

In this work, we first identify the SARS-CoV-2 FSE
region (based on the SARS-CoV FSE sequence) and obtain its
consensus structure with eight different secondary-structure
prediction programs; we represent this region as dual graph
3_6, 3 stems with a pseudoknot intertwining Stems 1 and
2 (Fig. 1A-C). Next, we use RAG-IF (21), modified here
to handle pseudoknots, to identify critical residues that can
transform the FSE using minimal mutations to closely-related
graph motifs that correspond to other known RNA structures
chosen from our dual-graph motif atlas (26). Intriguingly, we
find that mutating only 2-3 critical residues in the FSE can
alter its structure dramatically. We also assess the stability
of these mutants by compensatory mutations using the same
inverse folding techniques; this essentially provides a measure
of how easily ‘reversible’ these mutations are. Next, we report
emerging structural insights from microsecond molecular
dynamics (MD) simulations of the wildtype and mutants
as additional measures of structural stability. We conclude
with a summary and discussion of our findings, including a
figure with key drug-target residues emerging from this work,
implications to Covid-19 therapy, and future plans.
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Figure 1: Consensus structure of the SARS-CoV-2 frame-shifting element (FSE) and related dual graph targets. (A) 2D structure
of the FSE, a three-stem pseudoknot motif. (B) Circular plot of the FSE 2D structure, where the pseudoknot corresponds to the
crossing of the two base pairs. (C) Associated dual graph motif 3_6 for the FSE 2D structure. (D) Dual graphs with 2 or 3
vertices related to the FSE 3_6 motif. In dual graphs, stems in RNA secondary structures are vertices, while junctions, bulges
and loops are edges (15). The targets containing pseudoknots are shown in green. Those not containing pseudoknots, are also
represented as tree graphs, where stems denote edges and junctions, bulges and loops are vertices.

2 MATERIALS AND METHODS

2.1 Identification of the SARS-CoV-2 FSE
The SARS-CoV FSE has been identified as the slippery
site UUUAAAC, and a downstream three-stem pseudoknot-
containing structure (12, 27). Taking this information as a
guide, we used RNAMotif (28) to search for the same nu-
cleotide pattern (bracketed by 5′UUUAAAC, an H-type pseu-
doknot, and UUU3′) in SARS-CoV-2 complete RNA genome
(GenBank entry MT246482). This led to the identification
of a 84-nucleotide sequence in the viral genome of SARS-
CoV-2, with a single-nucleotide substitution as compared to
SARS-CoV FSE (Fig. 1A).

2.2 Secondary Structure Prediction Packages
We use eight RNA 2D structure prediction packages that
handle pseudoknots to predict the 2D structures of 84-residue
and 77-residue (without the slippery site) FSE of SARS-
CoV-2: PKNOTS (29), NUPACK (30), IPknot (31), Hotknot
(32), Vfold2D (33), SPOT-RNA (34), ProbKnot (35), and
vsFold5 (36). PKNOTS and NUPACK were installed locally,
and webservers were used for the others. The structures were
first predicted using the default parameter sets for all eight
packages; if the default set did not yield the expected three-
stem pseudoknot structure, other parameter sets available on
the webservers were also utilized.

Fig. S1 and Fig. S2 show the minimum free energy struc-
tures predicted by the eight programs, using the default or
alternative parameter set, for both the 84-residue and 77-
residue FSE.

2.3 RAG Dual Graphs
In RNA 2D structures, double-stranded (base-paired) regions
are called stems/helices, and single-stranded regions are called
loops (15–17). The rules for representing 2D structures as
dual graphs are:

1. Stems are represented as vertices and loop strands are
represented as edges.

2. Stems must have at least two base pairs to be considered
as vertices.

3. Each single strand in bulges, internal loops and junc-
tions are represented as an edge that connects vertices.
Bulges/internal loops with only one residue on each
strand are ignored.

4. Hairpin loops are represented as self edges.
5. Unpaired residues at the 5′ and 3′ ends are ignored.
Fig. 1A,C show the 2D structure of the SARS-CoV-2

FSE and its corresponding dual graph, 3_6. Our dual graph
enumeration algorithm (26) uses graph theory to describe all
possible dual graphs for 2-9 vertices. There are 110,667 dual
graphs in our current dual graph library, and we show those
with 2-5 vertices in Fig. S3.

2.4 RAG-IF for Minimal Mutations
We use our inverse-folding protocol RAG-IF (21) to mutate
the 77-residue FSE sequence to fold onto closely related
dual graph motifs. Our RAG-IF program defines the inverse-
folding with mutations section of our computational pipeline
for novel RNA design (21, 24). For a target tree graph (i.e., no
pseudoknots), our original design pipeline generates a pool of
RNA sequences, some of which fold onto the target graph, as
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determined by two 2D structure prediction packages. For the
unsuccessful ones, RAG-IF is applied to determine minimal
mutations that lead these sequence to fold onto the target
topology.

RAG-IF has three steps: (1) identify mutation regions
and target 2D structures, (2) produce candidate sequences by
mutations by a genetic algorithm (GA), and (3) optimize the
mutated sequence pool by sorting and retaining only minimal
or essential mutations that fold onto the target graph.

For tree graphs, all three steps are automated. However, to
use RAG-IF for dual graphs capable of handling pseudoknots,
we manually choose the target residues for mutation (step
1), modify aspects of the GA for speed, and change the
2D structure prediction packages to ones that can handle
pseudoknots for steps 2 and 3.

2.4.1 Selection of mutation regions

We compare the wildtype FSE graph and the target graph
to identify the smallest possible mutation regions required
for the transformation. Specifically, we focus on breaking
the FSE pseudoknot/Stem 2. Here we describe how this is
accomplished for our four most successful target graphs 3_5,
3_2, 2_1, and 3_3 (shown in Fig. 1D and Fig. S4).

Target dual graph 3_5 is a three-way junction, without
any pseudoknots, and it corresponds to RNAs like the thi-box
riboswitch. Two of the three stems of the FSE (Stems 1 and
3) are also present in the 3_5 graph, hence are kept intact in
the transformation. To break the FSE pseudoknot/Stem 2, we
seek residues at the 3′ end of the FSE to form a new stem
with the 5′ end. Hence, we select residues 71-77, part of Stem
2 and the 3′ end, as targets for mutation.

Target graph 3_2 has 3 stems connected by a single-
stranded region and an internal loop, and it includes the
original Stem 3. This graph corresponds to RNAs like U6
snRNA. For this transformation, we use the 5′ end and hairpin
loop of Stem 1 (Fig. S4) to form a new stem. To pair the
residues involved, we select the 3′ strand of the original Stem
1, residues 27-33, as the mutation region.

Target graph 2_1, corresponding to RNAs like the cleaved
hammerhead ribozyme, has two stems and a connecting single-
stranded region. For this transformation, we aim to keep Stems
1 and 3 intact, but destroy Stem 2, while avoiding two other
potential pseudoknots (shown in Fig. S4). Hence, we select
residues 22-24 and 70-74 of Stem 2 and the 3′ end residues
75-77 for mutation.

Target graph 3_3 has 3 stems and a structurally different
pseudoknot. It corresponds to RNAs like the IRES (PDB ID:
2IL9). To break the FSE pseudoknot, we want the 3′ strand of
Stem 2 to bind with the hairpin loop of Stem 3 to form a new
pseudoknot. However, to avoid a another potential pseudoknot
as shown in Fig. S4, we select residues 22-24 and the 3′ strand
of Stem 2 (residues 68-73) as mutation regions.

2.4.2 Genetic algorithm application
Genetic algorithms (GA) mimic evolution in Nature. A pop-
ulation with a defined fitness undergoes random mutation,
crossover and selection, and those with high fitness are re-
tained. In our case, the individuals in the population are
RNA sequences, and the fitness is the number of residues
that have the same 2D structure in both the target and the
predicted structure. Based on prediction performance on the
77-residue FSE and computational complexity (see below),
we choose NUPACK to be the prediction program used in the
GA. The initial population is obtained by randomly assigning
nucleotides to the mutation region in the RNA sequence.
This population is then subject to 100 iterations of random
mutation, crossover, selection and nomination (see (21) for
details).

For minimal mutation search, we use a population of
100 sequences (and 10 sequence replacement in the selection
step). The GA terminates if 200 high-fitness sequences are
nominated or the execution time exceeds 6 hours. The nomi-
nated sequences are further screened by prediction program
PKNOTS, and only those that satisfactorily fold onto the
target graph by both NUPACK and PKNOTS are retained.

For compensatory mutation search, the starting sequences
are the mutants, the mutation regions are the same, and the
target folding is the 2D structure predicted by NUPACK for
the wildtype 77-residue FSE. Expanded RAG-IF runs (500
sequences) are taken for targets 2_1 and 3_3, with 50 sequence
replacement instead of 10.

2.4.3 Sequence pool optimization
During mutation optimization, we remove any mutations that
do not change the target fold (dual graph) of the sequence.
The remaining mutations are deemed as essential or minimal
(21).

2.5 Molecular Dynamics Simulation Details
The 3D structures of the 77-residue wildtype FSE, along with
three mutants, 72C-74C, 30G-32C, 23G-73A, were predicted
using 4 structure prediction webservers: RNAComposer (37),
Vfold3D (38), SimRNA (39), and 3dRNA(40). We discard
any structure that did not correspond to the intended dual
graph motif (3_6 for the wildtype, 3_5 for 72C-74C mutant,
3_2 for 30G-32C mutant, and 2_1 for 23G-73A mutant)
based on the 2D structures annotated by either DSSR (41)
or RNAView (42). Structure validation was performed by
MolProbity (43) (using nuclear hydrogen positions), and the
structure with least steric clashes and best geometry was
selected for the subsequent MD simulations. For the wildtype
as well as the 3 mutants, the selected structure was predicted
by RNAComposer.

MD simulations were performed using Gromacs 2020.3
(44), with the Amber OL3 forcefield (45). The systems were
solvated with TIP3P water molecules in the cubic box whose
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boundaries extended at least 10 Å from any RNA atom (46).
Sodium ions were randomly placed for charge neutralization,
and additional Na+ and Cl− were added for 0.1M bulk concen-
tration. The total number of atoms for the simulations of the
wildtype, 72C-74C mutant, 30G-32C mutant, and 23G-73A
mutant are 119671, 156619, 162175, and 151076, respectively.

The systems were energy minimized via steepest descent
and equilibrated while fixing the RNA. Simulations were run
with a timestep of 2 fs and a SHAKE-like LINCS algorithm
(47) with constraints on all bonds. The equilibration was
performed for 100 ps in the NVT ensemble (300 K) and then
100 ps in NPT ensemble (300 K and 1 bar). Production runs
were performed for 1 `s under NPT. The RNA and ionic
solvent were independently coupled to external heat baths
with a relaxation time of 0.1 ps. The Particle Mesh Ewald
method (48) was used to treat long-range electrostatics. The
short-range electrostatic cutoff is set at 10 Å, and the Van der
Waals cutoff is set at 10 Å.

The trajectories were analyzed using Gromacs, and struc-
ture visualization was prepared by PyMOL (49) and VMD
(50). Root mean square deviations (RMSD) and root mean
square fluctuations (RMSF) were calculated with reference to
the NPT equilibrated structure using all heavy RNA atoms.
Cluster analysis was conducted via Gromos method with
the RMSD cutoff of 3.5 Å on RNA non-H backbone atoms.
Principal component analysis (PCA) was performed using all
heavy atoms in the RNA. Structures used for clustering and
PCA analyses were taken every 250 ps from 500ns to 1 `s.

3 RESULTS
3.1 Secondary Structure and Dual Graph for

SARS-CoV-2 FSE
Based on genomic sequencing, SARS-CoV-2 genome is 89%
similar to SARS-CoV and 50% to MERS-CoV. From the
study of earlier RNA viruses, the FSE consists of two com-
ponents: a heptamer of the form XXXYYYZ, known as the
slippery site, where the tRNA dissociates from the mRNA
and the ribosome ‘slips’ to an overlapping reading frame;
and a downstream mRNA element, usually a pseudoknot
(9, 51). Specifically, the SARS-CoV FSE has been identified
as the slippery site UUUAAAC, and a downstream three-stem
pseudoknot-containing structure (12, 27). Because of strong
sequence conservation, it is presumed that this similar FSE
motif would also exist in SARS-CoV-2. We searched for
this FSE motif (see Identification of the SARS-CoV-2 FSE)
and identified the same 84-nucleotide sequence in the viral
genome of SARS-CoV-2 (residues 13405–13488, analogous
to the SARS-CoV residues 13392–13475), with a mere single-
nucleotide substitution (A in SARS-CoV-2 instead of C in
SARS-CoV in position 72 of this sequence), as shown in
Fig. 1A.

To assess the secondary (2D) structure of the SARS-CoV-
2 FSE and to select software for our mutational analysis, we

applied eight 2D-structure prediction packages that can handle
pseudoknots. See Secondary Structure Prediction Packages
for computational details.

Out of these eight packages, 3 programs predicted a
three-stem pseudoknot structure (Fig. S1). As the remaining
programs predicted additional stems or pseudoknots that
involved the heptamer slippery sequence, we applied the 8
programs again to the 77-residue system without the slippery
site. Now 5 of the 8 programs predict a three-stem pseudoknot
structure (Fig. S2).

Our resulting consensus three-stemmed pseudoknot struc-
ture in Fig. 1A shows the stem regions that lead to an inter-
twined structure in three dimensional space. The correspond-
ing circular plot shows the base pairing. Using our rules to
represent RNA 2D structure for RAG dual graphs (RAG Dual
Graphs), this FSE structure corresponds to the dual graph
3_6 from our recently enumerated atlas of dual graphs up to
9 vertices (26). The three stems correspond to three vertices,
and the loops correspond to connecting edges. This 3_6 fold
motif also corresponds to multiple riboswitch structures of
SAM (PDB IDs: 3NPN, 3NPQ) and flouride riboswitches
(PDB IDs: 3VRS, 4EN5, 4ENA, 4ENB, and 4ENC) (26).

Although it is not conclusively known what the FSE
structure is in SARS-CoV-2 and whether this region’s folding
may be affected by neighboring sequences and its binding to
the nucleocapsid protein (see Conclusion and Discussion),
other recent works have used various computational tools and
experimental input to suggest its structure (14, 52).

Since our dual graphs are independent of the number of
residues in stems and loops, the graph motif 3_6 corresponds
to every three-stem pseudoknot structure predicted by the
above programs for both the 84-residue and 77-residue FSE.
Thus, the insensitivity of our graph-based approach to small
differences in base pairing annotations makes its application
more robust.We use the 77-residue FSE and software packages
NUPACK and PKNOTS for our computational mutational
analysis described here.

3.2 Identification of Minimal Mutations To
Destroy Stem 2 and/or Pseudoknot

The SARS-CoV-2 FSE structure and associated transitions
are thought to be key for ribosomal frameshifting and the
subsequent translation of the ORF1a,b region of the viral
genome. Any disruption of key structural features would
possibly inhibit or hamper this translation. Therefore, we seek
crucial FSE nucleotides, especially those that destroy Stem
2 (Fig. 1) and the pseudoknot, that can potentially serve as
antiviral drug targets.

Identifying these crucial residues is challenging, even in
a relatively small sized RNA like the FSE. Fortunately, our
RAG representations allow us to simplify this problem. We
formulate our goal here as identifying minimal mutations to
transform the 3_6 dual graph motif of the FSE into nine other
dual graphs, of equal or smaller size, that correspond to 2D
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structures of known RNAs (26). These nine targets are shown
in Fig. 1D. Among these, 6 graphs are pseudoknot free (blue)
and the remaining 3 contain pseudoknots (green).

Weuse our inverse-folding protocolRAG-IF (21) tomutate
the FSE sequence, as described in Materials and Methods.
After the minimal mutations are identified, we transform the
top mutated sequences back to the original FSE graph 3_6
using RAF-IF to access the mutants’ stability. We want to
determine whether we recover the original FSE sequence
and whether other compensatory mutations can accomplish
structural transformations.

Below, we describe minimal mutation and compensatory
mutation results for four of the most successful targets, 3_5,
3_2, 2_1, and 3_3, in turn (see Fig. 2, 3, 4, 5). Summary
Fig. 6A shows residues involved.

3.2.1 Mutations for target graph 3_5 (3-way junction)
To transform 3_6 of the FSE into target 3_5 (Fig. 2A), we keep
Stem 1 and 3 intact and select residues 71-77 (highlighted in
red) in Stem 2 for mutation.

RAG-IF GA produces 115 sequences that fold onto the
target graph 3_5 by both NUPACK and PKNOTS, with
number of mutations ranging from 3−7 (Table S1). Following
mutation optimization to remove non-essential mutations, we
obtain 16 unique sequences with 2−7 minimal mutations.
Significantly, [72G-C, 74U-C] destroys the corresponding
base pairs in Stem 2 of the FSE and strengthens the new stem
of 3_5 with G-C base pairs.

The same outcome for this transformation of 3_6 to 3_5
using [72G-C, 74U-C] comes from two additional prediction
programs (see Fig. S5). Thus, we consider this the top mutant
choice for target 3_5. Its predicted 2D structure is shown in
Fig. 2A.

Transforming this mutant [72G-C, 74U-C] back to the 3_6
graph can be accomplished by 2 double mutants besides [72C-
G, 74C-U]: [72C-G, 74C-G] and [72C-G, 74C-A] (Fig. 2B).

3.2.2 Mutations for target graph 3_2 (3-stem with
internal loop)

Next, we transform the FSE into target graph 3_2 (Fig. 3A).
To construct 3_2 from 3_6, we keep Stem 3 intact, and select
the mutation region as residues 27-33.

RAG-IF GA generates 64 candidate sequences that fold
onto the target 3_2 by both NUPACK and PKNOTS, with
mutations ranging from 3−7 (see Table S1). Following mu-
tation optimization, we obtain 16 unique sequences, with
2−6 minimal mutations. Two of the 16 optimized sequences
require only 2 mutations: either residues 30 (from A to G) or
31 (from C to G), with residue 32 (from A to C).

Both sequences mutate key residues to destroy Stem 1 of
the FSE, along with the hairpin loop that forms the pseudoknot
(Stem 2), and strengthen the newly formed stems with G-C
base pairs. The predicted structure for mutation [30A-G, 32A-
C] (Fig. 3A) is confirmed by another prediction program (Fig.

Figure 2: Mutation results for the 3-way junction target graph
3_5. (A) Minimal mutations: mutation candidate region is
highlighted in red. Pointmutations are colored according to the
nucleotides. One top mutation is selected, whose predicted
secondary structure is shown. (B) Minimal compensatory
mutations.

Figure 3: Mutation results for the 3-stem with internal loop
target graph 3_2. See Fig. 2 caption.

S5).
When transforming the mutant [30A-G, 32A-C] back

to the 3_6 graph, we obtain 55 candidate sequences before
optimization from the GA. Besides recovering [30G-A, 32C-
A], we find two other single-point mutations, [32C-A] and
[32C-G], that recover the graph 3_6. In fact, 48 of the 55
sequences mutate residue 32. Following optimization, we
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obtain 9 unique sequences (Fig. 3B).
Interestingly, most of the mutations from 44 of the 55

candidates are deemed non-essential, and only [32C-A] or
[32C-G] are retained. This includes the reverse mutation [30G-
A, 32C-A]. Mutating residue 32 breaks the middle base pair
in a relatively small stem in the 3_2 mutant, thus destabilizing
the whole structure. If residue 32 is not mutated, at least 3
minimal mutations are required, rendering residue 32 as one
of the key residues for structural transformations.

3.2.3 Mutations for target graph 2_1 (two stems)
To transform 3_6 of the FSE into 2_1, we aim to destroy Stem
2, and select residues 22-24 and 70-77 as mutation candidate
regions.

RAG-IF GA produces 221 candidate sequences that fold
onto the target graph 2_1 by both NUPACK and PKNOTS:
the number of mutations ranges from 6−11 (Table S1). After
mutation optimization, we retain 9 unique sequences (shown
in Fig. 4A) with 2−5 minimal mutations. The three sequences
with only 2 mutations involve residues 23 (from C to G) and
73 (from C to A, G, or U). Because Stem 2 in the FSE is
mainly formed by four G-C base pairs, mutating 23 and 73
breaks two of them which destabilizes the stem.

Themutant RNA [23C-G, 73C-A] sequence also folds onto
our target graph 2_1 by two additional prediction programs
(Fig. S5). The predicted 2D structure, shown in Fig. 4A, has
Stem 1 longer than that of the original FSE.

Our reverse transformation of the mutant [23C-G, 73C-A]
to 3_6 generates 23 unique sequences after an expanded pool
(see Materials and Methods), recovering [23G-C, 73A-C] and
finding many others (Fig. 4B).

3.2.4 Mutations for target graph 3_3 (3-stem with
different pseudoknot)

To transform 3_6 of the FSE into 3_3 (Fig. 5A), we destroy
Stem 2 to form the new pseudoknot, by mutating residues
22-24 and 68-73, the two strands of Stem 2.

RAG-IF GA produces 200 candidate sequences that fold
onto the target 3_3 by both NUPACK and PKNOTS, with
mutations ranging from4−9. Following optimization, 6 unique
sequences emerge with only 2−3 minimal mutations. Two
sequences that require two mutations, involve residues 23
(from C to G or A) and 69 (from A to U).

Interestingly, all unique sequences requiremutating residue
69 to U, which is a bulge in the FSE Stem 2. Although mu-
tating residue 69 to U creates an A-U base pair for the new
pseudoknot, residue 69 likely has a more important stabilizing
role for the original Stem 2. The RNA sequence with mutation
[23C-G, 69A-U] in Fig. 5A is supported by another prediction
program (Fig. S5).

Reverse transformation of mutant [23C-G, 69A-U] onto
graph 3_6 with a large pool of sequences generates 24 unique
sequences, 8 of which require only 2 mutations. Four of these
sequences mutate the same residues 23 and 69, including the

Figure 4: Mutation results for the 2-stem target graph 2_1.
See Fig. 2 caption.

Figure 5: Mutation results for the 3-stem with different pseu-
doknot target graph 3_3. See Fig. 2 caption.

mutation that recovers the wildtype FSE [23G-C, 69U-A]
(highlighted in red).

In addition, one single-point mutation [71G-C] is also
found. Residue 71 is not one of the original mutation residues,
but it is base paired with residue 23 in the wildtype FSE
pseudoknot. Therefore, the compensatory mutation [71G-C]
restores this G-C base pair and hence the original pseudoknot.
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Figure 6: FSE residue analyses. (A) Minimal mutation residues are circled for the different mutants: yellow for 3_5, red for 3_2,
blue for 2_1, and green for 3_3. (B) FSE mutation findings for Covid-19 variants from the GISAID database (53) as of August
10, 2020.

3.2.5 Summary of minimal mutations
Transformations of the FSE into our four target RNAs utilize
unpaired residues to form new stems, often keeping Stem
3 intact, and focusing on Stem 2 (Fig. 6A). Residue 23 is
mutated from C to G in the top minimal mutation for both
2_1 and 3_3. This mutation breaks the G-C base pair in the
original Stem 2 and elongates Stem 1 by forming new G-C
base pair.

In the reverse transformations back to 3_6, the original
mutations are recovered by RAG-IF, and single mutations
are also found in the case of 3_2 and 3_3. Because RAG-
IF aims to recover the original graph 3_6, not the original
FSE sequence, compensatory mutations that require fewer
residues than the forward mutations are possible. In 3_5, all
compensatory mutations require the original 2 residues, so
we consider this design the most stable one.

For other target graphs shown in Fig. 1D, such as 3_1 and
3_8, at least 4 residues are required for minimal mutations,
and for graph 2_2, 14 residues are required (see Table S2).

3.3 Molecular Dynamics Analysis of Wildtype
and Mutant Systems

To assess the stability of the wildtype FSE of SARS-CoV-2
and the top 3 mutants predicted by mutational analysis (3_5
[72G-C, 74U-C] mutant, 3_2 [30A-G, 32A-C] mutant, and
2_1 [23C-G, 73C-A] mutant), we subject the solvated systems
to MD simulations of 1 `s. To develop initial tertiary struc-
tures for these systems, we use four 3D structure prediction
webservers: RNAComposer (37), Vfold3D (38), SimRNA
(39), and 3dRNA (40).We select one structure each for the
wildtype and the 3 mutants for MD simulation (Materials and
Methods).

RMSD over the 1 `s simulations is a measure of the
conformational stability of the predicted structures (Fig. 7).
Since predicted (and not experimentally determined) 3D
structures are used for the simulations, high RMSD values (in
10s Å here) with reference to the starting structures is expected.
However, the simulation settles down within the first 250-300
ns (with the 3_2 mutant taking the longest), indicating that the
wildtype and the 3 mutant systems have reached a relatively
stable state. The residues that fluctuate most are the unpaired
residues in the loop regions, as indicated by the RMSF plots
in Fig. 7. The 3_2 mutant is again the exception here, likely
due to the time taken to reach relative stability.

To study changes in 2D structures of the wildtype and
mutants, we clustered the conformations between 500ns to
1 `s (see Materials and Methods). The dominant cluster for
the wildtype contains roughly 73% of the total conformations,
indicating the stability of the system. The values are 50-
60% for the 3_5 and 2_1 mutants, and around 23% for the
3_2 mutant, suggesting that order of increased flexibility. In
addition, the representatives of all top clusters (more than
50 conformations) for the wildtype, the 3_5 and the 2_1
mutant, and all but one top cluster for the 3_2 mutant have the
intended dual graph motif. This indicates that the even though
small changes in 2D structures occur over the course of the
simulation (see Fig. S6), our dual graph motifs and predicted
mutations can lead to stable structures.

We also dissect the dominant motions of the wildtype and
the 3_5mutant with PCA (see Fig. 8). The wildtype system has
global bending of loop 3 as PC1, and stem twisting for PC2 and
PC3. The main motions of 3_5 mutant are bending of terminal
loops and twisting of the stems. It is possible that these
motions are involved in large-scale structural transitions, but
more extensive simulations with possibly enhanced sampling
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Figure 7: MD simulations of the wildtype and selected mutant
systems using predictedmodels as initial structures. Snapshots
of the wildtype and mutant systems at 1 `s along with RMSD
and RMSF are presented for (A) wildtype, (B) 3_5 mutant,
(C) 3_2 mutant and (D) 2_1 mutant. The screenshots and
RMSF plots are color-coded for each RNA: (A) residues 7-16
and 27-36 in blue, residues 20-26 and 67-74 in red, residues
37-45 and 55-64 in green; (B) residues 1-7 and 68-74 in blue,
residues 27-35 and 8-16 in red, residues 36-45 and 55-65 in
green; (C) residues 1-9 and 17-24 in blue, residues 30-33 and
70-73 in red, residues 35-45 and 55-66 in green; (D) residues
7-16 and 27-36 in blue, residues 37-45 and 55-64 in red.

techniques are needed.
Our electrostatic surface (generated using the CHARMM-

GUIPBEQsolver athttp://www.charmm-gui.org/?doc=
input/pbeqsolver) analysis of the wildtype system reveals
some positively-charged regions along the mostly negative
surface, and some grooves (Fig. 9). Some of these positively
charged regions and grooves are found near residues 75-77

Figure 8: Dominant structure and motions of the wildtype and
3-way junction (3_5) mutant from MD simulations. (A) The
largest cluster center structures from last 500 ns in the 1 `s
MD trajectories of wildtype and 3_5 mutant. (B-C) Motions
of (B) the wildtype and (C) 3_5 mutant by top 3 principal
components (PCs). Screenshots were extracted as two extreme
structures on selected PC.

at the 3′ end of the FSE, residues 26-27 at the juncture of
Stems 1 and 2, base pair 10-33 in Stem 1, residues 3-5 at
the 5′ end of the FSE, and residues 47-53 near the hairpin
loop of Stem 3. Interestingly, some of these regions coincide
with the crucial residues identified by our mutational analysis.
These regions provide candidate targets for in vitro screening
of active compounds.

4 CONCLUSION AND DISCUSSION
We have proposed by computational design motif-altering
minimal mutations of the SARS-CoV-2 FSE. In the key muta-
tions highlighted, only two residue changes can accomplish
a dramatic change in structure, namely destruction of Stem
2 and the pseudoknot. That the graph motif of the wildtype
FSE can be recovered by compensatory mutations using our
reverse design, in some cases with only one residue change, is
also promising. Our MD simulations suggest overall stability
of the wildtype and mutant system 2D structures. The tools de-
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Figure 9: Target residues for drugs or gene editing emerging from this work. Resides correspond to previously identified
drug-binding residues (10, 13), minimal mutations, and positively charged pockets that arose of our electrostatic analysis are
shown for the frame-shifting element of the SARS-CoV-2 viral genome.

veloped here to design in silico RNAs containing pseudoknots
are widely applicable to other design problems. The genetic
algorithm in RAF-IF for inverse folding is very successful at
generating a large number of sequences quickly and sorting
out the sequence pools to obtain minimal mutations.

Besides these computational advances, the results pro-
duced here immediately suggest key residues as drug, as
well as gene editing, targets for Covid-19 therapy. Already,
for the SARS FSE, the small drug compound 1,4-diazepane
derivative 10 (MTDB) has been shown to inhibit this frame-
shifting process (10, 13). Recent in vitro MTDB binding
experiments to the SARS-CoV-2 FSE demonstrated a similar
inhibition effect (14). This lead, together with our identified
mutation sites, as well as positively-charged regions of the
RNA identified by electrostatic surface analysis of the FSE,
are shown in Fig. 9. Underway are in silico screening for
anti-viral compounds targeting the FSE with these residues.
Viral-RNA based therapies that utilize CRISPR-like systems
delivered through small-molecule vectors are also becoming
more feasible.

Recently, a complete 2D structure prediction of SARS-
CoV-2 genome was reported using in vivo SHAPE-MaP data
(52). Two different FSE structures were predicted: one con-
sistent with our 3-stem structure, and one forming a different
Stem 3 with downstream sequence. The two possibilities were
considered commensurate with the conformational flexibility
of the pseudoknot. More thorough experiments are needed
to confirm the FSE structure and examine its conformational
flexibility.

As is well appreciated, various secondary-structure pre-
diction programs use different algorithms and often produce
different predictions. For the 77-residue system, 5 of the 8
prediction programs yield the 3-stem pseudoknot structure
(Fig. 1). However, when the slippery site is added, only 2 of the

5 programs preserve the pseudoknot structure. Larger systems
yield more diverse structures. The computational time for
the different programs also varies significantly. For example,
PKNOTS takes approximately 30 seconds for predicting the
structure of 77 nucleotides, but with a time complexity$ (=6),
where = is the number of residues, large systems are too costly
to handle. Programs like IPknot have a more favorite size
scaling, and replacing PKNOTS with IPknot in our RAG-
IF pipeline will allow us to extend our design pipeline to
longer RNAs. The use of our graph-based tools is critical
here for mutational transformations, as it provides us a robust
coarse-grained approach insensitive to small differences in
2D structures.

Clearly, the overall fold of the FSE may depend on neigh-
boring residues and on complexes with the nucleocapsid
protein in the cellular context. In Fig. 10, we show predicted
structures for the wildtype and 3-way junction mutant 3_5 in
the context of different flanking sequences. The differences
as a function of sequence length that emerge also reflect
differences between programs. Interestingly, in some cases,
a large sequence can recover our 77-nt consensus structure
better than a shorter construct. Thus in vivo imaging and
other experiments like SHAPE reactivity probing (54) would
be important for understanding the contextual folding of this
important region of the virus explored in this work in isolation.

Because accumulating data show that SARS-CoV-2 is
actively acquiring new mutations that allow it to escape
known protein-targeting drugs, alternative therapeutic strate-
gies which target the RNA viral genome, rather than viral
shell or auxiliary proteins, present a flexible and efficient
approach to counter new infections. By examining the 73,739
aligned viral sequences available in the GISAID database
(53) as of August 10, 2020, in Fig. 6B, we found that only
1316 sequences (1.78%) have mutations in the 84nt FSE
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Figure 10: Predicted struc-
tures for the wildtype and
mutant 3_5 using different
sequence lengths. The 84nt
sequence contains the slip-
pery site, and the 144nt se-
quence adds 30nt to both
ends of the 84nt sequence.
The sequences (aligned with
common 77nt subsequence,
red) are shown for: (A)
wildtype FSE/NUPACK (30),
(B) 3-way junction mu-
tant 3_5/NUPACK, (C) wild-
type/PKNOTS (29), (D)
3_5/PKNOTS, (E) wild-
type/IPknot (31), (F) 3_5/IP-
knot.

region. Among these, 1268 contain single point mutation,
underscoring the high conservation of the FSE region. These
mutations are shown along with the residues we identified
for top minimal mutations in Fig. 6. Our mutation residues
23 and 74 are not among current variants, but residues 69,
72 and 73 occur with one mutation to U each; residue 32 is
mutated twice to G, and residue 30 is mutated 7 times to G.
This generally high sequence conservation of the FSE and
stability to mutations suggests it is a good drug target.

Indeed, drug binding of MTDB to six FSE natural point
mutations suggested insensitivity to natural mutations (55).
The mutational transformations we reported here provide
insights for further in silico and ultimately in vitro drug
screening to find other therapeutically effective drugs. In gen-
eral, understanding the structure of the FSE and other gene
regions of coronaviruses is important for helping address fu-
ture viral threats which inevitably may arise. Such knowledge
andmethodologies are also transferable to other coronaviruses
or other viruses that could pose threats to human health in the
future.

Further SARS-CoV-2 viral genome variant analyses are
also important for drug discovery and for identifying the
spread of Covid-19 around the globe. Initially, it was believed
that different strains are not related to virulence or infectivity,
but theories are evolving, as associations of different genomic
mutations with different levels of infectivity are being debated
(e.g., (56)). As more data on associations of viral mutants
and disease outcome accumulate, further analysis on the viral
genome will be invaluable.

In closing, molecular modeling and computational experi-
ments such as described here have an important role to play

in this fight against the small RNA enemy which has upended
our modern world as never before since World World II. The
continued interaction and participation of the biophysics, high-
performance computing, and bioinformatics/computational
biology communities will be invaluable in this quest. An
improved understanding of the complex structural biophysics
of the RNA viral genome will undoubtedly be useful and
relevant to other coronaviruses, whose potential to emerge in
the future cannot be understated.
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