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The microvasculature is prominently affected by traumatic brain injury (TBI), including mild 
TBI (concussion). Assessment of cerebral hemodynamics shows promise as biomarkers 
of TBI, and may help inform development of therapies aimed at promoting neurologic 
recovery. The objective of this study was to assess the evolution in cerebral hemody-
namics observable with transcranial Doppler (TCD) ultrasound in subjects suffering from 
a concussion at different intervals during recovery. Pediatric subjects between the ages 
of 14 and 19 years clinically diagnosed with a concussion were observed at different 
points post-injury. Blood flow velocity in the middle cerebral artery was measured with 
TCD. After a baseline period, subjects participated in four breath holding challenges. 
Pulsatility index (PI), resistivity index (RI), the ratio of the first two pulse peaks (P2R), 
and the mean velocity (MV) were computed from the baseline section. The breath hold 
index (BHI) was computed from the challenge sections. TCD detected two phases of 
hemodynamic changes after concussion. Within the first 48 h, PI, RI, and P2R show 
a significant difference from the controls (U = −3.10; P < 0.01, U = −2.86; P < 0.01, 
and U  =  2.62; P  <  0.01, respectively). In addition, PI and P2R were not correlated 
(rp = −0.36; P = 0.23). After 48 h, differences in pulsatile features were no longer observ-
able. However, BHI was significantly increased when grouped as 2–3, 4–5, and 6–7 days 
post-injury (U = 2.72; P < 0.01, U = 2.46; P = 0.014, and U = 2.38; P = 0.018, respec-
tively). To our knowledge, this is the first longitudinal study of concussions using TCD. In 
addition, these results are the first to suggest the multiple hemodynamic changes after a 
concussion are observable with TCD and could ultimately lead to a better understanding 
of the underlying pathophysiology. In addition, the different hemodynamic responses to a 
concussion as compared to severe traumatic brain injuries highlight the need for specific 
diagnostic and therapeutic treatments of mild head injuries in adolescents.

Keywords: traumatic brain injury, vascular reactivity, cerebral blood flow autoregulation, blood flow, cerebral 
blood flow velocity

inTrODUcTiOn

Alterations in vascular function are one of the many pathologies accompanying the structural and 
metabolic changes observed after a traumatic brain injury (TBI) (1). These abnormalities in cerebral 
blood flow (CBF) have been found in moderate to severe traumatic brain injuries (1–5) as well as 
in mild traumatic brain injuries (mTBI, also referred to as concussions) (6–13). The mechanism for 
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FigUre 1 | Data collection for the mild traumatic brain injury (mTBI) subjects. (a) Breakdown of the frequency that the subject population was scanned. (B) Scan 
times in days post-injury for each of the mTBI cases.
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these changes is still not fully established, but it is clear that both 
the initial insult and the secondary injury response contribute to 
the observed vascular pathology (1).

Over the first days to weeks after injury, prior research has 
identified a distinct progression of vascular dysfunction. In severe 
TBI, phases have been described that begin with hypoperfusion, 
evolve into hyperemia, and finally end in a period of vasospasm (2, 
4). Similarly, for adults suffering a concussion, there is a clear vas-
cular dysfunction, with a number of studies showing alterations 
in CBF, but the recovery progression does not appear to match 
what is observed in severe TBI. Children with mTBI, however, 
exhibit reactivity impairments similar to moderate or severe TBI, 
with an initial period of increased CBF followed by a relative 
decrease compared to baseline (14). Age clearly matters in CBF 
regulation in both initial risk and during recovery (15). A better 
understanding of the pediatric brain after suffering a concussion 
and during recovery is vital to improving diagnostic, prognostic, 
and therapeutic tools. Methods for monitoring and understanding 
how the vasculature changes are one step toward improving that. 
In addition, there is an immediate need for more quantitative, 
physiologically based measures for concussion management.

Transcranial Doppler (TCD) ultrasound provides a non-inva-
sive method of monitoring cerebral blood flow velocity (CBFV). 
Although not a direct measure of CBF, this signal provides insight 
into vascular dysfunction. In mTBI cases, standard neuroimaging 
studies display no abnormalities (8). TCD, however, has captured 
alterations in vascular function in a few key studies. Len et al. (6) 
showed differences in cerebrovascular reactivity (CVR) during a 
hypocapnia challenge in a population who had recently suffered 
a concussion. In a subsequent study, they then showed that TCD 
could also capture CVR abnormalities under hypercapnia (16). 
Similarly, Bailey et al. (9) showed lowered CVR in a population 
suffering from chronic mTBI. There has not however, been a 

study using TCD that captures the progression of hemodynamic 
dysfunction after a concussion through the acute stage (<48-h 
post-injury).

The purpose of this study was to assess the evolution in cerebral 
hemodynamics observable with TCD in subjects suffering from a 
concussion. Blood flow velocity in the middle cerebral artery was 
measured and CVR was evaluated with breath holding challenges. 
During the different phases of the exam, traditional TCD features, 
Gosling pulsatility index (PI), resistivity index (RI), the ratio of 
the first two pulse peaks (P2R), and the mean velocity (MV) were 
extracted and the breath hold index (BHI) was computed from 
the challenge sections to estimate CVR. These features showed 
significant differences at the population level that were depend-
ent on how far from the injury the subjects were scanned. This 
study suggests that there are different phases of hemodynamic 
dysfunction and that the progression of those phases is different 
in pediatric patients as compared to that seen in adults. The use 
of relatively inexpensive non-invasive methods is promising as a 
biomarker of vascular injury and recovery after mTBI.

MaTerials anD MeThODs

Participants
A total of 179 subjects between the ages of 14 and 19 years old 
were recruited from participating clinics and high schools in Los 
Angeles, CA, USA. Seventy Subjects with concussions clinically 
diagnosed by independent practicing physicians blinded to the 
TCD results over a range of 1 h to 30 days post-injury were 
selected. There were a total of 187 scans collected for the case group 
(labeled mTBI), for a median of 2 scans per subject. Note that 
multiple scans for a single patient were collected at different days 
post-injury. The overall scan frequency is illustrated in Figure 1. 
The control group consisted of 109 age- and activity-matched 
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FigUre 2 | Representative cerebral blood flow velocity (CBFV) signal over 
the course of the experimental protocol (black trace) with the filtered signal 
used for cerebrovascular reactivity (CVR) calculations overlaid (blue trace). 
For CVR calculations, the baseline mean velocity (MVb) is computed over 
the period highlighted by the solid red line and the peak is velocity is 
computed from the breath hold period with the highest peak as illustrated by 
the red circle in BH1. The pulsatile analysis is computed using baseline 
pulses as illustrated by the inlay outlined by the solid vertical black lines. The 
systolic (P1), diastolic (D), and second peak (P2) are marked by the solid red 
circles.
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subjects, who were scanned only once. All data collection and 
processing was approved by Western Institutional Review Board 
(IRB #20141111).

Data collection
Transcranial Doppler (TCD) signals were collected with the 
DWL Doppler Box-X (DWL USA Inc.), and 2 MHz ultrasound 
probes held in place by a thermally molded bracket attached to an 
adjustable headband strap. The middle cerebral arteries were then 
insonated transtemporally by trained ultrasound technicians. To 
ensure compliance with the breath holding protocol the end-
tidal CO2 was collected through a nasal cannula using the Nonin 
Medical RespSense capnometer. The data streams, patient history, 
and clinical measures were collected with a custom codebase run-
ning in the Windows 8/10 operating systems.

Protocol
The data collection consisted of several sections illustrated in 
Figure 2. During the initial 5-min baseline section, subjects were 
instructed to breath normally through their nose. The subjects 
were then instructed to take a normal breath and hold it. Breath 
holding lasted for 25 s and was followed by a 35-s recovery period. 
Research into the optimal duration for the breath hold is limited; 
however, previous work has shown that 20- to 40-s durations are 
sufficient to provide a CBFV response (17, 18). The breath hold 
was repeated four times. Using normal inspiration can help limit 
the Valsalva effect which would cause an initial decrease in mean 
CBFV and lead to underestimation of reactivity (18).

Data analysis—Pulsatile Features
The pulsatile features were extracted from the initial 5-min base-
line period. Individual beats were identified automatically using 
proprietary software developed in Python. Four traditional fea-
tures were extracted from the morphological points (illustrated in 
Figure 2) for each of the pulses as described below.

Pulsatility index is often considered a measure of cerebrovas-
cular resistance. However, it is actually a complex metric that is 
influenced by the combinations of cerebral perfusion pressure, 
cerebrovascular resistance, arterial bed compliance, heart rate, 
and the pulse amplitude (19). It is calculated by

 PI P D V= −( )1  

where P1 is the systolic peak, D is the diastolic valley, and V  is 
the MV of the pulse. Similarly, the RI is simply the average of the 
diastolic and systolic values. It is related to PI but removes the 
effect that heart rate and waveform shape may have. This can be 
computed by

 RI P D P D= − + ( ) ( )1 1 2  

The feature P2R is a metric for relating the second observed 
waveform peak, P2, with the systolic peak P1. This has been 
hypothesized to be related to distal bed compliance dynamics but 
there is currently no clear physiological link to changes in P2R. 
It is computed using

 P R P P2 2 1=  

The MV, VB, is the average of the individual beats velocities 
found using

 
V

N
VB nn

N
=

=∑1
0  

where N is the number of beats identified and Vn is the MV for 
pulse n.

Data analysis—reactivity analysis
To evaluate the CVR, the BHI was computed by extracting the 
DC component of the velocity signal. This was accomplished 
by first low-pass filtering the global signal and then picking the 
highest peak between the four breath hold regions of the exam 
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TaBle 2 | Statistical analysis of the presented results.

comparison U nc nmTBi P Δ cl

Population age 0.18 70 109 0.86 – –
Self-reported past head hits 3.51 69 64 <0.01 1.00 0.57
Pulsatility index, first 48 h −3.10 109 11 <0.01 −0.113 0.78
Resistivity index, first 48 h −2.86 109 11 <0.01 −0.042 0.76
P2R, first 48 h 2.62 109 11 <0.01 0.071 0.74
Breath hold index (BHI), first 48 h −0.42 109 11 0.67 −1.79 0.46
BHI, 2–3 days post-injury 2.72 109 17 <0.01 13.56 0.71
BHI, 4–5 days post-injury 2.46 109 23 0.014 6.54 0.66
BHI, 6–7 days post-injury 2.38 109 27 0.018 5.85 0.65
BHI, 8–9 days post-injury 1.83 109 23 0.067 4.59 0.62
End-tidal CO2 after breath hold −0.648 174 105 0.517 −0.007 0.52

TaBle 3 | Exam statistics.

group (days post-injury) number of exams Mean (sD) (days)

0–1 11 0.73 (0.45)
2–3 17 2.65 (0.48)
4–5 23 4.57 (0.50)
6–7 27 6.41 (0.49)
8–9 23 8.35 (0.48)
10–11 22 10.68 (0.47)
12–13 16 12.62 (0.48)
14–18 20 16.30 (1.31)
19–30 28 23.86 (3.93)

TaBle 1 | Subject demographic and sport information.

control Mild traumatic brain injuries (mTBi)

Demographic information
Number of exams 109 187
Number of subjects 109 70
Males 97. 89% 45. 64%
Mean age (SD) years 16.06 (1.56) 16.21 (1.16)
Past head hits 1.03 (1.32) 2.11 (3.50)

sport breakdown
Football 77 31
Soccer 8 12
Other 24 27
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(Figure 2). The MV over the entire baseline, VBL, is computed and 
the BHI can be found from

 
BHI P V

V
BH BL

BL

=
−

 

statistical analysis of TcD Data
The statistical analysis was performed in Python using the SciPy 
library (20). The measurements between cases and controls were 
compared using the Wilcoxon–Mann–Whitney two-sample 
rank-sum test. The effect size is reported using the common 
language effect size statistic CL, which is the proportion of 
measurement pairs between cases and controls that support the 
hypothesis. In addition, the differences between measurements 
were estimated using the Hodges–Lehmann estimator (Δ) for the 
median difference between the populations.

resUlTs

subject history
Table  1 presents the demographic and activity breakdown for 
the two populations. There was no significant difference in ages 
between the groups (see Table 2). However, there was a differ-
ence in the total number of self-reported head hits in the past 
[control: 1.03 (1.32), mTBI: 2.11 (3.50), see Table 2]. There was 
also a higher incidence of headache leading to missed activities 
reported by the mTBI population —56 cases compared to 16 in 
the control group.

There were a total of 14 mTBI subjects who reported having 
experienced loss-of-consciousness due to injury in the past, 
compared to only two control subjects. In addition, six of the 
mTBI subjects reported being knocked-out in the 12  months 
preceding the scan. Of those, one subject reported having to be 
hospitalized, four lost consciousness for less than a minute, and 
one subject chose to not provide a response. There was no history 
of loss-of-consciousness within the previous 12 months reported 
in the control population.

For the mechanism of injury in the mTBI population, 60 
reported being injured while playing sports, 2 were injured in a 
car accident, 2 were injured in a fall, 1 reported other, and 5 did 
not provide a response.

Of the 70 case subjects, 41 had multiple scans, with a median 
of 2.0 and IQR of 2.75 scans. Thirty-four of those had less than 

6 total scans. During analysis, the different scans for the mTBI 
population were grouped based on when the scan was collected 
(Table 3). Note that the first group, 0-1, encapsulates the first 48 h.

Baseline Pulsatile analysis
As illustrated in Figure 3A, the PI of the mTBI population was 
significantly lower during the first 48 h after injury (see Table 2). 
After that period, there was no statistical difference between cases 
and controls. Similarly, the RI was also significantly lower only 
during that initial period (see Table 2; Figure 3B). Conversely, 
the P2R ratio was significantly higher during the first 48 h (see 
Table 2; Figure 3C). The MV of the mTBI population did not 
differ significantly from the control population throughout the 
injury recovery period measured here (see Table 2; Figure 3D).

While both PI and P2R of the mTBI population showed dif-
ferences from the control population in the first 48 h, they are 
uncorrelated from each other based on Pearson’s correlation 
analysis (rp = −0.36; P = 0.23), as illustrated in Figure 4. However, 
after the initial period, there was a strong negative correlation 
matching that observed in the controls (rp = −0.74; P < 0.01). The 
initial lack of correlation was also observed between RI and P2R 
(initial 48 h: rp = −0.14; P = 0.69, Controls: rp = −0.64; P < 0.01). 
This was not the case between PI and RI (initial 48 h: rp = 0.99; 
P < 0.01, Controls: rp = 0.98; P < 0.01).

reactivity analysis
The reactivity analysis, as illustrated in Figure  3E, resulted in 
a different period of significance compared to the pulsatile 
analysis. During the initial 48-h period, the BHI of the mTBI 
population was not different from the control population (see 
Table 2). After 48 h, BHI increased significantly over the control 
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FigUre 3 | (a–D) Pulsatile analysis of the baseline exam period over 
different days post-injury. (a) Pulsatility index (PI). (B) Resistivity index (RI). (c) 
P2 ratio. (D) Mean velocity (MV, cm/s). (e) Cerebrovascular reactivity (CVR) 
analysis—breath hold index (BHI). **P < 0.01, *P < 0.05. The dashed blue 
lines represent the control population mean with interquartile range marked 
by the surrounding dashed black lines.
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population peaking between days 2–3 after injury (see Table 2). 
This increase remained significant, although decaying, over days 
4–5 (see Table 2), and days 6–7 (see Table 2). Over the period 
of days 8–9, a small difference is observed, but is no longer sig-
nificant when compared to the control population (see Table 2). 
For the remaining post-injury periods, there was no observable 
difference. There was no statistical difference between the mean 
percent change in end-tidal CO2 after breath holding [Control: 
12.05% (9.64%), mTBI: 12.97% (9.56%), see Table 2]. Similarly, 
there was no difference when comparing the cases grouped by 
days after injury.

DiscUssiOn

Initial symptoms following a concussion are generally attributed 
to microstructural changes in neural tissue (7). Previous studies 
have shown a decrease in CBF during this period (8, 13, 21). 
Although this was not observed in the population examined 
here, it appears that the mechanical insult was still captured by 
TCD through an analysis of the pulse level features. Traditionally, 
PI has been attributed to cerebrovascular resistance (22, 23). 
However, recently a more complex relationship between PI 
and the remote vasculature has been proposed (19). Similarly, 
P2R has been shown to be correlated with intracranial pressure 
(24). One theory is that this is related to the compliance of the 
resistance vessels (25). We hypothesize that both PI and P2R 
are related to the distal vasculature (arterioles), the more likely 
area to be affected during an external biomechanical force. In 
this study, PI decreased while P2R increased significantly, within 
the population. This runs counter to what has been observed in 
more severe injuries, where raised PI has been used an indica-
tor of high intracranial pressure (26), as well as a predictor of 
secondary neurological deficit (26, 27). The extent of the force, or 
severity of injury, appears to modulate the corresponding effect 
on PI and P2R.

Although the mean CBFV values measured here were not 
statistically significant between populations, there appears to be 
a trend of lower CBFV the closer the measurement was taken to 
the injury. Given that reduced CBF is a hallmark of moderate and 
severe TBIs, it is tempting to attribute the increased BHI values 
to a lower starting CBFV but a similar peak. However, the lowest 
velocities were observed within the first 48 h of injury, a point 
where the BHI values did not differ from the normal population. 
In addition, the recovery periods that did have significantly higher 
BHIs did not have CBFV values that differed statistically or visu-
ally, compared to the normal population. The lack of a significant 
decrease in CBFV does not indicate that CBF was unaltered in 
this study, only that that change was not captured.

An intriguing aspect of these results was that both PI and 
the P2R were significantly different at the population level but 
were uncorrelated. This may suggest that these are capturing 
different physiological mechanisms of injury. It is not clear at 
this time exactly which injury manifestations are affecting the 
pulse morphology metrics and additional research is needed 
to help elucidate possible mechanisms. It is important to note 
that these differences in waveform features are significant at 
the population level. As more information is collected, the 
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FigUre 4 | Correlation analysis between pulsatility index (PI) and P2R over different days post-injury. The linear fit, blue line, and r2 values are given for each set of 
values. Pearson’s r values are presented with corresponding P values in the upper right of each subplot.
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heterogeneity in both individuals and injuries will likely reveal 
subtle differences in the progression of these features over the 
course of recovery.

The reactivity analysis appears to reveal the second phase of 
injury progression that is related to the well-established neuro-
metabolic cascade. The surprising deviation from severe TBI was 
the delayed higher levels of CVR for the concussed cases. Len 
et al. (16) demonstrated a similar increase in CVR using TCD and 
breath holding for 20 subjects. However, that increase was only 
significant on day 2 post-injury and there were no prior measure-
ments recorded. A similar result was shown in a pilot study with 
seven subjects using MRI by Militana et al. (10). Like this study, 
both failed to capture any significant changes in mean CBFV or 
CBF. In addition, the small CVR study utilizing MRI from Mutch 
et  al. (28), showed that the two acute stage subjects, measured 
at days 7 and 13 post-injury, had an increase in CVR compared 
to normal subjects. However, those subjects were more severely 
injured than those measured in this study.

The hyperreactivity may be attributable to a number of meta-
bolic and ionic responses that occur after a concussive injury. 
One compelling explanation previously proposed by Militana 
et  al. (10) is an increase in nitric oxide synthase (NOS) in the 
endothelium. Although a number of TBI experimental paradigms 
have demonstrated that effect, the increase did not last beyond 
48 h post-injury (29–31). After this period, NOS is significantly 
decreased in severe TBI—where the vascular smooth muscle 
remains responsive to nitric oxide but the NOS produced by 
endothelial cells is insufficient to elicit an appropriate response 
(1). This has prompted the use of PDE5 inhibitors, such as silde-
nafil, in the treatment of severe TBIs (1). Our results here suggest 
that such a treatment in the case of pediatric concussion may not 
be appropriate. The complexity of the neurovascular unit and 
injury recovery illustrate the need for more quantitative measures 
of the cerebral vasculature in aiding clinicians in treating patients 
at all levels of TBI severity.

One limitation of this study is the relatively small number 
of case in the first 24 h. Although the large effect size supports 

the conclusions and suggests that this was not a limiting factor, 
more measurements during the hyperacute stages are needed. 
In addition, these results are for the population as a whole, not 
for individual subjects. A follow-up study looking at individual 
cases over time is being conducted to determine if these results 
are found at the individual subject level. Another limitation 
was the age range of the subjects. A pediatric population was 
the focus here, but CBFV is known to decrease with age (32). 
In addition, as discussed above, adults respond differently to a 
TBI. Future work will expand the age range of the subjects in an 
effort to capture these differences. The use of breath holding can 
also introduce discrepancies in the amount of CO2 present in 
the blood. To compensate for this, the ongoing extension of this 
study, uses inhalation of a CO2 gas mixture. The different gender 
distributions between the cases and controls may also present 
a limitation. However, utilizing males only produces the same 
results, but the reduced number of cases yields lower statistical 
power. The lack of reliable tools to assess concussion severity 
prevents further separation of cases. The return to activity 
information could be a surrogate for severity, but the standard 
of care proved too heterogeneous. Often physicians would see a 
patient only for an initial assessment and then defer the return 
to activity decision to the athletic trainers, making a comparison 
between recovery rates as well as further data collection unreli-
able. Finally, since no imaging analysis was performed in this 
study, some subjects could have been suffering from undiag-
nosed structural injuries. Given the low severity of the reported 
injuries that appears unlikely, however, it is a possibility that 
would confound these results.

conclusion
Current concussion management standard of care relies on 
patient symptoms, neurocognitive evaluations, and physical 
performance testing (33). However, CBF alterations can persist 
after the clinical symptoms these evaluations are capturing have 
subsided (17, 34, 35). This suggests that the recovery is incom-
plete, and the patient may be at an increased risk for brain injury 
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from further concussions, even when symptomatically recovered. 
This study echoes these previous reports, and highlights the need 
for an objective and quantitative physiological biomarker for the 
assessment of cerebral hemodynamic dysfunction following a 
concussion.

To our knowledge, this is the first study to capture multiple 
phases of hemodynamic dysfunction after a concussive injury 
using TCD. These results further highlight the complexity of con-
cussive injury and support the belief of how vulnerable pediatric 
populations are to head injuries. The need for more quantitative 
methods to aid in the diagnosis of a concussion has been well 
established and these results are encouraging in the pursuit of 
that goal.

The pulsatile analysis is particularly important. The ability to 
capture dysfunction without the need for perturbation means that 
a quantitative biomarker of concussion can be captured without 
added stress on the patient. Over the course of treatment, the 
hypercapnia challenge can then be introduced to further track 
progress.

eThics sTaTeMenT

This study was carried out in accordance with the recom-
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