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Network of hypothalamic neurons that control appetite
Jong-Woo Sohn*
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The central nervous system (CNS) controls food intake and 
energy expenditure via tight coordinations between multiple 
neuronal populations. Specifically, two distinct neuronal 
populations exist in the arcuate nucleus of hypothalamus 
(ARH): the anorexigenic (appetite-suppressing) pro-opiomela-
nocortin (POMC) neurons and the orexigenic (appetite- 
increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) 
neurons. The coordinated regulation of neuronal circuit 
involving these neurons is essential in properly maintaining 
energy balance, and any disturbance therein may result in 
hyperphagia/obesity or hypophagia/starvation. Thus, adequate 
knowledge of the POMC and NPY/AgRP neuron physiology is 
mandatory to understand the pathophysiology of obesity and 
related metabolic diseases. This review will discuss the history 
and recent updates on the POMC and NPY/AgRP neuronal 
circuits, as well as the general anorexigenic and orexigenic 
circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]

INTRODUCTION

Hypothalamus is a key brain area that regulates homeostasis. 
In particular, specific areas of hypothalamus are believed to 
control feeding behavior. The classic experiments by 
Hetherington and Ranson established the ventromedial hypo-
thalamus as the appetite-suppressing (or anorexigenic) center 
(1), and later experiments demonstrated that lateral hypo-
thalamic area (LHA) is the appetite-increasing (or orexigenic) 
center (2). These results suggested that a specific hypothalamic 
area may regulate feeding, and subsequent studies attempted 
to revise this concept by using more refined neuroanatomical 
methods. In recent years, the development of mouse genetics 
and other techniques such as electrophysiology, optogenetics, 
and chemogenetics has led us to gain more detailed in-
formation on the identity of specific neurons that affect feeding 
behavior. Specifically, a large body of information is currently 

available on the appetite-regulating role of two distinct neuronal 
populations within the ventral medial part of hypothalamus.

THE ARCUATE NUCLEUS OF HYPOTHALAMUS

The arcuate nucleus of hypothalamus (ARH) is undoubtedly 
one of the best-characterized brain regions as it is related to 
the control of feeding behavior. This is in large part due to the 
presence of two distinct neuronal populations, which have op-
posite effects on the feeding behavior: the anorexigenic 
pro-opiomelanocortin (POMC) neurons and the orexigenic 
neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. 
These neurons are well-positioned to receive information from 
peripheral organs; the ARH resides in the ventral medial part 
of hypothalamus, which receives rich blood supply due to its 
proximity to the median eminence. Thus, information from pe-
ripheral organs may easily access the POMC and NPY/AgRP 
neurons. In addition, they receive intensive input from multi-
ple parts of the central nervous system (CNS). Therefore, 
POMC and NPY/AgRP neurons are in a good position to in-
tegrate peripheral and central inputs to produce a central com-
mand for feeding behavior. Indeed, the activity of POMC and 
NPY/AgRP neurons is modulated by multiple neurotransmitters 
and/or hormones. For instance, the anorexigenic effects of se-
rotonin and the adipocyte-derived hormone leptin are consid-
ered to be at least in part mediated by excitation of POMC 
neurons and suppression of NPY/AgRP neurons (3-6). Ghrelin, 
an orexigenic hormone released from gastric mucosa, was 
shown to suppress POMC neurons and excite NPY/AgRP neu-
rons by indirect mechanisms (7-9). The effects of insulin on 
POMC neurons and NPY/AgRP neurons need to be clarified, 
as the experimental results are not consistent between studies 
from independent groups (6, 10, 11).

THE POMC NEURONS AND THE CENTRAL 
MELANOCORTIN PATHWAY

The anorexigenic effect of POMC neuron was evidenced by 
the hyperphagia and obesity observed in the POMC knockout 
mice (12). Recent studies employed optogenetic and chemo-
genetic stimulation methods to activate specific neuronal pop-
ulation, and demonstrated that direct activation of POMC neu-
rons lead to suppression of food intake (13, 14). It is believed 
that POMC neurons suppress appetite by releasing -melano-
cyte stimulating hormone (-MSH) which is an agonist at the 
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Fig. 1. POMC neurons and the central melanocortin pathway. 
Two distinct populations of POMC neurons are present within the 
ARH; 5-HT2CR-expressing POMC neurons suppress food intake, 
and LepR-expressing POMC neurons increase energy expenditure. 
The effects of MC4Rs on energy balance are localized to different 
central nuclei; MC4Rs expressed by the PVH Sim1 neurons sup-
press food intake, and MC4Rs expressed by the IML sympathetic 
neurons increase energy expenditure. The solid black lines show 
possible connections between the specific POMC neurons and 
specific brain nuclei; the connections represented by the broken 
gray lines have not been ruled out. MC4R-expressing PVH gluta-
matergic neurons send axons to the neurons of the L-PBN. 3V: 
third ventricle, 5-HT2CR: serotonin 2C receptor, -MSH: -melano-
cyte stimulating hormone, ChAT: choline acetyltransferase, EE: en-
ergy expenditure, FI: food intake, IML: intermediolateral column 
of spinal cord, L-PBN: lateral parabrachial nucleus, LepR: leptin 
receotor, MC4R: melanocortin-4 receptor, ME: median eminence, 
POMC: pro-opiomelanocortin, PVH: paraventricular nucleus of hy-
pothalamus, Sim1: single-minded 1.

anorectic melanocortin-4 receptors (MC4Rs). Consistent with 
this idea, MC4R deficiency results in hyperphagia and obesity 
in mice (15-17). Importantly, human patients with mutations in 
Mc4r genes are also hyperphagic and obese (18, 19). Thus, the 
central melanocortin pathway that involves POMC neurons 
and the MC4R-expressing neurons represent a key anorexi-
genic circuit in the CNS.
　One of the key anorexigenic signals that activate the central 
melanocortin pathway is serotonin (5-HT). Fenfluramine 
(d-Fen), which increases the availability of serotonin in brain, 
was an effective and widely-used prescription diet pill until it 
was withdrawn from the market due to serious cardiovascular 
side effects (20). The anorexigenic effect of serotonin is largely 
mediated by the serotonin 2C receptors (5-HT2CRs) expressed 
by the POMC neurons (21-23). Stimulation of 5-HT2CRs in-
creases the activity of POMC neurons (21, 24, 25), which pre-
sumably increases -MSH release. Consistently, the anorexi-
genic effects of d-Fen were demonstrated to be mediated by 
the MC4Rs expressed by the single-minded 1 (Sim1) neurons 
within the paraventricular nucleus of hypothalamus (PVH), as 
well as the 5-HT2CRs expressed by POMC neurons (26). 
Currently, d-Fen has been replaced by lorcaserin, a novel pre-
scription diet pill and a specific agonist at 5-HT2CRs (27), 

which is expected to activate the central melanocortin 
pathway.
　Unlike 5-HT2CRs, however, the deletion of leptin receptors 
(LepRs) specifically in POMC neurons does not increase food 
intake (28). In addition, the reactivation of LepRs specifically 
in POMC neurons of LepR-null mice does not rescue hyper-
phagia (29). Thus, while leptin activates POMC neurons, the 
anorexigenic effects of leptin are likely to be mediated by 
LepRs expressed in other parts of the brain, independent of the 
melanocortin system (30). In fact, leptin-induced activation of 
POMC neurons does not seem to activate central melanocortin 
pathways that suppress food intake. Instead, it seems that lep-
tin excitation of POMC neurons activates central melanocortin 
pathways that increase energy expenditure (28, 29). Consider-
ing that energy expenditure is not affected by deletion or re-
activation of 5-HT2CRs specifically in POMC neurons (22, 23), 
it is suspected that POMC neurons are heterogeneous in their 
response to leptin and serotonin. Consistent with this idea, the 
acute response of POMC neurons to leptin and mCPP (a 
5-HT2CR agonist) is segregated to distinct subpopulations of 
POMC neurons (24). These results are intriguing since the met-
abolic effects of MC4Rs are mediated by different brain nuclei; 
MC4Rs expressed by the PVH decreases food intake, while 
MC4Rs expressed by the sympathetic neurons within the inter-
mediolateral column (IML) of spinal cord increases energy ex-
penditure (16, 31). Taken together, the “appetite-suppressing” 
POMC neurons may project to PVH, while the “energy-con-
suming” POMC neurons may project to the IML (Fig. 1).

THE PARAVENTRICULAR NUCLEUS OF 
HYPOTHALAMUS AND THE PARABRACHIAL 
NUCLEUS: ANOREXIGENIC CENTERS

The PVH and the parabrachial nucleus (PBN) of brainstem are 
representative anorexigenic centers in addition to POMC neu-
rons and the central melanocortin pathways. Sim1 is a tran-
scription factor that is critical for PVH development, and Sim 1 
haploinsufficiency is associated with hyperphagia and obesity 
(32). Thus, a significant population of PVH neurons is consid-
ered to suppress food intake. Specifically, the oxytocin (OXT) 
neurons within the PVH are known to have loss-of-function 
mutations in Prader-Willi syndrome (33) and as a consequence 
of Sim1 deficiency (34, 35), both of which are characterized 
by hyperphagia. The MC4R-expressing glutamatergic neurons 
within the PVH, which may be considered as a part of the cen-
tral melanocortin system, reduce food intake (36). Intriguingly, 
the MC4R-expressing PVH neurons were found to be distinct 
subpopulation from the OXT, corticotropin-releasing hormone 
(CRH), arginine vasopressin (AVP), and prodynorphin (Pdyn) 
neurons within the PVH (36). In addition, Sim1 neurons that 
express either thyrotropin-releasing hormone (TRH) or pituitary 
adenylate cyclase-activating peptide (PACAP) were found to 
send excitatory input to the orexigenic NPY/AgRP neurons 
within the ARH (37). Thus, some PVH neurons may not be 
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Fig. 2. NPY/AgRP neurons and the orexigenic pathway. NPY/AgRP 
neurons have axon terminals that release GABA (an inhibitory 
neurotransmitter) to suppress the POMC neurons, PVH OXT neu-
rons, and neurons within the L-PBN. PVH neurons that express 
PACAP/TRH have axon terminals that release glutamate (an ex-
citatory neurotransmitter) to activate NPY/AgRP neurons. Functional
connections between NPY/AgRP neurons and PVH neurons that 
express CRH/AVP have not been established (dotted lines). AgRP: 
agouti-related peptide, AVP: arginine vasopressin, CRH: cortico-
tropin-releasing hormone, L-PBN: lateral parabrachial nucleus, NPY:
neuropeptide Y, OXT: oxytocin, PACAP: pituitary adenylate cy-
clase-activating peptide, POMC: pro-opiomelanocortin, PVH: para-
ventricular nucleus of hypothalamus, TRH: thyrotropin-releasing 
hormone.

anorexigenic as originally suggested, but they may have 
“orexigenic” effects.
　The PBN is a pontine nucleus located adjacent to the superi-
or cerebellar peduncle that contains subpopulation of neurons 
suppressing appetite (38-40). The PBN neurons receive gluata-
matergic “satiety” signals from the nucleus tractus solitarius 
(NTS) neurons located in the medulla oblongata (38), which is 
considered to be the neural correlates of postprandial satiety. 
Consistent with the anorexigenic role of PBN, the MC4R-ex-
pressing PVH glutamatergic neurons send axons to the lateral 
PBN (36) (Fig. 1). Recently, it was demonstrated that the calci-
tonin gene-related peptide (CGRP) neurons within the external 
lateral subdivision of PBN project to the central amygdala to 
suppress food intake (41). Another recent study also demon-
strated that neurons expressing protein kinase C delta (PKC) 
mediate the anorexigenic effects (42).

THE NPY/AGRP NEURONS AND THE OREXIGENIC 
PATHWAY

The NPY/AgRP neurons within the ARH are probably the most 
established orexigenic population in the CNS. However, ear-
lier studies reported that mice with NPY and/or AgRP defi-
ciency have normal food intake and body weight (43). 
Similarly, ablation of AgRP neurons during development re-
sulted in normal body weight (44, 45). More recent studies 
used toxins to ablate the NPY/AgRP neurons in adults and con-
firmed the orexigenic role of these neurons (38, 39, 46). Acute 
activation of NPY/AgRP neurons using optogenetic or pharma-
cogenetic stimulation methods also resulted in robust increase 
in food intake (13, 47). These series of experiments have estab-
lished the NPY/AgRP neurons as the major orexigenic pop-
ulation in the CNS.
　The NPY/AgRP neurons release the neuropeptide NPY 
(agonist at the Y receptors), AgRP (inverse agonist at the 
MC4Rs), and the inhibitory neurotransmitter GABA. The meta-
bolic effects of NPY on Y receptors are somewhat compli-
cated, and many are not consistent with the orexigenic role of 
NPY/AgRP neurons; this issue was discussed in more detail in 
a previous review article (48). The ability of AgRP to antago-
nize the central melanocortin pathways received much atten-
tion, since this was considered to be the underlying mecha-
nism of orexigenic effects. However, the orexigenic effects of 
NPY/AgRP neurons are not affected by the deletion of MC4Rs 
(47), and it is now regarded that the NPY/AgRP neurons in-
crease food intake independent of the central melanocortin 
system. Currently, GABA release is believed to mediate most 
of the orexigenic effects of the NPY/AgRP neurons. For in-
stance, deletion of vesicular GABA transporter (vgat) genes 
specifically in the AgRP neurons leads to lean phenotype (49), 
which confirms the importance of GABAergic neuro-
transmission in the orexigenic effects.
　Multiple “anorexigenic” neuronal populations within CNS 
receive the “inhibitory” GABAergic input from the NPY/AgRP 

neurons (Fig. 2). The ARH POMC neurons receive GABAergic 
input from the NPY/AgRP neurons, which form a local circuit 
of appetite regulation within the ARH (3). Indeed, when the 
vgat gene is deleted in the NPY/AgRP neurons, the frequency 
of inhibitory postsynaptic current (IPSC) is not increased by 
ghrelin which excites the NPY/AgRP neurons (49). The PVH 
OXT neurons and Sim1 neurons (which do not express either 
PACAP or TRH) also receive GABAergic input from the 
NPY/AgRP neurons (37, 50). Finally, the neurons within the 
PBN receive GABAergic input from the NPY/AgRP neurons 
(38, 39). Thus, it is suggested that the orexigenic pathways in-
volving the GABAergic neurotramsission from the NPY/AgRP 
neurons increase food intake by the inhibition of the anorexi-
genic centers in the CNS.

CONCLUDING REMARKS AND FUTURE DIRECTIONS

Recent development of genetic technologies (e.g. mouse ge-
netics, optogenetics, and chemogenetics) was combined with 
classical methodologies (e.g. neuroanatomy and electro-
physiology) to allow us to have a refined understanding of 
neuronal circuits that regulate feeding behavior. As a result, 
we now understand that feeding is regulated by “specific neu-
rons within specific nucleus” rather than “centers” in brain. It 
is important to note that PVH, an anorexigenic center, was re-
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cently suggested to contain potentially orexigenic neurons 
(PACAP and TRH neurons) which send excitatory input to 
NPY/AgRP neurons (37). We still do not completely under-
stand whether other specific PVH neurons (e.g. CRH, AVP, 
and Pdyn neurons) have orexigenic effects. In addition, the 
role of specific neuronal populations within PBN is just begin-
ning to be identified (41). Thus, it should be important to study 
the function of genetically-identified neurons, both in vitro and 
in vivo, to have a more refined understanding on the neuronal 
circuits that regulate feeding behavior.
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