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Abstract.	 [Purpose] This review synthesizes findings from studies on two forms of Constraint-Induced Move-
ment Therapies: the original Constraint-Induced Movement Therapy and the modified Constraint-Induced Move-
ment Therapy, in adult stroke patients including the evidence, current limitations and future directions. [Methods] 
We critically reviewed studies evaluating the effectiveness of Constraint-Induced Movement Therapies in chronic 
stoke focusing on the functional (i.e. motor recovery) and the neural (i.e. cortical organization) levels. [Results] 
Constraint-Induced Movement Therapies seemed to improve the upper limb functional usage in chronic stoke with 
no reliable neurophysiological underlying mechanisms. The Motor Activity Log was the common outcome mea-
suring motor recovery. The work that has been done on modified Constraint-Induced Movement Therapy was far 
less than the work done on the original Constraint-Induced Movement Therapy. [Conclusion] Evident lack of un-
derstanding of the association between changes in motor recovery and the underlying neural mechanisms in-terms 
of measures of assessing and defining functional recovery (i.e Motor Activity Log) that lacks sufficient sensitivity 
to characterize changes in movement strategies and thereby lack of distinction between recovery and behavioral 
compensation. Future studies should employ using kinematic metrics to quantify and explain the training-related 
changes in behavior following Constraint-Induced Movement Therapies in chronic stroke.
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INTRODUCTION

Stroke is considered the fifth leading cause of death and affects at least 6.4 million persons in the United States1). Projec-
tions show that by 2030, an additional 3.4 million people above 18 years old will have had a stroke which is approximately 
a 20.5% increase in prevalence from 2012 statistics1). Above all, Stroke is a leading cause of serious long-term disability1).

Arm paresis is one of the most common impairments after stroke2). After six months, about two-thirds of patients continue 
to suffer from arm sensorimotor impairment that impacts the individual’s activities of daily living3). Motor deficits consist of 
weakness of specific muscles4), abnormal muscle tone5), abnormal postural adjustments6), abnormal movement synergies7), 
lack of mobility between structures at the shoulder girdle6), and incorrect timing of components within a movement pattern8). 
As a result of such impairment, patients may progressively avoid using the affected arm in favor of the unaffected arm for 
successful ADL, resulting in a learned non-use phenomenon9).

The complications after a stroke may persist for many years and the need for rehabilitation may be a lifetime endeavor. 
As a result of that, theories in stroke rehabilitation vary in the interventions applied to address motor deficits. Theories in 
stroke rehabilitation involve the use of conventional treatment such as Range of Motion (ROM) and strengthening exercises 
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in a technique depending on the compensatory strategies in recovery10). Other theories using neurodevelopmental (NDT) 
approach11) and the Proprioceptive Neuromuscular Facilitation (PNF) technique12). Motor learning principles13, 14), i.e., 
intense and structured training using Constraint-Induced Movement Therapies (CIMTs) including the original Constraint-
Induced Movement Therapy (CIMT) and the Modified Constraint-Induced Movement Therapy (mCIMT) have been shown 
to improve arm functionality even in the chronic stage of stroke. The focus of these two therapies lies with forcing the patient 
against the non-use phenomenon to use the affected limb by restraining the unaffected one. The affected limb is then used 
intensively under a massed practice for several hours per week by employing rehabilitation approaches that are based on 
theories of motor learning15). As a result, the patients engage in repetitive exercises with the affected limb with the hope that 
the brain grows new neural pathways. Practitioners say that stroke victims disabled for many years have recovered the use of 
their limbs using CIMT. In fact, CIMT therapy is “at the forefront of a revolution” in the field of neuro-rehabilitation in terms 
of recovery for stroke survivors16). Although there are differences between the two therapies, they both share the concept of 
incorporating physical constraint of the unaffected limb in order to facilitate use of the paretic limb17). CIMT involves massed 
practice of the affected arm (4–6 hours per session) and restraint of the unaffected arm during most waking hours (90%). 
On the other hand, mCIMT involves a less intensive form of practice (0.5–2 hours/session) and restraining the nonaffected 
arm for 5–6 hours/day. However, the clinical feasibility of CIMT has been questioned because of the nature of the duration 
of the intervention applied so that patients may not participate and the therapist would report that their facilities could not 
administer such an intensive time-consuming protocol18). Therefore, mCIMT has been proposed as a less intensive form and 
is considered one of the promising interventions for improving upper limb performance in stroke patients.

A major limitation is rehabilitation generally and in CIMTs specifically is the lack of understanding of recovery in-terms 
of measures of motor recovery used in assessing and defining functional recovery and the underlying neurological recovery. 
Such Understanding for this relationships would add more in-depth insights on the functional relevance of plastic brain 
changes in stroke following CIMTs to optimize the field of neuro-rehabilitation.

This review is an in-depth evaluation of research on CIMTs in the management of upper limb dysfunction following a 
stroke. We conducted a quality review for the literature on the effectiveness of both forms of therapies (i.e. level of evidence) 
to bridge the gap between functional (i.e. motor recovery) and the neural (i.e. cortical organization) recovery in patients in 
the chronic stage following stroke.

METHODS

We conducted a literature search to meet the objective of our systematic review. MEDLINE database was used to search 
the literature between January 2000 and October 2018. The search was limited to articles written in English and the database 
was accessed online through the local university’s library system in November 2018.

Specific key words and their combinations using the “AND” operator were used for the purpose of the literature search. 
These key words include: “Constraint-induced movement therapy” “stroke” “chronic” “brain organization” “cortical organi-
zation” “fMRI”. The screening process were done by one reviewer. The inclusion criteria were: (1) adult patients (≥18 years) 
clinically diagnosed with a stroke; (2) level of evidence (levels I=large randomized controlled trial, low error risk; level 
II=small randomized trial, moderate to high error risk; (3) the experimental intervention conformed to the definitions of 
CIMTs including CIMT and mCIMT; (4) outcomes measured post intervention and/or at follow-up; and (5) articles published 
in the English.

In part one of this review, a qualitative review process was used to account for the variety of the study designs, outcome 
measures and analysis used. A modified version of Sackett’s 198119) critical appraisal criteria (random assignment, blinding, 
intervention monitoring, dropouts, reliability and validity of measurements) was used to modify the quality of the studies. 
When information within an article was not sufficient to ascertain if a criterion had been fulfilled, a “No” rating was given. 
The level of evidence supported by each study design and the grade of recommendation for identified outcomes were then 
determined as described by Sackett20).

Part two of this review aimed to synthesize finding from studies on the effects of CIMTs on cortical reorganization to 
analyze the neural substrates of motor learning after stroke following CIMTs and how they may relate to recovery.

RESULTS

Table 1 and 2 summarizes the finding from our review on CIMT and mCIMT, respectively. We found four articles21–25) 
describing results following the use of CIMT (Table 1) and four articles25–28) describing results following mCIMT in patients 
with chronic stroke (Table 2) that met our criteria . The total number of participants (patients and normal participants) in each 
study varied from seven to two hundreds twenty two and from seventeen to thirty-five in CIMT and mCIMT, respectively. 
All participants included were in the chronic stage after stroke. For CIMT, the treatment protocol varied from ten days—three 
weeks with daily sessions by restraining the affected arm for six hours per day 90% of waking time (Table 1). For mCIMT, 
the treatment protocol varied from three to ten weeks. The nature of less intense form of CIMT varied by reducing the session 
time or frequency or both (Table 2).

CIMT and mCIMT are forms of therapy that help stroke victims regain the use of affected limbs (American Stroke Asso-
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ciation, 2004)16). For CIMT, the level of evidence varied from level III to level I (Table 1). For mCIMT, the level of evidence 
was level II for all studies (Table 2). Although CIMTs were the independent variable in all studies, the overall treatment days 
and hours per session varied among studies and had an average of 20–45 minutes. The CIMTs protocols in all studies were 
predetermined and applied equally to all participants included in each study. All studies were prospective and the included 
participants were clinically diagnosed with an stroke in the subacute to chronic stages.

Results of the quality review for CIMT and mCIMT are presented in Table 3. Overall the results were satisfactory. Overall, 
the intervention in all studies was well monitored and supported the aim of the studies. All studies included chronic stroke 
survivors to avoid contamination with other recovery potentials following stroke29). Blinded assessment were reported in 
most studies to reduce or eliminate bias even though in most studies it was a single-blinded design30).

Studying the cortical reorganization associated with CIMTs has been done using many methods including Functional 
magnetic resonance imaging (fMRI), Transcranial Magnetic Stimulation (TMS) and Positron Emission Tomography (PET). 
Studies on the effects of CIMTs on cortical reorganization were discussed to analyze the neural substrates of motor learning 
after stroke following CIMTs (Table 4). We found six studies describing results following CIMT and one study following 
mCIMT. The total number of participants (patients and normal participants) in each study varied from one to sixteen in CIMT 
and mCIMT. All participants included were in the chronic stage after stroke.

DISCUSSION

Although allocation of stroke recovery services have been traditionally based on the belief that recovery occurs within 
the first three months and is complete by twelve months31), further improvement has been shown to occur with intervention 
beyond that period32, 33). With time available for upper limb training rapidly diminishing, the search for effective and ef-
ficient strategies to maximize upper limb recovery has become more pressing. Many studies showed that CIMT is effective 
in improving upper limb functional recovery so that it enhances the recovery within the first year and even after one year, 
immediately after the treatment and on the follow up assessment in most of the studies (Table 1).

Post-stroke upper limb functional recovery has been evaluated by using several outcome measures34). Examples on 
such measures and specifically those in CIMTs studies include the Motor Activity Log (MAL)35), Fugl-Meyer Assessment 
(FMA)36), Motor Assessment Scale (MAS)37) and the Wolf Motor Function Test (WMFT)38). However, the criteria for assess-
ing and defining functional recovery have been ambiguous. Most studies have used clinical indicators of impairment and/or 
kinematic outcomes (i.e., movement speed) to measure intervention effectiveness without consideration of how these gains 
were attained (i.e., movement quality). Indeed, many outcomes used in stroke rehabilitation have limited objective ability 
to characterize movement strategies39). For example, the WMFT assesses gross- and fine-motor components during a set of 
functional tasks. All tasks are timed and rated based on the functional ability. However, several concerns are present in regard 
to using WMFT in stroke rehabilitation field. One limitation related to the validity of using this outcome in severely impaired 
patients who cannot complete many of the tasks considering the time limit of 120 seconds for each task. Therefore, this test 
has limited ability to quantify overall changes in performance in moderate to severely impaired patients40). Another common 
tool used in stroke rehabilitation is Fugl-Meyer Upper Extremity Assessment (FMUE). FMUE, composed of scales for sensa-

Table 1.	 Evidence of the motor recovery of Constraint-Induced Movement Therapy (CIMT) on upper limb function

Study Design Level of 
evidence Time after stroke Treatment protocol Outcome measures Results  

(sig, not sig)*
Follow  

up
Myint et al., 
200823)

RCT  
Single 
blinded

II 2–16 weeks  
(Total 43:  
23 treatment group,  
20 control group)

CIMT: 10 days,  
4 hrs/day  
90% of waking time

MAL, Action  
Research Arm  
(ARA) Test and  
modified Barthel 
Index

Sig 12 weeks 
(Sig)

Wolf et al., 
200624)

RCT I 3–9  months  
(222 stroke)

CIMT: 2 weeks,  
7 days/ week,  
6 hrs/session  
90% of waking time

Wolf Motor  
Function Test 
(WMFT), (MAL)

Sig 12 months 
(Sig)

Bonifer et al., 
200521)

Within-
participants 
design;  
pre- and 
posttesting 

III >12 months 
 (7 participants)

CIMT, 3 weeks, 
daily, 6 hrs/day  
90% of waking time

Fugl-Meyer  
Assessment (FMA), 
Graded Wolf Mo-
tor Function Test 
(GWMFT), and 
(MAL)

Sig 1 month 
(Sig)

Brogårdh  et al., 
200622)

RCT II Average 28.9 months 
(16 stroke patients)

CIMT:  12 days,  
6 hrs/day  
90% of waking time

Modified Motor 
Assessment Scale 
(MAS), MAL

Sig 3 months 
(Sig)
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tion, proprioception, joint pain, range of motion (shoulder, elbow, wrist and fingers), reflex activity, and joint co-ordination 
and having an excellent intra-rater and inter-rater reliability41, 42), is one of the most comprehensive quantitative measures 
of motor impairment after stroke43). However, the FMUE components neither assess purposeful reaching tasks nor quantify 
the functional impairments due to spasticity or weakness43). In addition, ceiling effect, particularly for the patients with mild 

Table 2.	 Evidence of the motor recovery of Modified Constraint-Induced Movement Therapy (mCIMT) on upper limb function

Study Design Level of 
evidence Time after stroke Treatment protocol Outcome  

measures
Results 

(sig, not sig)*
Follow  

up
Wu et al.,  
200725)

RCT II 0.5 to 31 months  
(13 participants,  
13 traditional treatment)

mCIMT  
The unaffected limb. 
3 weeks, 5 times/wk, 
2 hrs/session. With 
restraining the arm for 
6 hours each week day

FMA, FIM 
instrument, 
MAL, and 
Stroke Impact 
Scale (SIS,

Sig N/A

Page et al.,  
200827)

Multiple- 
baseline, 
randomized, 
pretest-posttest 
control group 

II 20–60 months  
(35 participants:  
13 treatment group,  
12 traditional treatment,  
10 no treatment)

mCIMT protocol:  
half-hour/session,  
3 times/week,  
10 weeks,  
with restraining  
the nonaffected arm  
for 5 hours every  
weekday during  
the same 10-week 
intervention

The Action 
Research Arm 
Test (ARAT), 
MAL

Sig N/A

Lin et al.,  
200726)

RCT II 13–26 months  
(32 participants:  
16 treatment group,  
16 control )

mCIMT with intensive 
treatment,  
3 weeks (daily),  
2 hrs/session and  
restriction for 6 hrs/day

MAL, FIM Sig N/A

Page et al.,  
200428)

Multiple- 
baseline,  
pre-post,  
single-blinded 
RCT

II >1 year  
(Total 17 participants: 
7 treatment group,  
4 regular treatment,  
6 no treatment)

mCIMT with intensive 
treatment, 10 weeks,  
5 days/wk, 5 hrs/day

FMA, ARA 
test, MAL

Sig N/A

Table 3.	 Quality review

Avoided  
contamination 

and  
co-intervention

Random  
assignment to 
conditions

Blinded  
assessment

Monitored 
intervention

Accounted 
for all  

participants

Reported 
reliability 
of measures 

used

Reported 
validity of 
measures 
used

Total 
number 
of criteria 

met
Constraint-Induced Movement Therapy
Myint et al., 
200823)

Yes Yes Yes Yes Yes Yes Yes 7

Wolf et al., 
200624)

Yes Yes Yes Yes Yes Yes Yes 7

Bonifer et al., 
200521)

Yes No No Yes Yes Yes Yes 5

Brogårdh  et al., 
200622)

Yes Yes Yes Yes Yes Yes Yes 7

Modified Constraint-Induced Movement Therapy
Wu et al., 
200725)

Yes Yes No Yes Yes Yes Yes 6

Page et al., 
200827)

Yes Yes Yes Yes Yes Yes Yes 7

Lin et al., 
200726)

Yes Yes No Yes Yes Yes Yes 6

Page et al., 
200428)

Yes Yes Yes Yes Yes Yes Yes 7
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impairment, and the presence of some components (such as reflexes) that do not make a significant contribution to the as-
sessment of impairment44) have been identified as further limitations of FMUE. Furthermore, FMUE scores can be obtained 
by using combined measures of the trunk and shoulder flexion movements during a reach-to-grasp task45). Therefore, it 
may be reasonable to exclude some components, i.e., reflexes, and to decompose FMUE score in sub-scores accordingly to 
proximal and distal segments. In summary, the WMFT and FMUE assessments provide valuable information regarding mo-
tor performance and motor impairment after stroke, yet they do not provide precise quantitative data on movement strategies 
and thereby lack the sufficient sensitivity to characterize changes in movement strategies especially longitudinally over time.

For most of the studies that examined the effectiveness of CIMT, there was a significant improvement in all the outcome 
measures. Among these outcome measures, the Motor Activity Log (MAL) was the most commonly used one and showed 
a significant result in all studies (Table 1). Further, MAL is a reliable and valid real-world, upper-extremity rehabilitation 
outcome and functional status in patient with chronic stroke specifically following CIMTs46). In this analysis; MAL will be 
used for the purpose of showing whether there are similar effects of the mCIMT on participants post stroke.

The Motor Activity Log (MAL) is a scripted, structured interview that was developed by Taub et al.33) to measure the 
effects of CIMTs on use of the affected arm outside the laboratory in individuals with stroke. This measure is represented 
by measuring two categories: the amount of use and the quality of movement of the affected arm. The MAL scores varies 
from 0 to 5 so that 5 given to normal functioning of the upper limb. Uswatte et al.47) examined the reliability and the validity 
of MAL as a common measure in the assessment of the upper limb functioning after the use of CIMTs. In their study, they 
examined the reliability and the validity of the measure by measuring the outcomes before and after the application of 
the CIMT. They concluded that MAL can be used exclusively to reliably and validly measure real-world, upper-extremity 
rehabilitation outcome and functional status in chronic stroke patients with mild-to-moderate hemiparesis. However, just like 
the previously discussed FMA and WMFT, MAL is a self-rated, patient reported Outcome measure with high subjectivity. 
Therefore, it is reasonable to conclude that MAL lack the sufficient sensitivity to characterize changes in movement strategies 
and thereby lack of distinction between recovery and behavioral compensation.

As shown in Table 1, most studies’ designs are Randomized Controlled Trials. One of the studies, Wolf et al.24) was a RCT 
with a large sample size (Two hundred twenty-two individuals) who were clinically diagnosed with ischemic stroke. This 
study showed a strong level of evidence of the effectiveness of CIMT in improving the functional activities of the hemiparetic 
limb that persisted one year after the treatment. The MAL quality of movement scale increased significantly from 1.26 to 2.23 
and the improvement in the MAL amount of use after the treatment was 1.21 to 1.65.

Table 2 showed some of the studies that examined the effects of mCIMT on participants after a stroke. As for the CIMT, 
the MAL was the common clinical outcome measure for examining the effect of mCIMT on the upper limb function. All 

Table 4.	 The cortical organization following Constraint-Induced Movement Therapies (CIMTs)

Intervention Study Number of 
participants

Outcome 
measures Results 

CIMT Levy et al.,  
200165) 

2 participants fMRI Participant No. 1 showed activity bordering the lesion,  
bilateral activation in the association motor cortices, and 
ipsilateral activation in the primary motor cortex (inconsistent 
lateralization), Participant No. 2 showed activation near  
the lesion site.

Schaechter  
200267) 

4 participants fMRI Increased unlesioned hemisphere activation post treatment and 
at 6-month follow-up.  

Kim et al.,  
200486)

5 participants fMRI Three patients increased lesioned (contralateral) hemispheric 
activity, 1 patient increased unlesioned activity and 1 patient 
reduced lesioned hemisphere activity.

Liepert et al.,  
200087) 

13 participants TMS Expansion of the more affected arm representation post  
treatment.

Park et al.,  
200457)

Case study TMS + fMRI TMS: Increased excitability of the contralateral (left) motor 
cortex
fMRI: contralateral (left) motor cortex activation with smaller 
ipsilateral activation.

Wittenberg et al., 
 200356)

16 participants TMS + PET TMS: Greater map volume of the more affected arm than the 
control group
PET: reduced area activation of the more affected hand  
movement than controls.

Modified  
Constraint-Induced 
Movement Therapy

Szaflarski et al.,  
200688)

4 participants fMRI Only 3 participants showed cortical changed which was  
positively related to the degree of increase in the affected arm 
use and ability. 1 participant exhibited minimal affected arm 
use changed with no cortical fMRI changes.
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of the studies showed that mCIMT is an effective, promising and feasible intervention that could be a better option for 
rehabilitation other than the original CIMT. Unfortunately, the studies have limitations that made the comparison unfair or 
unequal. Although the studies were randomized controlled trials, they shared few common limitations including small sample 
size with a lot of independent variables. For most of the studies the number of participants was relatively small, so that no 
study had a strong level of evidence that could be equal in strength for Wolf et al.24) study of CIMT. The second limitation 
of the studies is that they had no follow up assessment so that no evidence of persistence effects was available to support the 
long term effects of mCIMT.

As a summary, mCIMT is a promising treatment for stroke patients for improving the motor function of the hemiparetic 
arm. MAL is one of the commonly used clinical measures to assess upper limb motor functioning after applying CIMTs on 
stroke participants. When difficulties are affecting the use of CIMT because of too much effort and time being used by the 
patients and the therapists; mCIMT appears to be a promising and alternate intervention that saves time and could be applied 
with less efforts to achieve the expected and the satisfying goals from rehabilitation. More work should be done to examine 
the effectiveness of mCIMT using randomized controlled trials with large sample sizes. Also future research should focus 
on assessing the performance of the participants at retention by having a follow-up assessment to ensure the longitudinal 
effects of mCIMT on patients after a stroke. Finally and most importantly, the argument that has been raised with regard to 
the measures of recovery such as FMA, WMFT and MAL. Kinematic motion analysis is an effective quantitative tool to 
capture movement strategies during movements with the impaired arm48–50). Indeed, movement kinematics can be used to 
distinguish between recovery and compensation. Many studies have documented an indirect relationship between the use 
of behavioral compensation and the impaired reaching ability characterized by decreased active range of elbow/shoulder 
movements39, 48–52). For example, Roby-Brami and her team used the increase in active range of elbow extension as a main 
outcome measure to quantify intervention-related arm motor recovery after an intervention51). In fact, the assessment of the 
elbow extension during a reaching task predicts the performance on both WFMT and FMUE53). Thus, we propose that future 
studies should employ using kinematic metrics to quantify the training-related changes in behavior following CIMTs.

Recently, richer understanding of the functional recovery has been accompanied by a better understanding of its neuro-
biological basis. Cortical organization is often described in terms of maps that has a broad somatotopic representation of the 
different upper and lower body segments in an arrangement called “motor homunculus”54). The homunculus is arranged in 
an upside-down map of the contralateral body segments. For example, the upper extremities and the facial body segments are 
closer to the lateral sulcus than lower extremities such as the leg and toes that are located more medially55). Neuroplasticity 
refers to the changes that occur in the organization of the brain (re-mapping) as a result of experience. Also, neuroplasticity is 
a fundamental issue that supports the scientific basis for treatment of acquired brain injury (such as stroke) with goal-directed 
experiential therapeutic programs (such as CIMT) in the context of rehabilitation approaches to the functional consequences 
of the injury. Brain activity, represented by brain maps and neuroplasticity, has been studied through noninvasive neuroimag-
ing methods such as functional Magnetic Resonance Imaging (fMRI) or by exciting neuron in the brain to measure the 
brain plasticity using Transcranial Magnetic Stimulation (TMS) and Positron Emission Tomography (PET). By using these 
methods, the functionality of the circuitry and connectivity of the brain can be studied.

By using TMS56, 57), weak electric currents are induced in the tissue by rapidly changing magnetic fields at a fixed point 
on the scalp to induce electrical currents on the underlying cortex. In this way, researchers were able to map the expanse 
of the cortex that is associated with the activation of specific contralateral limb muscles. In addition, the degrees in cortical 
electrical activity following the application of therapy could be evaluated as excitatory or inhibitory using TMS. TMS is 
used currently clinically to measure activity and function of specific brain circuits in humans. The most robust and widely-
accepted use is in measuring the connection between the primary motor cortex and a muscle.

On the other hand, fMRI is one of the most recently developed forms of neuroimaging that measures the haemodynamic 
response (blood flow in the brain) related to neural activity in the brain. fMRI is simply represented by the Blood-oxygen-
level dependent, when a certain areas of the brain get activated, its need for a source of energy increase so that the blood flow 
to this area increase for oxygen delivery, and that what fMRI detects. In this way, detecting the areas of the brain underlying 
the changes of the brain after applying an intervention could be easily detected.

After a stroke, the size of the cortical representation of the affected hand is known to decrease58, 59) possibly due to 
limb nonuse60). However, in normal individuals- during task-specific protocols in which the affected arm is repetitively and 
functionally used—the size of the cortical areas representing the limb increases61–64). On the other hand, a recent interest 
to understand how the brain recovers and the cortical reorganization accompanied with the motor recovery including the 
spontaneous recovery or the recovery after applying our rehabilitation techniques has been developed. For the CIMT and 
mCIMT, another recent interest also has been developed to study the relationship between CIMTs and brain reorganization 
after a stroke especially when it showed a significant effect on the upper limb functional recovery.

Unfortunately, studies that examined the effect of applying CIMTs on cortical reorganization were relatively scarce. CIMT 
seemed to be effective in changing the cortical organization when the post treatment images were compared to pre-treatment 
images (baseline). However; the findings regarding these “re-mapping” changes across the studies were not consistent. In 
spite of the consistent CIMTs treatment that was applied and the consistent behavioral changes in the quality and the amount 
of movement using the MAL, the results failed to find consistent cortical reorganizations among each other and even among 
the participants in each study separately.
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The cortical reorganization changes that occurred after the treatment are interesting and deserve more consideration. 
When most of the studies showed improvement in the MAL (Table 4), variability in the accompanied cortical changes has 
been found. Some studies65) showed that the lesioned hemisphere is more altered by CIMT than the unlesioned hemisphere. 
This alteration was represented by more activation being seen near the lesioned area or by expansion of the cortical mo-
tor representation of the more affected arm. Other studies66) didn’t report a clear difference in the activated hemisphere; 
while others67) reported increased unlesioned hemisphere activation post treatment. Wittenberg et al.56, 68) reported that TMS 
showed greater map volume of the more affected arm than the control group while PET showed reduced area activation of 
the more affected hand movement than controls. They reported that, by using the TMS, the change in map ratio, affected-to-
unaffected, may be due, in part, to the map shrinkage on the unaffected side as a result of prolonged restraint. On the other 
hand, they reported that the different changes that were shown by PET may be due to the longitudinal decrease in activation, 
suggesting a reduced task-related synaptic input after CI therapy. This reduction, as though seemingly paradoxical, may be 
due to a more favorable recruitment of motor neurons in a way that the patients were able to perform the expected movement 
in a relatively better manner after the treatment than they did before the treatment at the baseline.

CIMTs strictly apply the principle of motor learning. Motor learning depends on the plasticity of neurons (regional ac-
tivation) and circuits (functional connectivity)69) within the motor system. The motor system consists of cortical (primary 
and non-primary motor areas) and extracortical areas (basal ganglia and cerebellum). Therefore, the interaction between 
sensory and motor systems is a prerequisite for proper motor learning70). A recent review of the stroke rehabilitation literature 
revealed 12 randomized controlled trials comparing specialized patient rehabilitation with conventional care in 2,813 stroke 
survivors71). Improved functional outcomes and reduced length of hospital stays were reported among patients receiving 
specialized rehabilitation13). Intensive and structured training is one key element of such rehabilitation programs and the 
improvement in the desired outcomes is likely to depend on two elements: the intensity of the training and the specificity 
of the task practiced72). Motor learning principles, i.e., intense and structured training, have been now included in two of 
the most used therapeutic approaches in this population including CIMTs13) and motor relearning program developed by 
Carr and Shepherd13). CIMTs have been shown to improve arm functionality even in the chronic stage of stroke14, 73–75) by 
inducing neuronal plasticity67, 76) (Table 3). However, further investigations are needed not only to confirm these findings 
in a larger sample but also to assess whether these neural changes are related to recovery or compensation. This is indeed 
a real problem for fMRI studies investigating brain changes related to an intervention. Motor compensation could lead to 
changes in brain activation even though they have nothing to do with the recovery. Thus, this review suggests: i) to study 
the relationships between task-related motor activation and not only clinical (MAL, FMA and WMFT) but also kinematic 
metrics of arm motor impairment in the chronic stage of ischemic subcortical stroke ii) to longitudinally investigate the 
changes in cortical motor function at two levels, regional (micro-circuitry, regional activation) and network (macro-circuitry, 
functional connectivity).

In summary, although there is enormous research on the neural mechanisms underlying motor recovery in humans, these 
mechanisms are still largely unknown. Limited number of stroke studies examined the relationship between motor improve-
ments and brain activation pattern following different therapeutic approaches77–81). Despite methodological and sample 
differences, three findings were consistently found: i) before training, cortical activation is predominantly bilateral; ii) after 
training, the cortical activation is shifted from the contra—to the ipsilesional hemisphere, at least in those patients with return 
of motor function; and iii) training-induced plasticity is possible in chronic phases of stroke. As stated before, bilateral activa-
tion of primary and non-primary motor areas and recruitment of additional sites have been reported in the early stages after a 
stroke and persist to the chronic stages especially in those with more severe impairments82). A trend toward more normalized 
activation patterns has been seen specifically in patients with moderate to mild impairments81). However, these findings 
suggest that central nervous system retain the ability to reorganize toward a more physiological (more efficient) activation 
pattern even in the chronic stage of stroke. Furthermore, the main mechanism underlying recovery of motor abilities involves 
enhanced and predominant activity in preexisting networks within the affected-side.

Further investigations are needed not only to confirm these findings in a larger sample as well as to assess whether these 
neural changes are related to post-stroke recovery. This is indeed a real problem for fMRI studies investigating brain changes 
related to an intervention. Thus, future studies should examine the relationships between task-related motor activation and 
clinical and kinematic metrics of arm motor impairment in the chronic stage of stroke following CIMTs. Such understanding 
for the relationship between kinematic motion analysis and the associated brain changes would be a significant addition to 
the current literature and fulfills several gaps that have not been addressed for years. Finally, trials in neurologic rehabilita-
tion have reported long-lasting functional improvements after 2–12 weeks of skilled motor practice in patients who were 
weeks to years past onset of hemiparesis83–85), Therefore, it is reasonable to conclude that more promising results in terms of 
understanding cortical organization following mCIMT as it involves less intense but longer course of training and thereby 
provides enough time to adapt to new changes resulting from such form of training.

Conflict of interest
The author certifies that he has no affiliations with or involvement in any organization or entity with any financial interest 

or non-financial interest in the subject matter or materials discussed in this manuscript.



957

REFERENCES

1)	 Mozaffarian D, Benjamin EJ, Go AS, et al. Writing Group Members, American Heart Association Statistics Committee, Stroke Statistics Subcommittee: Heart 
disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation, 2016, 133: e38–e360. [Medline]

2)	 Krakauer JW: Arm function after stroke: from physiology to recovery. Semin Neurol, 2005, 25: 384–395. [Medline]  [CrossRef]
3)	 Kolominsky-Rabas PL, Weber M, Gefeller O, et al.: Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-

term survival in ischemic stroke subtypes: a population-based study. Stroke, 2001, 32: 2735–2740. [Medline]  [CrossRef]
4)	 Bourbonnais D, Vanden Noven S: Weakness in patients with hemiparesis. Am J Occup Ther, 1989, 43: 313–319. [Medline]  [CrossRef]
5)	 Lance JW: The control of muscle tone, reflexes, and movement: Robert Wartenberg Lecture. Neurology, 1980, 30: 1303–1313. [Medline]  [CrossRef]
6)	 Carr J, Shepherd R: Movement science: foundations for physical therapy rehabilitation. Rockville: Aspen, 1987.
7)	 Bobath B: Adult hemiplegia. Evaluation and treatment. Oxford: Heinemann Medical, 1990.
8)	 Archambault P, Pigeon P, Feldman AG, et al.: Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in 

healthy and hemiparetic subjects. Exp Brain Res, 1999, 126: 55–67. [Medline]  [CrossRef]
9)	 Grotta JC, Noser EA, Ro T, et al.: Constraint-induced movement therapy. Stroke, 2004, 35: 2699–2701. [Medline]  [CrossRef]
10)	 Zorowitz RD, Gross E, Polinski DM: The stroke survivor. Disabil Rehabil, 2002, 24: 666–679. [Medline]  [CrossRef]
11)	 Raine S, Meadows L, Lynch-Ellerington M: Bobath concept: theory and clinical practice in neurological rehabilitation. Wiley, 2009.
12)	 Voss DE, Ionta MK, Myers BJ: Proprioceptive neuromuscular facilitation: patterns and techniques. Philadelphia: Harper & Row, 1985.
13)	 Carr JH: Movement science: foundations for physical therapy in rehabilitation. Rockville: Aspen Publishers, 2000.
14)	 Taub E, Uswatte G, Pidikiti R: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical 

review. J Rehabil Res Dev, 1999, 36: 237–251. [Medline]
15)	 Krakauer JW: Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol, 2006, 19: 84–90. [Medline]  [CrossRef]
16)	 Taub E, Uswatte G: Constraint-induced movement therapy: a paradigm for translating advances in behavioral neuroscience into rehabilitation treatments. In: 

Handbook of neuroscience for the behavioral sciences. Hoboken: Wiley; 2009, pp 1296–1319.
17)	 Miltner WH, Bauder H, Sommer M, et al.: Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. 

Stroke, 1999, 30: 586–592. [Medline]  [CrossRef]
18)	 Fleet A, Che M, Mackay-Lyons M, et al.: Examining the use of constraint-induced movement therapy in Ccanadian neurological occupational and physical 

therapy. Physiother Can, 2014, 66: 60–71. [Medline]  [CrossRef]
19)	 How to read clinical journals: V: to distinguish useful from useless or even harmful therapy. Can Med Assoc J, 1981, 124: 1156–1162. [Medline]
20)	 Sackett DL: Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest, 1989, 95: 2S–4S. [Medline]  [CrossRef]
21)	 Bonifer NM, Anderson KM, Arciniegas DB: Constraint-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor 

ability. Arch Phys Med Rehabil, 2005, 86: 1867–1873. [Medline]  [CrossRef]
22)	 Brogårdh C, Sjölund BH: Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt 

use. Clin Rehabil, 2006, 20: 218–227. [Medline]  [CrossRef]
23)	 Myint JM, Yuen GF, Yu TK, et al.: A study of constraint-induced movement therapy in subacute stroke patients in Hong Kong. Clin Rehabil, 2008, 22: 112–124. 

[Medline]  [CrossRef]
24)	 Wolf SL, Winstein CJ, Miller JP, et al. EXCITE Investigators: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after 

stroke: the EXCITE randomized clinical trial. JAMA, 2006, 296: 2095–2104. [Medline]  [CrossRef]
25)	 Wu CY, Chen CL, Tsai WC, et al.: A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in 

motor impairment, daily functioning, and quality of life. Arch Phys Med Rehabil, 2007, 88: 273–278. [Medline]  [CrossRef]
26)	 Lin KC, Wu CY, Wei TH, et al.: Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after 

chronic stroke: a randomized controlled study. Clin Rehabil, 2007, 21: 1075–1086. [Medline]  [CrossRef]
27)	 Page SJ, Levine P, Leonard A, et al.: Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. Phys Ther, 

2008, 88: 333–340. [Medline]  [CrossRef]
28)	 Page SJ, Sisto S, Levine P, et al.: Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. 

Arch Phys Med Rehabil, 2004, 85: 14–18. [Medline]  [CrossRef]
29)	 Seitz RJ, Donnan GA: Recovery potential after acute stroke. Front Neurol, 2015, 6: 238. [Medline]  [CrossRef]
30)	 Morissette K, Tricco AC, Horsley T, et al.: Blinded versus unblinded assessments of risk of bias in studies included in a systematic review. Cochrane Database 

Syst Rev, 2011, (9): MR000025. [Medline]
31)	 Jørgensen HS, Nakayama H, Raaschou HO, et al.: Outcome and time course of recovery in stroke. Part I: Outcome. The Copenhagen Stroke Study. Arch Phys 

Med Rehabil, 1995, 76: 399–405. [Medline]  [CrossRef]
32)	 Dean CM, Shepherd RB: Task-related training improves performance of seated reaching tasks after stroke. A randomized controlled trial. Stroke, 1997, 28: 

722–728. [Medline]  [CrossRef]
33)	 Taub E, Miller NE, Novack TA, et al.: Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil, 1993, 74: 347–354. [Medline]
34)	 Santisteban L, Térémetz M, Bleton JP, et al.: Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. PLoS One, 

2016, 11: e0154792. [Medline]  [CrossRef]
35)	 Uswatte G, Taub E, Morris D, et al.: The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology, 2006, 67: 1189–1194. 

[Medline]  [CrossRef]
36)	 Sullivan KJ, Tilson JK, Cen SY, et al.: Fugl-Meyer assessment of sensorimotor function after stroke. Standardized training procedure for clinical practice and 

clinical trials. 2010.
37)	 Carr JH, Shepherd RB, Nordholm L, et al.: Investigation of a new motor assessment scale for stroke patients. Phys Ther, 1985, 65: 175–180. [Medline]  [Cross-

Ref]

http://www.ncbi.nlm.nih.gov/pubmed/26673558?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16341995?dopt=Abstract
http://dx.doi.org/10.1055/s-2005-923533
http://www.ncbi.nlm.nih.gov/pubmed/11739965?dopt=Abstract
http://dx.doi.org/10.1161/hs1201.100209
http://www.ncbi.nlm.nih.gov/pubmed/2655457?dopt=Abstract
http://dx.doi.org/10.5014/ajot.43.5.313
http://www.ncbi.nlm.nih.gov/pubmed/7192811?dopt=Abstract
http://dx.doi.org/10.1212/WNL.30.12.1303
http://www.ncbi.nlm.nih.gov/pubmed/10333007?dopt=Abstract
http://dx.doi.org/10.1007/s002210050716
http://www.ncbi.nlm.nih.gov/pubmed/15375308?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.0000143320.64953.c4
http://www.ncbi.nlm.nih.gov/pubmed/12296982?dopt=Abstract
http://dx.doi.org/10.1080/09638280110109291
http://www.ncbi.nlm.nih.gov/pubmed/10659807?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16415682?dopt=Abstract
http://dx.doi.org/10.1097/01.wco.0000200544.29915.cc
http://www.ncbi.nlm.nih.gov/pubmed/10066856?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.30.3.586
http://www.ncbi.nlm.nih.gov/pubmed/24719511?dopt=Abstract
http://dx.doi.org/10.3138/ptc.2012-61
http://www.ncbi.nlm.nih.gov/pubmed/7016293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2914516?dopt=Abstract
http://dx.doi.org/10.1378/chest.95.2_Supplement.2S
http://www.ncbi.nlm.nih.gov/pubmed/16181956?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2005.04.002
http://www.ncbi.nlm.nih.gov/pubmed/16634340?dopt=Abstract
http://dx.doi.org/10.1191/0269215506cr937oa
http://www.ncbi.nlm.nih.gov/pubmed/18212033?dopt=Abstract
http://dx.doi.org/10.1177/0269215507080141
http://www.ncbi.nlm.nih.gov/pubmed/17077374?dopt=Abstract
http://dx.doi.org/10.1001/jama.296.17.2095
http://www.ncbi.nlm.nih.gov/pubmed/17321816?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2006.11.021
http://www.ncbi.nlm.nih.gov/pubmed/18042603?dopt=Abstract
http://dx.doi.org/10.1177/0269215507079843
http://www.ncbi.nlm.nih.gov/pubmed/18174447?dopt=Abstract
http://dx.doi.org/10.2522/ptj.20060029
http://www.ncbi.nlm.nih.gov/pubmed/14970962?dopt=Abstract
http://dx.doi.org/10.1016/S0003-9993(03)00481-7
http://www.ncbi.nlm.nih.gov/pubmed/26617568?dopt=Abstract
http://dx.doi.org/10.3389/fneur.2015.00238
http://www.ncbi.nlm.nih.gov/pubmed/21901737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7741608?dopt=Abstract
http://dx.doi.org/10.1016/S0003-9993(95)80567-2
http://www.ncbi.nlm.nih.gov/pubmed/9099186?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.28.4.722
http://www.ncbi.nlm.nih.gov/pubmed/8466415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/27152853?dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0154792
http://www.ncbi.nlm.nih.gov/pubmed/17030751?dopt=Abstract
http://dx.doi.org/10.1212/01.wnl.0000238164.90657.c2
http://www.ncbi.nlm.nih.gov/pubmed/3969398?dopt=Abstract
http://dx.doi.org/10.1093/ptj/65.2.175
http://dx.doi.org/10.1093/ptj/65.2.175


J. Phys. Ther. Sci. Vol. 31, No. 11, 2019 958

38)	 Hodics TM, Nakatsuka K, Upreti B, et al.: Wolf Motor Function Test for characterizing moderate to severe hemiparesis in stroke patients. Arch Phys Med 
Rehabil, 2012, 93: 1963–1967. [Medline]  [CrossRef]

39)	 Michaelsen SM, Jacobs S, Roby-Brami A, et al.: Compensation for distal impairments of grasping in adults with hemiparesis. Exp Brain Res, 2004, 157: 
162–173. [Medline]  [CrossRef]

40)	 Cirstea MC, Levin MF: Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors. Neu-
rorehab Neural Repair, 2007, 21: 398–411.  [CrossRef]

41)	 Woodbury ML, Velozo CA, Richards LG, et al.: Longitudinal stability of the Fugl-Meyer Assessment of the upper extremity. Arch Phys Med Rehabil, 2008, 
89: 1563–1569. [Medline]  [CrossRef]

42)	 Duncan PW, Goldstein LB, Matchar D, et al.: Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 1992, 
23: 1084–1089. [Medline]  [CrossRef]

43)	 Gladstone DJ, Danells CJ, Black SE: The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil 
Neural Repair, 2002, 16: 232–240. [Medline]  [CrossRef]

44)	 Woodbury ML, Velozo CA, Richards LG, et al.: Dimensionality and construct validity of the Fugl-Meyer Assessment of the upper extremity. Arch Phys Med 
Rehabil, 2007, 88: 715–723. [Medline]  [CrossRef]

45)	 Subramanian SK, Yamanaka J, Chilingaryan G, et al.: Validity of movement pattern kinematics as measures of arm motor impairment poststroke. Stroke, 2010, 
41: 2303–2308. [Medline]  [CrossRef]

46)	 Uswatte G, Taub E, Morris D, et al.: Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke, 2005, 36: 
2493–2496. [Medline]  [CrossRef]

47)	 Uswatte G, Taub E: Implications of the learned nonuse formulation for measuring rehabilitation outcomes: lessons from constraint-induced movement therapy. 
Rehabil Psychol, 2005, 50: 34–42.  [CrossRef]

48)	 Cirstea MC, Levin MF: Compensatory strategies for reaching in stroke. Brain, 2000, 123: 940–953. [Medline]  [CrossRef]
49)	 Cirstea MC, Mitnitski AB, Feldman AG, et al.: Interjoint coordination dynamics during reaching in stroke. Exp Brain Res, 2003, 151: 289–300. [Medline]  

[CrossRef]
50)	 Levin MF, Michaelsen SM, Cirstea CM, et al.: Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp Brain Res, 

2002, 143: 171–180. [Medline]  [CrossRef]
51)	 Roby-Brami A, Feydy A, Combeaud M, et al.: Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand, 2003, 107: 369–381. 

[Medline]  [CrossRef]
52)	 Michaelsen SM, Dannenbaum R, Levin MF: Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke, 2006, 37: 

186–192. [Medline]  [CrossRef]
53)	 Massie CL, Fritz S, Malcolm MP: Elbow extension predicts motor impairment and performance after stroke. Rehabil Res Pract, 2011, 2011: 381978. [Medline]
54)	 Marieb EN, Hoehn K: Human anatomy & physiology. San Francisco: Pearson Benjamin Cummings, 2007.
55)	 Functional organization of the primary motor cortex. In: Dale Purves GJA, David Fitzpatrick, Lawrence C Katz, Anthony-Samuel LaMantia, James O McNa-

mara, and S Mark Williams, eds. Neuroscience. Sunderland: Sinauer Associates, 2001.
56)	 Wittenberg GF, Chen R, Ishii K, et al.: Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation [corrected] [published 

erratum appears in Neurorehabil Neural Repair 2003 Sep;17(3):197]. Neurorehabil Neural Repair, 2003, 17: 48–57. [Medline]  [CrossRef]
57)	 Park SW, Butler AJ, Cavalheiro V, et al.: Changes in serial optical topography and TMS during task performance after constraint-induced movement therapy 

in stroke: a case study. Neurorehabil Neural Repair, 2004, 18: 95–105. [Medline]  [CrossRef]
58)	 Cicinelli P, Traversa R, Rossini PM: Post-stroke reorganization of brain motor output to the hand: a 2–4 month follow-up with focal magnetic transcranial 

stimulation. Electroencephalogr Clin Neurophysiol, 1997, 105: 438–450. [Medline]  [CrossRef]
59)	 Traversa R, Cicinelli P, Bassi A, et al.: Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses. Stroke, 

1997, 28: 110–117. [Medline]  [CrossRef]
60)	 Nudo RJ, Milliken GW, Jenkins WM, et al.: Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J 

Neurosci, 1996, 16: 785–807. [Medline]  [CrossRef]
61)	 Classen J, Liepert J, Wise SP, et al.: Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol, 1998, 79: 1117–1123. 

[Medline]  [CrossRef]
62)	 Liepert J, Terborg C, Weiller C: Motor plasticity induced by synchronized thumb and foot movements. Exp Brain Res, 1999, 125: 435–439. [Medline]  [Cross-

Ref]
63)	 Elbert T, Pantev C, Wienbruch C, et al.: Increased cortical representation of the fingers of the left hand in string players. Science, 1995, 270: 305–307. [Medline]  

[CrossRef]
64)	 Sterr A, Müller MM, Elbert T, et al.: Changed perceptions in Braille readers. Nature, 1998, 391: 134–135. [Medline]  [CrossRef]
65)	 Levy CE, Nichols DS, Schmalbrock PM, et al.: Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-

induced movement therapy. Am J Phys Med Rehabil, 2001, 80: 4–12. [Medline]  [CrossRef]
66)	 Liepert J: Motor cortex excitability in stroke before and after constraint-induced movement therapy. Cogn Behav Neurol, 2006, 19: 41–47. [Medline]  [Cross-

Ref]
67)	 Schaechter JD, Kraft E, Hilliard TS, et al.: Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a prelimi-

nary study. Neurorehabil Neural Repair, 2002, 16: 326–338. [Medline]  [CrossRef]
68)	 Wittenberg GF, Bastings EP, Fowlkes AM, et al.: Dynamic course of intracortical TMS paired-pulse responses during recovery of motor function after stroke. 

Neurorehabil Neural Repair, 2007, 21: 568–573.  [CrossRef]
69)	 Friston KJ: Functional and effective connectivity: a review. Brain Connect, 2011, 1: 13–36. [Medline]  [CrossRef]
70)	 Asanuma H, Pavlides C: Neurobiological basis of motor learning in mammals. Neuroreport, 1997, 8: i–vi. [Medline]
71)	 Foley NC, Teasell RW, Bhogal SK, et al.: The efficacy of stroke rehabilitation: a qualitative review. Top Stroke Rehabil, 2003, 10: 1–18. [Medline]
72)	 Teasell R, Foley N, Salter K, et al.: Evidence-based review of stroke rehabilitation: executive summary, 12th edition. Top Stroke Rehabil, 2009, 16: 463–488. 

http://www.ncbi.nlm.nih.gov/pubmed/22579647?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2012.05.002
http://www.ncbi.nlm.nih.gov/pubmed/14985899?dopt=Abstract
http://dx.doi.org/10.1007/s00221-004-1829-x
http://dx.doi.org/10.1177/1545968306298414
http://www.ncbi.nlm.nih.gov/pubmed/18674991?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2007.12.041
http://www.ncbi.nlm.nih.gov/pubmed/1636182?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.23.8.1084
http://www.ncbi.nlm.nih.gov/pubmed/12234086?dopt=Abstract
http://dx.doi.org/10.1177/154596802401105171
http://www.ncbi.nlm.nih.gov/pubmed/17532892?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2007.02.036
http://www.ncbi.nlm.nih.gov/pubmed/20814001?dopt=Abstract
http://dx.doi.org/10.1161/STROKEAHA.110.593368
http://www.ncbi.nlm.nih.gov/pubmed/16224078?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.0000185928.90848.2e
http://dx.doi.org/10.1037/0090-5550.50.1.34
http://www.ncbi.nlm.nih.gov/pubmed/10775539?dopt=Abstract
http://dx.doi.org/10.1093/brain/123.5.940
http://www.ncbi.nlm.nih.gov/pubmed/12819841?dopt=Abstract
http://dx.doi.org/10.1007/s00221-003-1438-0
http://www.ncbi.nlm.nih.gov/pubmed/11880893?dopt=Abstract
http://dx.doi.org/10.1007/s00221-001-0976-6
http://www.ncbi.nlm.nih.gov/pubmed/12713530?dopt=Abstract
http://dx.doi.org/10.1034/j.1600-0404.2003.00021.x
http://www.ncbi.nlm.nih.gov/pubmed/16339469?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.0000196940.20446.c9
http://www.ncbi.nlm.nih.gov/pubmed/22110974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12645445?dopt=Abstract
http://dx.doi.org/10.1177/0888439002250456
http://www.ncbi.nlm.nih.gov/pubmed/15228805?dopt=Abstract
http://dx.doi.org/10.1177/0888439004265113
http://www.ncbi.nlm.nih.gov/pubmed/9448645?dopt=Abstract
http://dx.doi.org/10.1016/S0924-980X(97)00052-0
http://www.ncbi.nlm.nih.gov/pubmed/8996498?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.28.1.110
http://www.ncbi.nlm.nih.gov/pubmed/8551360?dopt=Abstract
http://dx.doi.org/10.1523/JNEUROSCI.16-02-00785.1996
http://www.ncbi.nlm.nih.gov/pubmed/9463469?dopt=Abstract
http://dx.doi.org/10.1152/jn.1998.79.2.1117
http://www.ncbi.nlm.nih.gov/pubmed/10323289?dopt=Abstract
http://dx.doi.org/10.1007/s002210050700
http://dx.doi.org/10.1007/s002210050700
http://www.ncbi.nlm.nih.gov/pubmed/7569982?dopt=Abstract
http://dx.doi.org/10.1126/science.270.5234.305
http://www.ncbi.nlm.nih.gov/pubmed/9428760?dopt=Abstract
http://dx.doi.org/10.1038/34322
http://www.ncbi.nlm.nih.gov/pubmed/11138954?dopt=Abstract
http://dx.doi.org/10.1097/00002060-200101000-00003
http://www.ncbi.nlm.nih.gov/pubmed/16633018?dopt=Abstract
http://dx.doi.org/10.1097/00146965-200603000-00005
http://dx.doi.org/10.1097/00146965-200603000-00005
http://www.ncbi.nlm.nih.gov/pubmed/12462764?dopt=Abstract
http://dx.doi.org/10.1177/154596830201600403
http://dx.doi.org/10.1177/1545968307302438
http://www.ncbi.nlm.nih.gov/pubmed/22432952?dopt=Abstract
http://dx.doi.org/10.1089/brain.2011.0008
http://www.ncbi.nlm.nih.gov/pubmed/9141042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13680515?dopt=Abstract


959

[Medline]  [CrossRef]
73)	 Taub E: Constraint-induced movement therapy and massed practice. Stroke, 2000, 31: 986–988. [Medline]  [CrossRef]
74)	 Taub E, Morris DM: Constraint-induced movement therapy to enhance recovery after stroke. Curr Atheroscler Rep, 2001, 3: 279–286. [Medline]  [CrossRef]
75)	 Taub E, Uswatte G, Bowman MH, et al.: Constraint-induced movement therapy combined with conventional neurorehabilitation techniques in chronic stroke 

patients with plegic hands: a case series. Arch Phys Med Rehabil, 2013, 94: 86–94. [Medline]  [CrossRef]
76)	 Taub E, Uswatte G, Morris DM: Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. 

Phys Med Rehabil Clin N Am, 2003, 14: S77–S91, ix ix. [Medline]  [CrossRef]
77)	 Carey JR, Kimberley TJ, Lewis SM, et al.: Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 2002, 125: 773–788. [Medline]  

[CrossRef]
78)	 Jang SH, Kim YH, Cho SH, et al.: Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. Neuroreport, 2003, 14: 

137–141. [Medline]  [CrossRef]
79)	 Johansen-Berg H, Dawes H, Guy C, et al.: Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain, 2002, 125: 

2731–2742. [Medline]  [CrossRef]
80)	 Nelles G, Jentzen W, Jueptner M, et al.: Arm training induced brain plasticity in stroke studied with serial positron emission tomography. Neuroimage, 2001, 

13: 1146–1154. [Medline]  [CrossRef]
81)	 Feydy A, Carlier R, Roby-Brami A, et al.: Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke, 2002, 33: 

1610–1617. [Medline]  [CrossRef]
82)	 Calautti C, Baron JC: Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke, 2003, 34: 1553–1566. [Medline]  [CrossRef]
83)	 Duncan PW, Sullivan KJ, Behrman AL, et al. LEAPS Investigative Team: Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med, 2011, 

364: 2026–2036. [Medline]  [CrossRef]
84)	 Ferrarello F, Baccini M, Rinaldi LA, et al.: Efficacy of physiotherapy interventions late after stroke: a meta-analysis. J Neurol Neurosurg Psychiatry, 2011, 82: 

136–143. [Medline]  [CrossRef]
85)	 Lo AC, Guarino PD, Richards LG, et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med, 2010, 362: 1772–1783. 

[Medline]  [CrossRef]
86)	 Kim YH, Park JW, Ko MH, et al.: Plastic changes of motor network after constraint-induced movement therapy. Yonsei Med J, 2004, 45: 241–246. [Medline]  

[CrossRef]
87)	 Liepert J, Bauder H, Wolfgang HR, et al.: Treatment-induced cortical reorganization after stroke in humans. Stroke, 2000, 31: 1210–1216. [Medline]  [Cross-

Ref]
88)	 Szaflarski JP, Page SJ, Kissela BM, et al.: Cortical reorganization following modified constraint-induced movement therapy: a study of 4 patients with chronic 

stroke. Arch Phys Med Rehabil, 2006, 87: 1052–1058. [Medline]  [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/20139049?dopt=Abstract
http://dx.doi.org/10.1310/tsr1606-463
http://www.ncbi.nlm.nih.gov/pubmed/10754013?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.31.4.983-c
http://www.ncbi.nlm.nih.gov/pubmed/11389792?dopt=Abstract
http://dx.doi.org/10.1007/s11883-001-0020-0
http://www.ncbi.nlm.nih.gov/pubmed/22922823?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2012.07.029
http://www.ncbi.nlm.nih.gov/pubmed/12625639?dopt=Abstract
http://dx.doi.org/10.1016/S1047-9651(02)00052-9
http://www.ncbi.nlm.nih.gov/pubmed/11912111?dopt=Abstract
http://dx.doi.org/10.1093/brain/awf091
http://www.ncbi.nlm.nih.gov/pubmed/12544845?dopt=Abstract
http://dx.doi.org/10.1097/00001756-200301200-00025
http://www.ncbi.nlm.nih.gov/pubmed/12429600?dopt=Abstract
http://dx.doi.org/10.1093/brain/awf282
http://www.ncbi.nlm.nih.gov/pubmed/11352620?dopt=Abstract
http://dx.doi.org/10.1006/nimg.2001.0757
http://www.ncbi.nlm.nih.gov/pubmed/12053000?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.0000017100.68294.52
http://www.ncbi.nlm.nih.gov/pubmed/12738893?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.0000071761.36075.A6
http://www.ncbi.nlm.nih.gov/pubmed/21612471?dopt=Abstract
http://dx.doi.org/10.1056/NEJMoa1010790
http://www.ncbi.nlm.nih.gov/pubmed/20826872?dopt=Abstract
http://dx.doi.org/10.1136/jnnp.2009.196428
http://www.ncbi.nlm.nih.gov/pubmed/20400552?dopt=Abstract
http://dx.doi.org/10.1056/NEJMoa0911341
http://www.ncbi.nlm.nih.gov/pubmed/15118995?dopt=Abstract
http://dx.doi.org/10.3349/ymj.2004.45.2.241
http://www.ncbi.nlm.nih.gov/pubmed/10835434?dopt=Abstract
http://dx.doi.org/10.1161/01.STR.31.6.1210
http://dx.doi.org/10.1161/01.STR.31.6.1210
http://www.ncbi.nlm.nih.gov/pubmed/16876549?dopt=Abstract
http://dx.doi.org/10.1016/j.apmr.2006.04.018

