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Abstract

Many subjects with neuropathologically-confirmed dementia with Lewy bodies (DLB) are

never diagnosed during life, instead being categorized as Alzheimer’s disease dementia

(ADD) or unspecified dementia. Unrecognized DLB therefore is a critical impediment to

clinical studies and treatment trials of both ADD and DLB. There are studies that suggest

that olfactory function tests may be able to distinguish DLB from ADD, but few of these had

neuropathological confirmation of diagnosis. We compared University of Pennsylvania

Smell Identification Test (UPSIT) results in 257 subjects that went on to autopsy and neuro-

pathological examination. Consensus clinicopathological diagnostic criteria were used to

define ADD and DLB, as well as Parkinson’s disease with dementia (PDD), with (PDD+AD)

or without (PDD-AD) concurrent AD; a group with ADD and Lewy body disease (LBD) not

meeting criteria for DLB (ADLB) and a clinically normal control group were also included.

The subjects with DLB, PDD+AD and PDD-AD all had lower (one-way ANOVA p < 0.0001,

pairwise Bonferroni p < 0.05) first and mean UPSIT scores than the ADD, ADLB or control

groups. For DLB subjects with first and mean UPSIT scores less than 20 and 17, respec-

tively, Firth logistic regression analysis, adjusted for age, gender and mean MMSE score,

conferred statistically significant odds ratios of 17.5 and 18.0 for the diagnosis, vs ADD. For

other group comparisons (PDD+AD and PDD-AD vs ADD) and UPSIT cutoffs of 17, the

same analyses resulted in odds ratios ranging from 16.3 to 31.6 (p < 0.0001). To our knowl-

edge, this is the largest study to date comparing olfactory function in subjects with neuro-

pathologically-confirmed LBD and ADD. Olfactory function testing may be a convenient and
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inexpensive strategy for enriching dementia studies or clinical trials with DLB subjects, or

conversely, reducing the inclusion of DLB subjects in ADD studies or trials.

Introduction

Dementia due to AD (ADD) is often associated with comorbid brain disease that may affect

clinical presentation, rate of cognitive decline, and response to therapeutic agents [1–22].

Additional concurrent pathology could be unresponsive to therapies directed at the “primary”

pathology. It is apparent then, that clinical trials for ADD could suffer from decreased effect

size if this were true.

The most common comorbidity in ADD is Lewy body disease. Slightly more than one-half

or more of all those meeting clinicopathological ADD diagnostic criteria also have α-synuclein

pathology [9,23–25] with morphological features similar to Parkinson’s disease (PD). This is

broadly termed “Lewy body disease” (LBD). Similarly, about one-half of those with dementia

and PD (PDD) [26–38] and three-quarters or more of those with dementia with Lewy bodies

(DLB), have clinically significant AD histopathology [39–42]. In the majority of subjects with

ADD and DLB (ADD/DLB), the typical clinical signs and symptoms of DLB [43,44] are absent

and thus this co-existence is recognized only at autopsy [22,45–47]. This clinical inability to

separate ADD from DLB hampers clinical trials for both conditions. Several autopsy-validated

studies have indicated that cognitive decline is faster in elderly subjects dying with ADD who

also have LBD [3,22,48–51], and disease duration has been reported to be shorter in those with

coexistent ADD and DLB [40,52]. There is therefore a critical need for better clinical differen-

tiation of these two conditions.

There are numerous published clinical studies that suggest that olfactory function tests may

be useful in differentiating amongst cerebrovascular and neurodegenerative disorders [53–64]

and, in particular, in distinguishing DLB from ADD [65–70], but the studies with later neuro-

pathological establishment of the specific molecular pathology are the most informative. Possi-

bly the first such study, done by Oxford University [71], investigated the neuropathological

correlates of anosmia in subjects with dementia. Anosmia was defined on the basis of being

able or unable to detect the scent of lavender oil. Seventeen subjects had neuropathological

DLB, defined as the concurrent presence of Lewy bodies in both the substantia nigra and cin-

gulate gyrus. Sixteen of these had concurrent ADD while another 43 subjects had ADD alone,

defined as probable or definite CERAD AD [72], without LBD. Anosmia was significantly

(p = 0.029) more common in DLB (41%) than in ADD (16%).

A similar study [73] from the University of Southern California defined anosmia as the

inability to detect the odor of N-butyl alcohol, finding anosmia in 47% of those with the Lewy

body variant (LBV, n = 17) of AD versus 22% of those with AD alone (n = 89). This propor-

tional difference was highly significant (p = 0.0004). The diagnosis of LBV was defined as the

presence of Lewy bodies in both brainstem and cerebral cortex while ADD was defined as

CERAD probable or definite AD. The independent odds ratio for anosmia as a predictor of

LBV was 5.4, vs 7.3 for visual hallucinations.

In a study of a mixed group of non-demented and demented subjects with and without

parkinsonism from the Rush Memory and Aging Project [74], lower scores on the Brief Smell

Identification Test were significant predictors of limbic and neocortical LBD stages (9 and 13

subjects, respectively). The presence of any Lewy bodies accounted for 15.4% of test variance,

as compared to 4.1% due to a composite measure of AD histopathology.

Incidental Lewy body disease (ILBD) refers to the presence of LBD in asymptomatic elderly

people and is likely to be a prodromal stage of PD or DLB as striatal dopaminergic markers are
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halfway between asymptomatic elderly people without LBD and clinically-manifest PD [75–

78]. One neuropathologically-informed study has reported that olfactory function in subjects

with ILBD is also halfway between PD and asymptomatic elderly people without LBD, suggest-

ing that hyposmia may be useful as a prodromal marker [79]. Another prior study found an

OR of 11.0 for the prediction of ILBD in those amongst the lowest tertile of olfactory function

[80]. Supporting the possible usefulness of hyposmia as a prodromal biomarker are the find-

ings that it is present in some clinically normal GBA and LRRK2 mutation carriers [81,82], is

common in idiopathic REM sleep behavior disorder (iRBD) [83–85], is a significant and inde-

pendent predictor of phenoconversion from iRBD to parkinsonism or dementia [86] and is

associated with decreased striatal dopamine transporter imaging [87,88]. A likely causative

factor underlying the impairment of olfaction in LBD is the near-universal occurrence of

early-stage α-synuclein pathology within the olfactory bulb [89–92].

In this study we sought to determine the diagnostic utility of hyposmia as a diagnostic pre-

dictor of neuropathologically-identified DLB with comorbid ADD, as compared with ADD

alone, using the largest set to date of neuropathologically-examined subjects. Furthermore, we

did similar analyses on the diagnostic utility of hyposmia for distinguishing Parkinson’s dis-

ease with dementia from ADD alone.

Materials and methods

Subject selection

Subjects were selected by database searches of the Arizona Study of Aging and Neurodegenera-

tive Disorders (AZSAND)/ Banner Sun Health Research Institute Brain and Body Donation Pro-

gram (www.brainandbodydonationprogram.org) [93], a subset of whom were also enrolled in

the National Institute on Aging Arizona Alzheimer’s Disease Core Center. Search criteria speci-

fied that subjects died with dementia, one or more completed University of Pennsylvania Smell

Identification Tests (UPSIT) accompanied by Mini Mental State Examinations (MMSE), assess-

ments of the presence or absence of parkinsonism and visual hallucinations, and a full neuro-

pathological examination after death. Selected subjects met “intermediate” or “high” National

Institute on Aging-Reagan Institute (NIA-RI) clinicopathological criteria [94] for ADD, with or

without also meeting “intermediate” or “high” clinicopathological criteria for DLB [43,44], or

alternatively, for groups with Parkinson’s disease dementia or Alzheimer’s disease with Lewy

body pathology (ADLB) [91], the latter defined as having pathologically-confirmed CNS LBD

but not meeting DLB pathology distribution and density thresholds. Briefly, intermediate and

high NIA-RI criteria stipulate Braak neurofibrillary stages III or IV versus V and VI, respectively.

DLB intermediate and high criteria are based on comparison of Lewy body pathology stage with

AD pathology stage; when AD pathology stage is high, only the neocortical Lewy body stage

qualifies for DLB, while when AD pathology stage is intermediate, either a limbic or neocortical

Lewy body stage qualifies for DLB. Parkinson’s disease with dementia (PDD) is defined as meet-

ing clinicopathological diagnostic criteria for PD as well as clinical criteria for dementia, and is

further subdivided by the presence (PDD+AD) or absence (PDD-AD) of intermediate or high

NIA-RI criteria AD pathology. ADLB is defined as intermediate or high NIA-RI AD criteria

together with any Lewy body stage not qualifying for DLB, which can be either limbic or brain-

stem stages. A control subject group, without clinical parkinsonism or dementia, and without α-

synuclein pathology at autopsy, was also included. For all subjects, most other major neuropath-

ological disorders were excluded; this included subjects with progressive supranuclear palsy,

multiple system atrophy and corticobasal degeneration. As mean UPSIT did not differ between

ADD and the neuropathologically-defined ADLB (n = 30) and AD-VaD (n = 25) groups, these

were grouped for the primary analyses. Cases with DLB in the absence of intermediate or high
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NIA-RI status were not included in statistical analyses in this study as there were only 4 cases

with UPSIT data available.

Subject characterization

Most subjects had serial standardized research cognitive evaluations, done by teams of nurses,

medical assistants, behavioral neurologists, movement disorders neurologists, neuropsychologists

and psychometrists using standardized research-quality assessment batteries [93], including the

Mini Mental State Examination (MMSE), National Alzheimer’s Coordinating Center (NACC)

Uniform Data Set (UDS) and the Unified Parkinson’s Disease Rating Scale (UPDRS). Subjects

had olfactory testing with the University of Pennsylvania Smell Identification Test (UPSIT) [95–

97] every third year on average. The presence or absence of DLB core clinical features [43,44],

including the presence or absence of parkinsonism, visual hallucinations, fluctuations in attention

or cognition and clinical history consistent with REM sleep behavior disorder (RBD), were

recorded for each subject at each visit; to assist with the latter, the Mayo Sleep Questionnaire [98–

101] was administered. The presence or absence of parkinsonism and visual hallucinations were

noted for 103 and 88 (respectively) of the 125 total ADD, ADLB and ADD/DLB subjects, by for-

mal examination as part of the Unified Parkinson’s Disease Rating Scale (UPDRS) and/or as part

of the Uniform Data Set (UDS) of the National Alzheimer’s Coordinating Center (NACC). For

those that did not have either UPDRS or UDS data available, the presence of parkinsonism and

visual hallucinations was additionally noted by review of private medical records. These determi-

nations were made within the same year (matched year) as the first UPSIT administration, for

comparison with first UPSIT as a diagnostic predictor, while for comparison with mean UPSIT

score, the cumulative recorded presence of visual hallucinations and parkinsonism, at any time-

point within the clinical observation period was used.

All subjects received identical neuropathological examinations, including summary

regional brain density measures for total amyloid plaques, neurofibrillary tangles, Lewy body

pathology regional and summary density scoring, and staging using the Unified Staging Sys-

tem for Lewy Body Disorders [91], as well as assignment of CERAD neuritic plaque density

and Braak neurofibrillary stage, as described previously [93].

The corresponding author had access to personally-identifying information for subjects in

this study.

Statistical analysis

Demographic and post-mortem characteristics were analyzed using one-way analysis of vari-

ance (ANOVA), Chi-square tests and unpaired t-tests as appropriate. Receiver-operator char-

acteristics analysis was implemented for first and mean UPSIT scores to separately predict the

diagnosis of DLB, ADLB, PDD+AD and PDD-AD vs ADD. Youden index was used as the cri-

teria to choose the optimum cut-off point for UPSIT scores. In the analyses comparing ADD/

DLB and ADLB with ADD, sensitivity, specificity, and accuracy for predicting the presence of

Lewy body disease, based on UPSIT cutoff scores vs the presence or absence of visual halluci-

nations and parkinsonism, were further calculated. Firth logistic regression models adjusted

for age, gender and corresponding MMSE scores were used to estimate odds ratios for differ-

ent predictors and areas under the curve (AUC) for each model. The AUCs for the models

were compared using Delong’s method [102].

Results and discussion

Clinical, demographic and neuropathological characteristics of the compared groups (total

n = 287) are shown in Table 1. Of the disease groups, the PDD+AD and PDD-AD groups were
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the youngest, had the highest final UPDRS scores, the highest final MMSE scores, the lowest

plaque and tangle scores and the highest Lewy pathology scores. The ADD/DLB, ADLB, PDD

+AD and PDD groups all had higher proportions of men. The ADLB group had the lowest

final MMSE score. As expected, the control group was significantly different from the demen-

tia groups in all clinical and neuropathological measures. Neuropathologically, the ADD and

ADD/DLB groups were not different in their density scores or stages for amyloid plaques

(total plaques), neuritic plaques and neurofibrillary tangles.

Comparison of UPSIT scores, including the first UPSIT score and the mean of all UPSIT

scores, showed that all groups with Lewy body pathology, except the ADLB group, had signifi-

cantly lower UPSIT scores than the non-Lewy body pathology groups (Fig 1). The mean

UPSIT score for the 4 DLB subjects without ADD was 12.8 (not shown on graph).

Control subjects had significantly more UPSITs (mean 1.9, range 1–4) than ADD (mean

1.6, range 1–4), ADD/DLB (mean 1.35, range 1–3) ADLB (mean 1.52; range 1–3), PDD+AD

(1.33; 1–3) or PDD-AD (1.37, range 1–2) groups but this did not differ between the diseased

groups. Logistic regression analysis of the combined disease groups (n = 163 after exclusion of

cases with incomplete neuropathology scores) found a unitary increase in the brain regional

sum of α-synuclein pathology score (maximum score of 40) was significantly associated with a

mean UPSIT score less than the median of all cases (OR 1.12, 95% CI 1.08–1.17,

p< 0.000001). Higher regional brain scores for amyloid plaque density score as well as higher

age at death were not significant predictors, while higher neurofibrillary tangle density scores

as well as lower last MMSE test scores independently approached the significance level

(p = 0.08 and p = 0.07, respectively).

Logistic regression analysis and receiver-operator characteristics (ROC) indicated that the

UPSIT cutoff scores giving the greatest accuracy for separating ADD from ADD/DLB were 19

or less for the first UPSIT (median of ADD/DLB and ADD first UPSIT scores was 20) and 17

for the mean UPSIT. Using these cutoffs, a first UPSIT score less than 20 gave an odds ratio

Table 1. Clinical and neuropathological characteristics of study subjects.

ADD (n = 66) ADD/DLB (n = 29) ADLB N = 30) PDD+AD (n = 21) PDD-AD (n = 27) Control (n = 84) p-value

Age (yrs)1 88.2 (6.9) 85.1 (7.4) 87.0 (7.6) 83.2 (4.7) 78.2 (7.5) 86.7 (6.9) < 0.0001

Gender (M/F) 50/46 22/7 23/7 13/8 22/5 38/46 < 0.01

Last MMSE score2 18.3 (8.3) 17.1 (7.0) 14.6 (8.3) 20.0 (5.5) 21.1 (5.5) 28.3 (1.4) < 0.0001

Last UPDRS Score3 16.5 (15.9) 23.7 (20.0) 15.8 (13.8) 41.8 (16.6) 43.2 (17.1) 8.5 (8.8) < 0.0001

Plaque Score4 12.98 (2.42) 11.48 (3.85) 14.0 (0.99) 11.3 (3.7) 1.44 (2.7) 5.21 (5.68) < 0.0001

Tangle Score5 10.77 (3.45) 9.24 (3.86) 12.4 (2.7) 6.5 (2.3) 5.3 (2.8) 4.82 (2.51) < 0.0001

LB Score6 3.28 (6.91) 21.19 (5.52) 10.8 (8.8) 32.0 (6.6) 27.6 (5.1) 0 < 0.0001

Means and standard deviations are shown. ADD = Alzheimer’s disease dementia; DLB = dementia with Lewy bodies; MMSE = last Mini Mental State Examination

score; UPDRS = last Unified Parkinson’s Disease Rating Scale motor score (part 3 score, off medications); Plaque Score and Tangle Score = summary regional brain

density scores with maximum scores of 15. LB Score = summary regional brain Lewy-type synucleinopathy density score with a maximum score of 40. All values in the

p-value column are for one-way analysis of variance except for gender, where chi-square analysis was done.
1. Post-hoc paired Bonferroni significance testing significant (p<0.05) for PDD+AD and PDD-AD vs all other groups.
2. N = 29 for ADLB; Post-hoc paired Bonferroni significance testing significant (p<0.05) for all groups vs control and for ADLB vs PDD+AD and PDD-AD.
3. N = 94, 27, 29, 15, 21 and 82 for ADD, ADD/DLB, ADLB, PDD+AD, PDD-AD and control, respectively. Post-hoc paired Bonferroni significance testing significant

(p<0.05) for all groups vs control except ADD vs control, and significant for ADD, ADLB and ADD/DLB vs PDD+AD and PDD-AD.
4. Post-hoc paired Bonferroni testing significant (p < 0.05) for all groups vs control and for ADD and for all groups vs PDD-AD.
5. N = 95 for ADD; Post-hoc paired Bonferroni testing significant (p < 0.05) for PDD+AD, PDD-AD and control vs ADD and ADD/DLB.
6. N = 92, 26, 28, 20 for ADD, ADD/DLB, ADLB, PDD+AD respectively; Post-hoc paired Bonferroni testing significant (p < 0.05) for control and ADD vs all groups

and for ADLB vs ADD/DLB, PDD+AD and PDD-AD.

https://doi.org/10.1371/journal.pone.0231720.t001

PLOS ONE Severe hyposmia distinguishes dementia with Lewy bodies from Alzheimer’s disease dementia

PLOS ONE | https://doi.org/10.1371/journal.pone.0231720 April 22, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0231720.t001
https://doi.org/10.1371/journal.pone.0231720


(OR) of 17.5 for a diagnosis of ADD/DLB, while for mean UPSIT, a score less than 17 resulted in

an OR of 18.0 for the diagnosis (Table 2). These ORs were considerably greater than those derived

from the presence or absence of the two most common DLB core clinical features, visual halluci-

nations and parkinsonism (Table 2, Fig 2a and 2b), and were highly significant (p< 0.0001)

whereas only the OR for cumulatively-observed hallucinations was significant (OR 3.3; p = 0.01).

Similarly, the area under the curves (AUC) were significantly greater for first and mean UPSIT as

compared with those for matched-year or cumulative hallucinations and parkinsonism.

Fig 1. First and mean UPSIT scores in the diagnostic groups. Both first UPSIT and mean UPSIT scores are

significantly different between groups (ANOVA, p< 0.001). For both first and mean UPSIT scores, the control group

scores are significantly higher than all other groups, and both the ADD and ADLB groups have mean scores that are

significantly higher than the ADD/DLB, PDD+AD (PDAD on the graph) and PDD-AD (PDD on the graph) groups

(Bonferroni p< 0.05). First and mean UPSIT scores were not significantly different within diagnostic groups. Error

bars = standard deviation.

https://doi.org/10.1371/journal.pone.0231720.g001

Table 2. Comparison of first UPSIT score and mean of all UPSIT scores with visual hallucinations and parkinsonism as predictors of ADD/DLB vs ADD.

Predictor Sensitivity Specificity Accuracy Odds Ratio (95% CI), p-value AUC P-value

First UPSIT1 93.1% 64.6% 71.2% 17.5 (5.1, 91.6) < .0001 82.9% 0.24193

Matched Year hallucinations1 17.2% 96.9% 78.4% 4.4 (0.9, 25.0) 0.0905 67.4% 0.00124

Matched Year parkinsonism1 31.0% 77.1% 66.4% 1.7 (0.7, 4.3) 0.2648 67.4% 0.00064

Mean UPSIT2 86.2% 71.9% 75.2% 18.0 (6.0, 66.8) < .0001 87.2% 0.24193

Cumulative hallucinations2 51.7% 76.0% 70.4% 3.3 (1.4, 8.4) 0.0106 72.9% 0.0084

Cumulative parkinsonism2 65.5% 45.8% 50.4% 1.6 (0.7, 3.9) 0.3001 68.2% 0.00074

“Matched” indicates that determinations of the presence or absence of hallucinations and parkinsonism were done close to the same year as the first UPSIT

examination.
1. Adjusted for matched year MMSE and age at first UPSIT.
2. Adjusted for mean MMSE and age at death.
3. P-value comparing AUCs for first and mean UPSIT.
4. P-value comparing AUC with first UPSIT.
5. P-value comparing AUC with mean UPSIT.

https://doi.org/10.1371/journal.pone.0231720.t002
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To determine whether the inclusion of ADLB subjects with the ADD group affected the pri-

mary analysis of ADD/DLB vs ADD, logistic regression analysis and ROC curves were used to

compare the ADD and ADD/DLB groups after exclusion of the 30 subjects with ADLB, and to

compare the ADD group with a composite ADLB-DLB group. The results after exclusion of

the ADLB group were very similar to those obtained with the ADD and ADLB groups together

(Fig 3a and 3b). All comparisons that were statistically significant in the primary analysis were

also significant after exclusion of the ADLB subjects. A first UPSIT cutoff score of 19 gave an

OR of 28.3 for separating ADD from ADD/DLB while a mean UPSIT cutoff of 20 gave an OR

of 24.4 for predicting ADD/DLB (both with p< 0.0001). The results with ADLB and ADD/

DLB subjects grouped together and compared with the ADD group showed much less predic-

tive power for both first and mean UPSIT scores (Fig 4a and 4b).

With the same analyses applied to the discrimination of PDD+AD and PDD-AD from

ADD (Fig 5a and 5b), odds ratios were of similar magnitudes with similar UPSIT cutoffs. For

PDD+AD vs ADD (Fig 5a), a first UPSIT cutoff score of 17 gave an OR of 20.3 for separating

PD+AD from ADD, while a mean UPSIT cutoff of 17 gave an OR of 31.6 this distinction (both

with p< 0.0001). For PDD-AD vs ADD (Fig 5a), a first UPSIT cutoff score of 17 gave an OR

of 16.3 for separating PDD-AD from ADD, while a mean UPSIT cutoff of 17 gave an OR of

25.7 for this distinction (both with p< 0.0001).

The results of this study show that the presence of diagnostically significant brain loads of α-

synuclein pathology have a pronounced effect on olfaction that is much greater than that

Fig 2. Comparison of ROC curves for the discrimination of ADD/DLB vs ADD using a) using first UPSIT scores and b) using mean UPSIT scores,

with those using presence or absence of visual hallucinations and parkinsonism within the same year of observation.

https://doi.org/10.1371/journal.pone.0231720.g002
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conferred by ADD pathology, and that this might be exploited to make the clinical differentia-

tion between such subjects, even in the absence of other clinical features. Why ADLB subjects

would have relatively preserved olfaction compared to ADD/DLB subjects was initially puzzling

to us, as both have severe α-synuclein pathology in the olfactory bulb (median score of 4/4 in

Fig 3. Comparison of ROC curves after exclusion of 30 ADLB subjects from the ADD group. a) using first UPSIT scores and b)

using mean UPSIT scores.

https://doi.org/10.1371/journal.pone.0231720.g003

Fig 4. Comparison of ROC curves after combining the ADLB subjects with the ADD/DLB subjects. a) using first

UPSIT scores and b) using mean UPSIT scores.

https://doi.org/10.1371/journal.pone.0231720.g004
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both groups in this study). However, the frontal cortex and amygdala also contribute to the sub-

jective sense of smell [103], and for both of these areas, α-synuclein pathology is significantly

more severe in ADD/DLB than in ADLB with median amygdala scores of 4/4/ vs 3/4 and

median frontal cortex scores of 1/4/ vs 0/4, respectively (p< 0.001, Mann-Whitney U-tests).

ADD and DLB often co-exist unknown to clinicians, and as this comorbidity may affect the

presentation, rate of cognitive decline, and response to therapeutic agents [1–22], clinical trials

for both conditions may be impaired. The most common comorbidity in ADD is LBD, affect-

ing somewhat more than one-half or more of all those meeting clinicopathological ADD diag-

nostic criteria [9,23–25]. Dementia with Lewy bodies has greater α-synuclein pathology than

ADLB and therefore may be more resistant to therapeutic agents targeting AD molecular

lesions. In the majority of subjects with ADD and DLB, the typical clinical signs and symptoms

of DLB [43,44] are absent and thus this co-existence is recognized only at autopsy [22,45–47].

Disease duration has been reported to be shorter in those with coexistent ADD and DLB

[40,52]. There is therefore a critical need for better clinical differentiation of these two

conditions.

Definitive laboratory-based biomarkers for DLB are not yet available. Molecular imaging of

striatal dopamine receptors, and myocardial scintigraphy with [123] meta-iodobenzylguani-

dine (MIBG) have both been used as diagnostic adjuncts for DLB [104,105] with promising

but not yet definitive results from small autopsy-confirmed studies [106,107]. Dopaminergic

imaging may be less helpful in DLB as compared to PD, due to less consistent degeneration of

nigrostriatal dopaminergic neuronal and nerve terminals [108–112]. Biofluids and PET imag-

ing approaches have so far been unsuccessful in providing the required accuracy for

identifying LBD [113–115]. Simulation studies have suggested that cortical biopsy [116–119]

would have high sensitivity and specificity for DLB, and usage of needle cores rather than

open biopsy may reduce morbidity to acceptable levels [116]. Biopsy of the peripheral nervous

system [120], particularly the submandibular gland [121–124], also shows promise for diag-

nosing DLB. Autopsy studies have suggested that biopsy of the olfactory bulb would identify

Fig 5. ROC curves for the discrimination of a) PDD+AD vs ADD subjects and b) PDD-AD, using first and mean UPSIT scores.

https://doi.org/10.1371/journal.pone.0231720.g005
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more than 90% of all subjects with LBD [90]. Better clinical diagnostic methods for DLB are

critically needed, as improved sensitivity in the clinical identification of DLB would greatly

assist recruitment for clinical trials and would allow exclusion or stratification of DLB subjects

within ADD clinical trials.

Numerous studies have indicated the potential for olfactory function tests to distinguish

different cerebrovascular and neurodegenerative disorders [53–64] and, in particular, to dis-

tinguish PD and DLB from ADD [65–70], but the great majority of these studies lack certainty

due the reliance on a clinical diagnosis as gold standard. Several studies with neuropathological

confirmation of LBD have suggested that loss of olfactory function may be more pronounced

in DLB but these have been limited by small subject numbers [71–74].

As the first and mean UPSIT scores were not significantly different, it seems probable that

hyposmia is a relatively early clinical occurrence in ADD/DLB, and hence smell testing could

be helpful in the identification of prodromal DLB. Support for this possibility comes from

studies of incidental Lewy body disease (ILBD), defined as the presence of LBD in asymptom-

atic elderly people. ILBD is a probable prodromal stage of PD or DLB as dopaminergic mark-

ers are halfway between asymptomatic elderly people without LBD and clinically-manifest PD

[75–78]. Our group has previously reported that olfactory function in subjects with ILBD is

also halfway between PD and asymptomatic elderly people without LBD [79]; another clinico-

pathological study found an OR of 11.0 for hyposmia in the prediction of ILBD, using as a cut-

off the lowest tertile of olfactory function [80], and these postmortem studies have been

further confirmed by the in vivo association of hyposmia with decreased striatal dopamine

transporter imaging [87,88]. Additional support comes from reports of hyposmia in some clin-

ically normal GBA and LRRK2 mutation carriers [81,82] and in idiopathic REM sleep behavior

disorder (iRBD) [83–86].

Conclusions

In this study we sought to determine the diagnostic utility of hyposmia as a diagnostic predictor

of neuropathologically-identified ADD/DLB, using considerably larger subject numbers than

previous studies. Our results confirm those of the prior studies, where subjects with ADD/DLB

have been repeatedly found to have worse olfactory function than ADD. The odds ratios for

ROC-determined first and mean UPSIT score cutoffs, 17.5 and 18.0, respectively, were surpris-

ingly stronger than the ORs for both visual hallucinations and parkinsonism (1.7–4.4), two of

the key core clinical DLB features. These figures suggest that olfactory testing should be consid-

ered as a core clinical feature of DLB and could potentially be of great assistance in the clinical

separation of ADD and DLB, allowing stratification of clinical trial subjects. Larger neuro-

pathologically-examined subject numbers would help to confirm the results of the present

study but if results from the prior three neuropathologically-confirmed studies are added to

this, there are 137 LBD cases and 365 controls (ADD or normal controls), all with the same

general finding of much lower olfactory test scores in the LBD groups. We cannot be sure, due

to insufficient numbers of pure DLB cases in our study, that olfactory testing might be equally

useful for the separation of pure DLB from ADD, but the low mean UPSIT score of the 4 cases

in the present study is consistent with that observed for the mixed ADD/DLB cases.
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