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A Poroelastic Model of a Fibrous-
Porous Tissue Engineering Scaffold
Daniel Yuan1, Sarah M. Somers1,2, Warren L. Grayson1,2,3,4 & Alexander A. Spector1,2,3

Tissue engineering scaffolds are used in conjunction with stem cells for the treatment of various 
diseases. A number of factors provided by the scaffolds affect the differentiation of stem cells. 
Mechanical cues that are part of the natural cellular microenvironment can both accelerate the 
differentiation toward particular cell lineages or induce differentiation to an alternative cell fate. 
Among such factors, there are externally applied strains and mechanical (stiffness and relaxation time) 
properties of the extracellular matrix. Here, the mechanics of a fibrous-porous scaffold is studied by 
applying a coordinated modeling and experimental approach. A force relaxation experiment is used, 
and a poroelastic model associates the relaxation process with the fluid diffusion through the fibrous 
matrix. The model parameters, including the stiffness moduli in the directions along and across the 
fibers as well as fluid diffusion time, are estimated by fitting the experimental data. The time course of 
the applied force is then predicted for different rates of loading and scaffold porosities. The proposed 
approach can help in a reduction of the technological and experimental efforts to produce 3-D scaffolds 
for regenerative medicine as well as in a higher accuracy of the estimation of the local factors sensed by 
stem cells.

Scaffolds, a key part of regenerative medicine, control the microenvironment for adhesion, migration, prolifera-
tion, and differentiation of cells inside1 (for review). Fibrous-porous scaffolds mimicking the natural structure of 
tissue are effectively used in applications like skeletal muscle and tendon. Such scaffolds often have a fibrin-based 
fibrous component mixed with another polymer which is then dissolved, providing a porous structure of the 
scaffold. Recently, electrospun fibrin-alginate composite scaffolds with tunable longitudinal stiffness and alginate 
volume fraction have been proposed2–4.

One critical function of the scaffolds is control of stem cell differentiation. Mechanical factors play an impor-
tant role in this function since they can provide both the acceleration of stem cell differentiation toward a given 
lineage5,6 and regulation of lineage fate7,8. Mechanical stimulation can be exerted through externally applied 
stresses/forces and strains, innate physical properties of the extracellular matrix (scaffold), or combinations 
of both. The application of cyclic unidirectional strains improves myogenesis of several types of stem cells9–12. 
Stiffness of the extracellular matrix (ECM) directs stem cell differentiation toward neurogenesis, myogenesis, 
and osteogenesis, within ranges of 0.1–1 kPa, 8–17 kPa, are 25–40 kPa typical to brain, muscle, and bone tissues, 
respectively13,14. The viscoelastic properties of ECM, stress relaxation time15,16 and loss modulus17,18, affect stem 
cell differentiation (osteogenesis). The bulk and surface properties of the ECM also affect stem cell differentia-
tion whereby the fibrous structure19 or grooved topography20 of the scaffolds promotes stem cell alignment and 
improve differentiation.

In the present paper, we focus on the mechanical properties of fibrous-porous scaffolds. We propose a model 
(also ref.21) of such scaffolds and use the experimental data to estimate the model parameters. In the supporting 
experiment (Fig. 1), cylindrical specimens are strained with a fixed rate up to 10% after which the strain is kept 
fixed. The time course of the corresponding stress (load intensity) during two stages, loading and relaxation, 
is recorded and used for the estimation of the model parameters. The proposed model treats the scaffold as a 
long linear poroelastic transversely isotropic cylinder whose material parameters are two Young’s moduli (along 
the fiber direction and in the perpendicular plane), two Poisson’s ratios (corresponding to the lateral strains in 
response to the stresses along the fibers and in the perpendicular plane), and the gel diffusion time (characterizing 
the fluid motion across the scaffold). The model associates the relaxation mechanism with the fluid diffusion from 
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the surrounding aqueous solution through the porous material, occurring in response to the tensile loading of the 
cylindrical scaffold. The geometry and structure of the scaffold allows for an adjustment and use of an analytical 
method previously developed for short tissue (bone, cartilage) cylinders under compression22. The quality of 
the model is subjected to an additional test where the parameters estimated from the experiment corresponding 
to one strain rate are used for the prediction of the relaxation process corresponding to a different rate and the 
predicted modeling results are compared with the experiment with the same rate. Finally, the porosity depend-
ence of the scaffold material parameters is estimated. The developed approach can help in the optimization of 
the experimental and technological efforts associated with the effective development of the scaffolds. After the 
estimation of the scaffold material parameters, the local stresses, strains, and velocities sensed by stem cells can 
be obtained as functions of time for different porosities and strain rates, resulting in a more accurate prediction 
of stem cell differentiation.

Results
Biphasic Constitutive Model for the Scaffold Material.  In order to reflect the main features of the 
fibrous-porous structure of the scaffold, we use a biphasic (poroelastic) model of the material. The model assumes 
that the material is a mixture of two phases, solid and fluid, whose volume fractions are determined by the scaf-
fold porosity. Also, it is assumed that both phases are incompressible, and the solid phase associated with unidi-
rectional fibers is transversely isotropic with isotropic properties in the x1x2-plane normal to the fiber direction 
(Fig. 1). The main constitutive relations of the model (tensors are shown in bold) take the form23

σ σ= − ∅ +Ip(1 ) (1)s E

σ = ∅ Ip (2)f

(3)t s fσ σ σ= +

where σs, σf, σt and σE are the solid, fluid, total, and elastic stress, respectively, I is the identity tensor, ∅ and p are 
the porosity (fluid volume fraction) and pressure, respectively. The continuity equation for the mixture of incom-
pressible solid and fluid phases takes the form

div v v[(1 ) ] 0 (4)s f− ∅ + ∅ =

where v s vand f  are the velocities of the solid and fluid phases (the bars represent vectors), respectively. The solid 
phase velocity is expressed in terms of the solid phase displacement, u ,s as v u t/s s= ∂ ∂ . Neglecting the inertia, 
the equilibrium equations for the solid and fluid phases, and for the total stress take the form

p div k v v(1 ) / ( ) 0 (5)E f s2σ− − ∅ ∇ + + ∅ − =

p k v v(1 ) / ( ) 0 (6)f s2− − ∅ ∇ − ∅ − =

div 0 (7)tσ =

where k is the permeability of the material.
We treat the scaffold as a transversely isotropic poroelastic cylinder under the action of an axial load resulting 

in axisymmetric stresses, strains, and velocities. In the cylindrical system (r, z, )ϕ ) with the (r, ϕ) coordinates 
within x1x2-plane, the stresses have σrr, σϕϕ and σzz components, the displacements have u uandr z components, 
and the strains have = ∂ ∂ = = ∂ ∂ϕϕ  u r u r u z/ , / , and /rr r r zz z  components. The scaffold fibers are long with 
the actual length-to-radius ratios of about 10. Because of this, we assume that t( )zz ε=  (where t( )ε  is the exter-
nally applied tensile strain) and other components of the strains, stresses, and displacements do not depend on 
the z-variable and are functions of the radius, r and time, t. For infinitesimal strains, the elastic stresses are related 
to strains by the equations

Figure 1.  Sketch of the force relaxation experiment made with a cylindrical sample of the fibrous-porous 
scaffold. The elastic properties of the scaffold materials are the same in the x1x2-plane, but they are different 
from those in the fiber direction, x3 (transversely isotropic material). The scaffold material is a mixture of two 
phases, fluid and solid. Under the action of the force P, the cylinder extends resulting in the fluid going inside 
the cylinder. Such diffusion of the fluid explains the relaxation of the applied force.
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The stiffness parameters, Cij are related to Young’s moduli and Poisson’s ratios by the equations

υ ν ∆ ν υ ν ∆= − + = − +C E E E C E E E(1 / )/[(1 ) ] ( / )/[(1 ) ] (9)11 1 31
2

1 3 21 1 12 1 21 31
2

1 3 21 1

C E C E E E/ [(1 / )/ ] (10)13 1 31 1 33 3 31
2

1 3 1ν ∆ υ ∆= = +

where E E1 2 /1 21 31
2

1 3∆ υ υ= − − . Here, E3 and E1 are Young’s moduli along the fiber direction (in tension) and 
in the plane of isotropy (in compression), respectively. Also, υ21 and υ31 are Poisson’s ratios given by the following 
ratios of the strain components / rr21υ ε ε= − ϕϕ  and υ ε ε= − /rr zz31 . Below, we will analyze the scaffold stress 
relaxation by considering the time course of the change in the intensity of the tensile load applied to the cylinder 
(Fig. 1) which is given by the equation

P t
a

rdr( ) 2
(11)

a
zz
t

2 0∫ σ=

where a is the radius of the cylindrical scaffold.

Optimization of the Model Parameters by Fitting the Bioreactor Relaxation Experiment.  The 
problem under consideration for a long cylinder under tension can be solved by the same method as that pre-
viously suggested for a short cylinder under compression20,22 resulting in an analytical expression for the load 
intensity P(t) in response to the ramp strain in the form
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Below we use this expression (Supplementary Information) to analyze the scaffold relaxation process.
We estimate the five model parameters as follows. As it is shown in the previous section, the elastic parameters 

of the scaffold are two Young’s moduli, E1 and E2, and two Poisson’s ratios, υ υand21 31. The fluid diffusion through 
the scaffold is characterized by the permeability coefficient, k. It is convenient to use the gel diffusion time, tg, 
instead, as an additional independent parameter because it is directly visible in the experiment. The tg-time is 
related to the permeability, k, by the following equation

t a
kCg

2

11
=

We then are able to reduce the number of parameters involved in the fitting the experimental data. Indeed, the 
modulus E3 is the stiffness of the scaffold in the fiber direction under the equilibrium conditions ( → ∞t ) i.e.

ε ε
= =

∞
.E

P P( )eq
3

0 0

Also, the bioreactor is accompanied by FDIC software that generates 2-D plots of the equilibrium displace-
ments3 . We use these data3 to extract Poisson’s ratio υ31 from the following equation
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which results υ ≈ .0 2431 , an estimate that will be used below.
Thus, the optimization process is used to extract the material parameters E1, v21 and tg (the computational 

method of optimization is discussed in the Methods section). The results of the parameter estimation by fitting 
the experimental data for ε0 = 10%, ε0 = 1% s−1 and two values of the porosity, 50% and 70% are collected in 
Table 1. The independently estimated parameters, E3 and 31υ , are included in Table 1 for the completeness. The 
results show that the scaffold is stiffer in tension along the fiber direction than it is in compression along the radial 
direction (modulus E3 is about twice larger than modulus E1). Also, the higher porosity results in a softer scaffold 
in all directions and in shorter gel diffusion time (tg -time is about twice longer for the smaller porosity of 50% 
than that in the case of 70%). Figure 2 shows the predicted time-course based on the optimal parameters vs. that 
measured in the experiment where both have the same strain, strain rate and porosity. The solid lines show the 
mathematical solution, and the dots represent the experimental measurements (see the Methods section on the 
treatment of the raw data). Figure 2A and B correspond to two values of the porosity, 50% and 70% respectively. 
Here and below, the closeness of the modeling results to the experiment are characterized by the r2-value which is 
0.86 and 0.76 in the case of Fig. 2A and B, respectively.
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Additional Testing of the Model.  After the estimation (optimization) of the model parameters by fitting 
the experimental data for the strain rate of 1% s−1 and two porosities of 50% and 70%, we do an additional test 
to the model. Since the material parameters of the scaffold do not depend on the strain rate, we consider a dif-
ferent rate of 0.5% s−1 and compare the modeling results with the previously optimized parameters against the 
independent experimental data. The results of this comparison for two porosities of 50% and 70% are presented 
in Fig. 3A and B, respectively. The solid lines represent the modeling results and the dots correspond to the exper-
imental data (the raw experimental data are treated the same way as in the above case of the strain rate of 1% s−1). 
The value of the total strain is the same as that in Fig. 2 and equal to 10%. The closeness between the modeling and 
experimental data is characterized by the high r2-values which are equal to 0.82 and 0.83 (Fig. 3A,B). In the case 
of the porosity of 50%, the quality of the model approximation is similar in both loading and relaxation (Fig. 3A). 
In the second case of the 70%-porosity, the quality of the model approximation during loading is lower although 
overall r2-values are similar.

Model Predictions of Scaffold Relaxation for Different Strain Rates and Porosities.  In the pre-
vious sections, we estimated the model parameters by fitting the experimental data corresponding to the strain 

Porosity

50% 70%Model Parameters

E1, kPa 8.49 5.61

tg, s 40.62 17.58

ν21 0.75 0.82

E3, kPa 19.19 11.97

ν31 0.24 0.24

Table 1.  The optimal model parameters for the porosities of 50% and 70%.

Figure 2.  Optimization of the model parameters. The computed time course of the force relaxation (solid line) 
vs. the experimental data (dots). The total strain, strain rate, porosity are 10%, 1%/s, 50% (A) and 10%, 1%/s, 
70% (B).
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rate of 1% s−1. We additionally tested the parameters by computing the results for another strain rate of 0.5% s−1 
and comparing them with the experimental data corresponding to that rate. Such estimates were done for two 
porosities of 50% and 70%. We now use the estimated parameters for predicting the relaxation process as a func-
tion of the strain rates.

Figure 4 shows the time course of the scaffold relaxation for different strain rates of loading. Figure 4A and B  
correspond to the porosities of 50% and 70%, respectively. The thin solid, dashed-dotted, dotted, and dashed 
lines correspond to the loading strain rates of 0.25, 0.5, 1, and 3% s−1, respectively. In addition, the thick solid line 
shows the relaxation curve for the “infinitely large” strain rate which is equivalent to the limiting case of the strain 
applied step-wise. The modeling parameters are the same (optimal) throughout Fig. 4. The strain rate affects the 
peak load intensity because the duration of the loading parts is different: it is inversely proportional to the slope 
of the loading part which provides the same level of the total strain. Thus, the ratios of the peak value of the load 
intensity to its equilibrium value are equal to 1.86, 1.62, 1.41, 1.26, and 1.14 in the cases of infinite, 3, 1, 0.5, and 
0.25% s−1 strain rates, respectively, for the porosity of 50%, and they are equal to 2.30, 1.79, 1.38, 1.20, and 1.10 for 
the same set of strain rates for the porosity of 70%. Although the gel diffusion time, tg, is the same (optimal) for 
each strain rates, the equilibrium value is reached faster for smaller strain rates because the corresponding peak 
values are lower.

We also use the model to predict the relaxation process as a function of the scaffold porosity. For that, we 
linearly interpolate the model parameters between the previously estimated values for two porosities of 50% and 
70%. A unifying 2-D picture of the load intensity peak as a function of the strain rate and porosity is presented in 
Fig. 5. The function was approximated as

= = + + ⋅ + ⋅P f x y mx n a exp by c exp dy( , ) [ ( ) ( )] (12)pk

where Ppk is the value of the peak and the arguments x and y represent the porosity and strain rate. The values 
of a = 12.9, b = −2.1, c = −112.2, d = 0.001, m = −4.2, and n = 116.9 are found by fitting the modeling results 
for several combinations of the porosity and strain rate. Thus, the peak value linearly decreases with porosity 
and exponentially decreases with the strain rate where its absolute maximal value of about 4 kPa corresponds 
to the step-wise strain application to the scaffold of minimal porosity of 40%. Finally, Fig. 6 shows the porosity 

Figure 3.  Further validation of the model. The time course (solid line) computed for the optimal parameters vs. 
experimental data for a different strain rate of 0.5%/s.
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dependence of the scaffold material parameters. Figure 6A shows the porosity dependence of the gel diffusion 
time (dashed line) and Poisson’s ratio ν21. Both of them increase with porosity. Figure 6B presents the porosity 
dependence of two Young’s moduli, E1 (solid line) and E3 (dashed line), and both of them decrease with porosity.

Discussion and Conclusions
In this paper, we apply an approach that has been broadly used in the analyses of various properties of tissues. The 
axial loading of cylindrical specimens allows the effective use of coordinated experimental and modeling 

Figure 4.  The computed time course of the relaxing force for different strain rates (solid, dashed-dotted, 
and dashed lines correspond to 0.25%/s, 0.5%/s, 1%/s, and 3%/s, respectively; thick solid line corresponds 
displacement applied step-wise). (A) 50% porosity and (B) 70% porosity.

Figure 5.  The computed values of the peak force as a function of the porosity and strain rate.
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methods. Importantly, the mathematical models result in analytical solutions which makes the interpretation of 
experiments and parameter optimization more transparent than if the solution would have been numerical. The 
developed analysis takes into account the material anisotropy, biphasic (fluid and solid) structure and the level of 
the porosity of the scaffold. We have shown here that the relaxation properties of such scaffolds can be explained 
by the fluid diffusion after the loading of the sample, and we have extended the analyses of short cylinders under 
compression to those of long cylinders under tension. The mathematical technique used here can be further 
extended to cover the viscoelastic properties of the solid component (some cases have previously been considered 
in ref.25) and creep regimes (some of them have been considered in refs24,25). Also, the technique used allows for 
computing the strains, stresses, and fluid velocity fields inside the 3D scaffold. Often, in the analysis of the effects 
of the mechanical factors on stem cell differentiation, the externally applied strain is assumed to be locally sensed 
by stem cells inside the scaffold. Thus, the computation of the local distributions of the mechanical characteristics 
gives the knowledge of the true mechanical factors affecting stem cells within localized regions of the scaffold. 
These local distributions can enter local criteria of stem cell differentiation, like one proposed in ref.26 for porous 
tissues in the form of a linear combination of the velocity of the fluid component and shear strain of the solid 
component. The scaffold relaxation time has been shown to affect differentiation of the seeded stem cells15. Here, 
the relaxation time is characterized by the model parameter, tg, which depends on the porosity two-fold, via the 
material permeability and through the ratio of Young’s moduli, E1/E3. However, the actual relaxation to time is not 
equal to tg. First, in contrast to the Maxwell viscoelastic model (e.g.15), the poroelastic scaffold has an infinite 
number of relaxation times represented by the exponential terms in the equation for the load intensity 
(Supplemental Information). Each of these times is proportional to tg, but is also modified by a factor ∝n

2 
(Supplementary Information) weakly dependent on the porosity and strongly increasing with n, such that only a 
few first times are significant to the relaxation. Also, the strain rate has an effect on the actual time of relaxation 
from the peak value to the equilibrium value of the load which is shown by the set of different relaxation curves 
corresponding to different strain rates but all of them having the same tg-value.

One of the results of the present paper is the prediction of the effects of porosity and strain rate on the pro-
cess of scaffold relaxation obtained by using a limited number of computations for a few particular conditions. 
It can reduce the experimental and technological efforts involved in the study of 3D scaffolds. Finally, we pro-
vide additional accuracy of our model by both optimizing the model parameters against experimental data and 
double-checking the modeling results with previously optimized parameters against the experimental data corre-
sponding to different conditions (strain rate).

Figure 6.  The porosity dependence of the model optimal parameters. (A) The gel diffusion time, tg, and 
Poisson’s ratio, ν21, and (B) Young’s moduli, E1 and E3.
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In conclusion, the mechanism of relaxation of the fibrous-porous (electrospun fibrin) scaffold is explained 
using a poroelastic model where the internal fluid diffuses through the solid fibrous matrix in response to the 
loading until the reaching of the equilibrium state. The material parameters are estimated by fitting the time 
course of loading-relaxation of the specimen. The relaxation time, important factor of differentiation of the 
seeded stem cells, is predicted as a function of the scaffold porosity and loading strain rate. The obtained results 
can help in a more accurate prediction of the effects of the local mechanical factors on stem cell differentiation 
and in a reduction of the experimental work involved in the study of the properties of 3D scaffolds for regenera-
tive medicine.

Methods
Optimization of the Model Parameters.  In order to optimize the model parameters, the data need to 
be processed into a usable form and then curve fitted with the model. To process the raw data to model output, 
the sensor signal is converted from voltage to force to kilopascals. Due to the low sensitivity of the sensor and the 
external motor interference, the resulting signal-to-noise ratio is low. The noise needs to be reduced so that it will 
not distort the model fitting process. One of the most common methods to improve the signal quality without a 
large loss in the accuracy is to apply a smoothening filter over the experimental data set.

Since the noise originates from two main sources, the cyclic motion of the motor and the noise from the 
sensor, there is sinusoidal and normal random variations in the data. Analysis of the data demonstrates that the 
sinusoidal variation is as the largest factor. The periodic noise can be dramatically reduced by the application 
of a moving average type or equivalent filter. One such filter is the Savitzky-Golay filter27. This filter is a linear 
least squares algorithm that fits subsets of the data with polynomials. The filter is chosen for two reasons. First, a 
moving average type filter is the equivalent of the filter with a polynomial of degree 1. Second, a prebuilt function 
already exists in MATLAB as sgolayfilt (). Note that because the ramping section is linear in nature, so a polyno-
mial of degree of 1 is the most suitable for the smoothening process. Exponential relaxation can also be approxi-
mated by a linear polynomial for small sections since there is no change in the sign of the slope.

The Savitzky-Golay filter removes any periodic feature in respect to the length of the subset of data involved 
because, by having an unweighted linear regression on every data point in the subset, the filter should make the 
smoothened point reflective of the median line of the subset. The frame length can be calculated using the fre-
quency of the sinusoidal noise and the frequency of data collection (100 data points per second) according to the 
following equation

( )
Frame Length

Ramping Time t Data Points

Total Cycles During Ramping Period

( )

# (13)
sec0
100

=
∗

Once the filter is run on the dataset to smoothen the values, only some minor cyclic noise and random noise 
will remain. The minor cyclic noise is due to the fact that the MATLAB filter can only implement integral values 
for the frame length. If the length value comes out to be a decimal, the subset will not be perfect in capturing the 
periodic noise of the data.

After the processing and smoothening the data, the actual optimization of the model parameters can be done 
by curve fitting the nonlinear piecewise poroelastic functions to the experimental data. The model involved 5 
main parameters, ν21, ν31, E1, E3, and tg. Of these, ν31 and E3 can be calculated from the data and previous studies 
as discussed previously. The value of ν31, 0.24, is assumed to have little variation and kept constant for each case. 
E3 represents the steady state relaxation value of each case, which can be approximated by taking the average of 
the last 1000 data points and dividing by the total strain (10% for this study).

To optimize the final 3 parameters, ν21, E1, and tg, the optimization toolbox in MATLAB is used. Since the 
model is nonlinear and piecewise in nature, the lsqcurvefit () MATLAB function is used for the optimization 
process. The lsqcurvefit function focuses on non-linear models and uses a least squares method with a default 
trust-region-reflective algorithm. The least squares method tries to minimize the sum of squared differences 
(SSD) between the theoretical results and the actual data. The trust region algorithm is involved the exact method 
of how to find multiple parameters simultaneously. The standard algorithm takes a smaller region N of the target 
function f, approximates it to a quadratic model q, then calculates steps by minimizing over N. The process is 
repeated until convergence. The starting point is determined by the user for the algorithm to begin at.

In order to streamline the optimization process, the starting point was visually approximated using plot from 
predicted theoretical values. This allowed for large steps in the parameter values. Upper and lower bounds were 
also determined for all the parameters so that the optimization process would not find possible SSD minimums 
that were outside possible values. For example, the bounds for tg and E1 are relative to the exponential slope of the 
relaxation section and the maximum intensity value respectively which can be roughly estimated. The tolerances 
involved in finding the minimum and the parameters steps were also increased by a factor of two degrees from 
the MATLAB default. The increase decreased the optimization dramatically (by a similar factor as the increase) 
with minimal loss in accuracy.

After optimization of the first data set, steps were taken to further decrease computational time. Since ν21 
should be somewhat consistent over all the different porosities, the value could be held initially from the optimi-
zation so that the process only involves 2 parameters, which is much less computationally intense. The resulting 
two values should be much closer to the actual optimized values than the original starting point. These two values 
for E1 and tg could then be fed back into the optimization with ν21 to recalculate values for the data set in less steps. 
Additionally, since tg is related to relaxation time, after the first optimization of tg, the latter tg values could be 
initially chosen slightly easier since the relationship was better understood.
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There was also some optimization of the characteristic function calculation. The characteristic function 
involved calculating the zeroes of a function that involved Bessel functions. MATLAB has a function that can 
emulate the Bessel function, besselj (). This was used in conjunction with fzero() to calculate the zeroes. However, 
there are an infinite number of zeroes possible starting from 0. Every zero is required to compute the exact value 
of the characteristic function. After some analysis of the results, we chose 20 iterations as the suitable number of 
zeroes for the characteristic function calculation because there was zero variation in the final value compared to 
21 iterations at this point.

Scaffold Relaxation Experiment.  All stress relaxation experiments were performed in a custom-built bio-
reactor2,3. The bioreactor allows for testing in an aqueous environment, thus allowing for the observation of the 
poroelastic stress relaxation of the fibrin specimens. The specimens of various porosities were clamped between a 
fixed force sensor (Cooper Instruments 50 gram max load cell) and a mobile linear actuator controlled by a linear 
stepper motor (Haydon Kerk). The clamping was achieved through custom 3D printed clamps. Force measure-
ments were taken through the force sensors which are attached to a strain gauge amplifier unit (Industrologic 
SGAU). The voltage output from this system was read through a Lab Jack U3-HV and was recorded in real time 
through Lab Jack’s custom software. The specimens were loaded at their resting length and then an additional 
1 mm of slack length was provided to ensure that there was no pre-tension in the fiber. Following this, the end of 
the fiber attached to actuator was retracted 10% of the original length. During this period, the real-time force was 
recorded to establish the 0% position of the fiber, so that the fiber was not slack or pre-tensioned before the relax-
ation experiment began. Following the pre-tensioning, fibers were extended to 10% of their adjusted length and 
held at 10% strain for 100 seconds to allow for measurement of stress relaxation through the force sensor readout. 
The 10% strain was applied at various strain rates, controlled through the stepper motor.

Availability of Materials and Data Statement.  The results are made transparent and reproducible by 
the derivation of the model, including Supplementary Information. The estimation of the model parameters is 
supported by the detailed description (including the names of software subroutines) in the Methods section. The 
experimental methodology is described in the same section. There are no specific datasets used in the paper.
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