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Abstract

The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-
term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist
after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were
administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg) for two weeks during
the late adolescence period (post-natal days 45–60) and tested for behavioral and electrophysiological measures of
cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-
term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP) in the ventral
subiculum (vSub)-nucleus accumbens (NAc) pathway were temporary as they lasted only 24 h or 10 d after withdrawal.
However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location
task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-
dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are
temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids.
Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments
and for cannabinoids to be more favorably considered for clinical use.
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Introduction

Cannabis is the most widely used illicit drug after nicotine and

alcohol [1] and can impair several aspects of cognitive function

[2,3].

In humans, cannabinoids impair both encoding and recall of

verbal and non verbal information depending on dose and task

difficulty [2]. In animal studies, cannabinoids impair memory in a

variety of experimental conditions such as the radial maze,

instrumental discrimination tasks and the Morris water maze [4].

Given the well established role of the hippocampus in learning

and memory processes, and its high expression of CB1 receptors

[5,6], it is likely that the adverse effects of cannabinoids on spatial

learning tasks, short-term memory, and attention are attributable

to their actions within this brain region. Using electrophysiological

recordings from hippocampal slices, previous studies have shown

that cannabinoid receptor activation inhibits LTP in the

hippocampus [7–11]. We have shown that acute administration

of the CB1/2 receptor agonist WIN55,212-2 (WIN; 0.5 mg/kg)

impairs the induction of LTP in the schaffer collateral-CA1

projection of anesthetized rats [12]. Additionally, WIN adminis-

tered systemically or into the CA1 (5 mg/side) impairs spatial

learning in the water maze [12]. Hence, acute exposure to

cannabinoids impairs both hippocampal spatial learning and LTP.

Recently, we found that acute WIN administered into the ventral

subiculum (vSub; 5 mg/side) also impairs acquisition and retrieval

of memory in the social discrimination task [13].

A controversial question is whether long-term exposure to

cannabinoids can cause irreversible deficits in higher brain

function that persist after drug use stops. Cognitive deficits caused

by long term exposure to cannabinoids can last for many days, and

possibly for weeks [14–16], after discontinuing use, but it is still

unclear whether long-term cannabinoids exposure causes irrevers-

ible cognitive deficits.

Results from studies in humans [1] and rats [17,18] suggest that

vulnerable periods exist during human and rat brain development up

to the age of 16 years (post-natal day (PND) ,35–40 in rats), during

which cannabis can permanently compromise cognitive functions.

It is difficult to define the time course of adolescence, with no

single event signaling its onset or termination [19]. During

adolescence, the brain undergoes numerous changes [20]; massive

loss of synapses in neocortical regions, remodeling of the prefrontal

cortex, maturational changes in the hippocampus [20–22].

Neuroplastic modifications also include changes in dendritic spine

density, synaptic rearrangements and development of myelination

[23]. This remodeling process may be disrupted by cannabinoids

leading to lasting adverse effects on brain and behavior [23].

Receptors for endogenous cannabinoids mature slowly during the

postnatal period [24,25], with binding peaking during adolescence

at higher than adult levels in hippocampus [25]. These

endogenous cannabinoid systems may reach functional maturity

around adolescence [26,27].

Evidence from both animal and human studies suggests that

frequent exposure to cannabis during adolescence may have long-term
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effects on the development of cognition, brain structure and function

[14,15,28,29,30]. However, studies on adults were not straightforward

in determining whether such deficits, observed after only hours or days

of abstinence, are temporary (perhaps due to a residue of cannabinoids

in the brain) or long-lasting (due to a neurotoxic effect of long-term

exposure). For example, Quinn et al., [23] found deficits in object

recognition following repeated exposure to D9-THC (THC) in

adolescent but not adult rats, a result consistent with other reports of

cannabinoid administration in immature but not mature rats causing

lasting impairments in learning [17,18,28].

In the current study, we aimed to examine the short- and long-

term effects of chronic exposure to cannabinoids in the late-

adolescence period that falls between adolescence and adulthood

(PND ,45–60). To that end, male rats were chronically injected

with a cannabinoid receptor agonist during late-adolescence and

behavioral and electrophysiological measures of cognitive perfor-

mance were tested 24 hours, 10 and 30 days after cessation of drug

treatment.

Materials and Methods

Subjects
Male Sprague-Dawley rats (45 days old, ,200 g; Harlan,

Jerusalem, Israel) were caged together (5 per cage) at 2262uC
under 12-hour light/dark cycles (lights turned on at 07:00 and

turned off at 19:00). Rats had access to water and laboratory

rodent chow ad libitum. The experiments were approved by the

University of Haifa Ethics and Animal Care Committee, and

adequate measures were taken to minimize pain or discomfort.

Drug Treatment
The CB1/2-receptor agonist WIN55,212-2 (Tocris, USA) was

initially dissolved in dimethylsulfoxide (DMSO), and further

diluted with 1% Tween 80 and 98% saline (0.9% NaCl). Final

DMSO concentration was 1%. This DMSO and saline solution

was also used as the vehicle.

WIN was administered intraperitoneally (i.p.) at a dose of

1.2 mg/kg, 0.3 ml (based on previous reports [31,32]). For chronic

experiments, WIN was administered during PND 45–60, as the

rats received 14 injections i.p., one per day. For acute experiments,

WIN was administered in a single i.p. injection (1.2 mg/kg) 24 h

before testing.

The Morris Water Maze Task
The water maze, placed in a dimly lit room, consisted of a pool

of water (diameter 1.7 m; 50 cm high rim; manufactured by the

University of Haifa). For the spatial training task a submerged

escape platform (12612 cm) was placed 30 cm away from the

edge in a fixed location. Each trial was initiated by placing the

animal in one of three quadrants (in which there is no platform)

near the wall of the tank. Animals were allowed to search for the

hidden platform for a maximum of 60 s, while their latency to find

the hidden platform was manually recorded by an experimenter. If

a rat did not reach the platform within 60 s, an experimenter

would guide it there [12]. The rat was then allowed to remain on

the platform for 25 s before removal back to the home cage.

The experiment consisted of 3 days (Figure 1a). All trials are

presented in blocks of two. On the first day, the animals went

through a massed training protocol of 14 trials with inter-trial

intervals of 3 min [Acq1–7] [33], and 6 more trials to assess short-

term memory conducted after 30 min [STM1–3]. On the second

day, the animals underwent 8 trials to further train them before

assessing their performance in a reversal task, as the massed

protocol is considered to be less efficient in producing learning

than the spaced paradigms often used in other studies [33]

[LTM1–4]. This training session can also be a measure of long-

term memory retrieval as rats that have acquired the task will

demonstrate better performance. On the third day, the platform

was moved to the opposite quadrant of the maze. The animals

went through 10 reversal trials in which they were tested for their

ability to learn the new platform location [R1–R5].

Object location memory task
This task measures an animal’s ability to detect that an object

has moved to a new location. This is a hippocampal-dependent

spatial memory task [34–36]. The objects were two small identical

ceramic dolls (106867 cm; painted blue and pink) located in a

squared black open-field (50650650 cm) under dim light, 10 cm

from the walls. The open-field and the objects were thoroughly

cleaned between trials with odorous clean wipes.

The rats were habituated to the experimental apparatus by

allowing them to explore it for 10 min every day for 4 days

without objects before the experiment was performed. In the

sample phase, each rat was placed in the open-field arena and

exposed to the objects for 5 min. The test phase was given 30 min

after the sample trial (i.e., to test short-term memory). One object

was moved to a new location and the time spent exploring the

objects at the old and new locations were recorded for 5 min.

A digital camera placed above the arena and connected to a

video tape was used to track rat behavior during the exploration

session. Recorded data was analyzed by two judges blind to

experimental conditions and inter-rater reliability was assured.

Exploration was defined as when the subject sniffed at, whisked

at, or looked at the object from no more than 2 cm away. An

exploration index calculated for each animal was expressed as TN/

(TN+TF) (TF = time spent exploring the object in the familiar

location; TN = time spent exploring the object in the novel

location). Intact spatial recognition memory in the test phase

was reflected in an exploration score higher than 0.5, which

implies greater exploration of the object in the novel location

(Figure 2a).

Object recognition memory task
This task measures the ability to discriminate the familiarity of

previously encountered objects. If a rat is presented with both a

familiar object and a novel object, it will direct more exploration at

the novel object. This task is dependent on the prefrontal cortex

and perirhinal cortex [37,38]. In the sample phase, each rat was

placed in the open-field arena and exposed to two identical objects

(the same objects as in the object location memory task) for 5 min.

In the test phase, thirty min after the sample trial, the rat was

presented with one of the objects from the sample trial and with a

novel object (ceramic triangle, 10.56562 cm; painted gray) for

5 min (Figure 1c). The familiar and novel objects were

counterbalanced during the sample and test phases. The rest of

the parameters were identical to the object location task described

above.

Electrophysiology
Surgical Procedure. Rats were anesthetized (with 40%

urethane, 5% chloral hydrate in saline, injection volume of

4 ml/1 kg, i.p.) and placed in a stereotaxic frame. Small burr holes

were drilled in the skull to allow electrodes to be inserted into the

brain. A recording microelectrode (glass, tip diameter of 2–5 mm,

filled with 2 M NaCl, resistance of 1–4 M) was inserted into the

DG (anteroposterior, 24.0 mm; lateral, 62.5 mm; ventral,

23.7 mm) (Figure 2a) or into the NAc shell (anteroposterior,

+1.6 mm; lateral, 61.0 mm; ventral, 25.5 mm) (Figure 2b). A

Cannabinoids Affect Hippocampal Short-Term Memory
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Figure 1. The effects of chronic exposure to WIN55,212-2 during late-adolescence on hippocampal and non-hippocampal
dependent tasks. 1a. Rats tested in the water maze 24 h, but not 10 d, after the last WIN injection, show increased latency to locate the hidden
platform compared with the vehicle group on the first training day (Acq1–7). (*, p,0.05: WIN 24 h different from Vehicle 24 h). Inset: a control

Cannabinoids Affect Hippocampal Short-Term Memory
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bipolar 125 mm stimulating electrode was positioned in the

perforant path (PP; anteroposterior, 28.0 mm; lateral, 64.0 mm;

ventral, 23.0 mm) (Figure 2a) or the vSub (anteroposterior,

26.5 mm; lateral, 65.0 mm; ventral, 26.0 mm), respectively

(Figure 2b). After positioning the electrodes, the rat was left for

60 minutes before commencing the experiment.

LTP Induction. LTP was induced by theta-like high-

frequency stimulation (HFS) (three sets of 10 trains; each train

consisting of 10 pulses at 200 Hz; inter-train interval, 200 ms;

inter-set interval, 1 min) to the vSub or PP. Field potentials were

recorded from the NAc or DG every 5 minutes for 60 minutes

after HFS to the vSub/PP. LTP was measured as an increase in

the amplitude of the excitatory post-synaptic potentials (EPSPs).

Potentiation was measured as a percentage change from the

average of the 30 min baseline before HFS.

Open Field
The apparatus consisted of a square black open-field

(50650650 cm). The floor was divided by 1-cm-wide white lines

into 25 squares measuring 10610 cm each. A video image of the

open-field was displayed on a TV monitor, and the movements of

the rat were manually recorded by two ‘blind’ experimenters and

analyzed in order to measure motor activity over a period of

5 min.

Recordings were made of the time the rat spent in the central

and peripheral squares, the number of instances of rearing, and

the total distance covered (Figure 3). The open-field arena was

thoroughly cleaned between trials with odorous clean wipes.

Sucrose intake
Water bottles were removed before the dark part of the cycle,

and replaced with bottles containing a 1% sucrose solution.

Sucrose consumption was measured during the 12 dark hours of

the cycle and was then normalized according to every rat’s specific

weight (Figure 4a). Rats were individually housed during the

sucrose intake measurement.

Statistical Analysis
The results are expressed as means 6SEM. For statistical

analysis, mixed design ANOVA, 3-way mixed ANOVA, 2-way

ANOVA, and t-test were used as indicated. All post hoc

comparisons were made using the least significant difference

multiple-comparison test (LSD).

Experimental design
Rats were chronically injected for 14 days with WIN or vehicle.

Every rat underwent one behavioral or electrophysiological test, to

prevent carryover effects due to multiple tests. However, the

sucrose consumption and weight gain measures were taken from

rats that were tested behaviorally or electrophysiologically. Hence,

different groups of rats were tested at the different time points post-

injection.

Behavioral measures: (i) water maze– 24 h or 10 days after

the last chronic injection and 24 h after a single injection

(figure 1a), (ii) object location task– 24 h, 10, 30 or 75 days after

the last chronic injection and 24 h after a single injection

(figure 1b), (iii) object recognition task– 24 h, 10 days or 30 days

after the last chronic injection and 24 h after a single injection

(figure 1c).

Electrophysiological measures: (i) LTP in the PP-DG

pathway– 24 h, 10 days or 30 days after the last injection

(figure 2a), (ii) LTP in the vSub-NAc pathway– 24 h, 10 days or 30

days after the last chronic injection and 24 h after a single

injection (figure 2b).

Control experiments: (i) locomotion and anxiety-like

behavior in the open field– 24 h, 10 days or 30 days after the

last injection (figure 3), (ii) sucrose consumption– 24 h, 10 days or

30 days after the last injection (figure 4a), and (iii) weights– 24 h,

10 days or 30 days after the last injection (figure 4b).

Results

The effects of chronic exposure to the cannabinoid
receptor agonist WIN55,212-2 during late adolescence
on hippocampal and non-hippocampal dependent tasks

To determine the effects of chronic exposure to WIN during

late-adolescence on spatial learning and memory, we used two

hippocampal- dependent paradigms: the aversive Morris water

maze task, and the non-aversive object location task.

The Morris water maze. Rats were injected with vehicle or

WIN for 2 weeks and after 24 h (Vehicle 24 h, n = 8; WIN 24 h,

n = 7) or 10 days (Vehicle 10 d, n = 8; WIN 10 d, n = 7) taken to

the water maze. The data were analyzed using a 3-way mixed

ANOVA with treatment (Vehicle/WIN) and time of testing (24 h,

10 d) as between-subject factors, and the trials of training (Acq,

STM, LTM, R) as a within-subject factor (Figure 1a).

On day one, analysis of the acquisition data [Acq1–7] revealed

significant main effects for treatment (F(1,26) = 4.03, p = 0.05),

for time of testing (F(1,26) = 5.31, p,0.05), and for trials

(F(1,26) = 112.29, p,0.001). Significant interactions were found

for [trials6treatment] (F(1,26) = 14.21, p = 0.01), for [trials6time of

testing] (F(1,26) = 12.69, p = 0.01), and for [trials6treatment6time

of testing] (F(1,26) = 14.43, p = 0.01). Post-hoc analysis revealed a

significant difference in latency to find the hidden platform

between the vehicle treated rats and the WIN treated rats after

24 h (p,0.05), indicating that 24 h after the last chronic injection

the WIN treated rats took longer to find the hidden platform than

the vehicle treated rats (Figure 1a).

Thirty min after training rats were tested in the maze for their

short-term memory of the platform location (STM1–3). A

significant main effect for time of testing (F(1,26) = 12.3, p,0.01)

was found. There was no significant main effect for treatment

(F(1,26),1, NS), and no significant interaction effect (F(1,26),1, NS).

On day two, 48 hours after the last chronic injection, rats were

tested in the maze for their long-term memory of the platform

location (LTM1–4). A significant main effect for time of testing

(F(1,26) = 4.29, p,0.05) and for trials (F(1,26) = 9.8, p,0.01) was

found. There was no significant main effect for treatment

(F(1,26),1, NS), and no significant interaction effect (F(1,26),1,

NS). The absence of a significant difference between the treatment

groups indicates that on day two there were no treatment effects

on performance.

experiment where rats were tested in the water maze 24 hours following a single WIN injection. 1b. Rats tested in the object location task 24 h, 10 d,
30 d and 75 d after the last vehicle injection spent significantly more time exploring the new location compared with the WIN groups. (*, p,0.05;
**, p,0.01: Vehicle different from WIN). On the right square: a control experiment where rats were tested in the object location task 24 hours
following a single WIN injection. 1c. Rats tested in the object recognition task 24 h or 10 d, but not 30 d, after the last vehicle injection spent
significantly more time exploring the new location compared with the WIN groups (*, p,0.05; ***, p,0.001: Vehicle different from WIN). On the
right square: a control experiment where rats were tested in the object recognition task 24 hours following a single WIN injection.
doi:10.1371/journal.pone.0031731.g001

Cannabinoids Affect Hippocampal Short-Term Memory

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31731



On day three, 72 hours after the last chronic injection, the

platform was moved to the opposite quadrant of the maze and the

rats were trained to find this new location. A significant main effect

for trials (F(1,26) = 128.47, p,0.001) was found. There was no

significant main effect for treatment (F(1,26),1, NS), for time of

testing (F(1,26) = 2.37, NS), and no significant interaction effect

(F(1,26),1, NS).

In order to find whether the pattern of acquisition on the water

maze task in the WIN treated rats 24 hours after chronic

treatment is the result of an acute effect on learning, we conducted

a control experiment where we treated rats with an acute dose of

WIN (1.2 mg/kg) and then tested their acquisition of the water

maze task after 24 h (Vehicle, n = 7; Acute WIN24h, n = 7;

Figure 1a, inset). Mixed design ANOVA [treatment6trials

(267)] of the acquisition data [Acq1–7] revealed a significant effect

for trials (F(1,12) = 66.74, p,0.001), indicating the rats’ improve-

ment over trials in finding the hidden platform. There were no

significant effects for treatment (F(1,12),1, NS), or a significant

Figure 2. The effects of chronic exposure to WIN55,212-2 during late-adolescence on synaptic-plasticity in the hippocampus and
nucleus-accumbens. 2a. Chronic administration of WIN had no effect on LTP levels in the PP-DG pathway measured 24 h, 10 d or 30 d after the
last drug injection. Inset: Up: representative traces in the DG for the vehicle group taken before (black) and 5 min after (gray) HFS to the PP
(calibration: 0.2 mV, 10 ms); Down: schematic drawing of electrodes tip positions: left - representative location of the stimulating electrode tip in the
perforant path (anteroposterior, 28.0 mm; lateral, 64.0 mm; ventral, 23.0 mm), right - representative location of the recording electrode tip in the
dentate gyrus (anteroposterior, 24.0 mm; lateral, 62.5 mm; ventral, 23.7 mm). 2b. Chronic administration of WIN impaired LTP levels in the vSub-
NAc pathway measured 24 h or 10 d, but not 30 d, after the last drug injection. (**, p,0.01: WIN 24 h group different from WIN 30 d and Vehicle
groups, and WIN 10 d group different from WIN 30 d group; ***, p,0.001: WIN 10 d group different from Vehicle group). Inset: Up: representative
traces in the NAc for the vehicle group taken before (black) and 5 min after (gray) HFS to the vSub (calibration: 0.2 mV, 10 ms); Down: schematic
drawing of electrodes tip positions: left - representative location of the stimulating electrode tip in the ventral subiculum (anteroposterior, 26.5 mm;
lateral, 65.0 mm; ventral, 26.0 mm), right - representative location of the recording electrode tip in the nucleus accumbens (anteroposterior,
+1.6 mm; lateral, 61.0 mm; ventral, 25.5 mm); On the right: a control experiment where acute administration of WIN impaired LTP levels in the
vSub-NAc pathway measured 24 h after a single injection (**, p,0.01).
doi:10.1371/journal.pone.0031731.g002
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interaction effect between trials and treatment (F(1,12) = 1.73, NS).

This suggests that an acute single injection of WIN does not affect

the performance in the water maze task 24 h after the injection.

The object location task. Next, we examined the effects of

chronic exposure to WIN during late-adolescence on short term

spatial memory in the non-aversive object location task. The data

were analyzed using a 2-way ANOVA with treatment (Vehicle/

WIN) and time of testing (24 h, 10 d, 30 d, 75 d) as independent

variables, and exploration index as a dependent variable. A

significant main effect was found for treatment (F(1,55) = 21.35,

p,0.001), suggesting that in all time points measured, the WIN

treated rats spent significantly less time exploring the novel

location compared with the vehicle treated rats (Figure 1b).

There was no significant main effect for time of testing (F(3,55),1,

NS), or a significant interaction effect (F(3,55),1, NS).

One-sample t-test performed on each of the vehicle and WIN

groups revealed a significant difference from the 50% exploration

index point at all times tested in the Vehicle group [24 h:

(t(5) = 4.26, p,0.01); 10 d: (t(8) = 2.82, p,0.05); 30 d: (t(9) = 3.88,

p,0.01); 75 d: (t(6) = 2.97, p,0.05)], but not in the WIN group.

Thus, 24 hours, 10, 30 and 75 days after withdrawal, rats still

demonstrate impaired short-term memory in the object location

task.

There was no significant difference in the sample phase (day 1)

between any of the groups in exploration index (mean6SD)

24 h (Vehicle: 45.7662.19; WIN: 51.361.84), 10 d (Vehicle:

52.0764.01; WIN: 52.5862.51), 30 d (Vehicle: 53.3963.34;

WIN: 52.8662.11), or 75 d (Vehicle: 50.6862.36; WIN:

51.6961.42) after withdrawal.

In order to find whether the effects seen on spatial memory after

24 hours of withdrawal would also be evident after a single

injection of WIN, we performed a control experiment, in which we

examined the effects of an acute administration of WIN (1.2 mg/

kg) on spatial short term memory in the object location task. We

tested the rats in the object location task 24 hours after a single

injection. Independent-samples t-test did not reveal a significant

difference between the groups (Vehicle: 65.762.75; WIN:

68.7662.53; t(10),1, NS), indicating that an acute single injection

of WIN does not affect the performance in the object location task

24 h after the injection (figure 1b, right square).

In a separate experiment we aimed to test whether a lower dose

of chronic WIN (0.5 mg/kg instead of 1.2 mg/kg) is enough to

impair performance in the object location task. As we were

interested in long-term effects, rats were tested in this task after 10

days of withdrawal (Vehicle, n = 7; WIN 10 d, n = 9). Indepen-

dent-samples t-test revealed that rats treated with a lower dose of

WIN also exhibited impairment in short-term memory

(mean6SD) (45.3465.11) compared with vehicle treated rats

(60.6764.64), 10 days after the last injection (t(14) = 2.16, p,0.05),

suggesting that chronic treatment with a lower dose of WIN may

be sufficient for the observed short term memory impairment.

The object recognition task. Since chronic exposure to

WIN during late-adolescence affected non-aversive short-term

hippocampal dependent spatial memory, we asked whether these

effects will appear in a similar non-hippocampal dependent task.

To that end we used the object-recognition task, which examines

the visual and tactile properties of the explored objects rather than

their spatial location.

The data were analyzed using a 2-way ANOVA with treatment

(Vehicle/WIN) and time of testing (24 h, 10 d, 30 d) as

independent variables and exploration index as a dependent

variable (Figure 1c). A significant main effect was found for

treatment (F(1,50) = 15.17, p,0.001), and a significant interaction

effect of [treatment6time of testing] (F(2,50) = 3.23, p,0.05). There

was no significant main effect for time of testing (F(2,50) = 1.38, NS).

Independent samples t-test revealed that the main effect of

treatment stemmed from the fact that the WIN treated rats spent

Figure 3. The effects of chronic exposure to WIN55,212-2
during late-adolescence on locomotion and anxiety in the
open-field. 3a. Chronic administration of WIN caused an increase in
the time the rats spent in the center when tested in the open field 24 h
after the last drug injection. (*, p,0.05: Vehicle different from WIN). 3b.
Chronic administration of WIN had no effect on the number of rearings
the rats performed in the open field when measured 24 h, 10 d or 30 d
after the last drug injection. 3c. Chronic administration of WIN had no
effect on the distance the rats covered in the open field when
measured 24 h, 10 d or 30 d after the last drug injection.
doi:10.1371/journal.pone.0031731.g003
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significantly less time exploring the novel object compared with

the vehicle treated rats, after 24 hrs (t(18) = 3.76, p = 0.001) and

10 d (t(10.34) = 2.38, p,0.05) of withdrawal.

One-sample t-test performed on each of the vehicle and WIN

groups revealed a significant difference between the Vehicle group

and the 50% exploration index point at all times tested, [24 h:

(t(9) = 6.92; p,0.001), 10 d: (t(7) = 10.09; p,0.001), 30 d:

(t(9) = 4.89; p = 0.001)], and in the WIN group a significant

difference was found at 10 d (t(7) = 2.41, p,0.05) and 30 d:

(t(9) = 6.55, p,0.001).

In order to find whether the effects seen in the object

recognition task after 24 hours of withdrawal would also be

evident after a single injection of WIN, we conducted a control

experiment, in which we examined the effects of an acute

administration of WIN (1.2 mg/kg) on short term object recognition

memory. Independent-samples t-test did not reveal a significant

difference between the groups (Vehicle: 63.5164.16; WIN:

60.1363.47; t(11),1, NS), indicating that an acute single injection

of WIN does not affect the performance in the object recognition

task 24 h after the injection (figure 1c, right square).

The effects of chronic exposure to the cannabinoid
receptor agonist WIN55,212-2 during late adolescence
on synaptic plasticity

Synaptic plasticity in the perforant path-dentate gyrus

pathway. Next we sought to examine whether chronic WIN

administration would impair hippocampal LTP. Rats were

anesthetized and taken for electrophysiological recording in the

PP-DG pathway 24 h, 10 d or 30 d after the last chronic WIN

Figure 4. The effects of chronic exposure to WIN55,212-2 during late adolescence on sucrose consumption. 4a. Chronic administration
of WIN had no effect on sucrose consumption when measured at baseline, 24 h, 10 d or 30 d after the last drug injection. 4b. Chronic administration
of WIN had no effect on weight gain compared to the vehicle group when measured at baseline, 24 h, 10 d, or 30 d after the last drug injection.
doi:10.1371/journal.pone.0031731.g004
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injection and compared to a vehicle group. We found no

difference in EPSP amplitude following HFS between vehicle

injected rats tested 24 h (n = 4), 10 days (n = 4) or 30 days (n = 4)

after the last injection (F(2,9) = 1.2, NS), and hence the vehicle

group was grouped to one for reasons of clarity.

Mixed design ANOVA [treatment6time (4613)] post-HFS did

not indicate a significant effect on EPSP amplitude for the

treatment (F(3,26),1, NS), or the interaction between treatment

and time (F(3,26) = 1.39, NS; Figure 2a). There was a significant

within-subject effect for the time (F(1,26) = 63.48, p,0.001), due to

a decrease in potentiation levels from the post tetanic potentiation

(measured 1 min after HFS) throughout the experiment in all

groups. Hence, chronic exposure to WIN did not have a

significant effect on the induction of LTP in the PP-DG pathway

at any of the time points examined. Mixed design ANOVA on

EPSP amplitude pre-HFS [treatment6time (466)] did not reveal

significant effects for the treatment (F(3,26) = 1.22, NS), the time

(F(1,26) = 2.35, NS), or the interaction between treatment and time

(F(3,26) = 2.72, NS).

Synaptic plasticity in the ventral subiculum-nucleus

accumbens pathway. Rats were anesthetized and taken for

electrophysiological recording in the vSub-NAc 24 h, 10 d or 30 d

after the last WIN injection and compared to a vehicle group. We

found no difference between vehicle injected rats tested 24 h, 10 d

or 30 d after the last injection, and hence the vehicle group was

grouped to one for reasons of clarity (n = 8).

Mixed design ANOVA [treatment6time (4613)] post-HFS

indicated significant effects on EPSP amplitude for the treatment

(F(3,28) = 6.91, p = 0.001), for the time (F(1,28) = 4.18, p = 0.05), but

not for the interaction between treatment and time (F(3,28),1, NS;

Figure 2b). Post hoc analysis revealed significantly higher levels of

potentiation in the vehicle group and the WIN 30 d group compared

with the WIN 24 h group (p,0.01, different from Vehicle; p,0.05,

different from WIN 30 d) and with the WIN 10 d group (p,0.001,

different from Vehicle; p,0.01, different from WIN 30 d). Hence,

chronic exposure to WIN impaired the induction of LTP in the

vSub-NAc pathway 24 h and 10 d, but not 30 d after withdrawal.

Mixed design ANOVA on EPSP amplitude pre-HFS [treatment6
time (466)] did not reveal significant effects for the treatment

(F(3,28),1, NS), or the time (F(1,28),1, NS), or the interaction

between treatment and time (F(3,28) = 1.85, NS).

In order to find whether the impairment of LTP seen after 24 h

and 10 d would appear also following a single injection of WIN, rats

were treated with an acute dose of WIN (1.2 mg/kg) and then taken

for electrophysiological recording in the vSub-NAc after 24 h

(Vehicle, n = 5; Acute WIN24h, n = 5; Figure 2b, inset on the

right side). Mixed design ANOVA [treatment6time (2613)]

indicated significant effects on EPSP amplitude for the treatment

(F(1,8) = 17.51, p,0.01), for the time (F(1,8) = 8.9, p,0.05), but not for

the interaction between treatment and time (F(1,8),1, NS). This

suggests that an acute single injection of WIN affects LTP in the NAc

24 h after the injection. Mixed design ANOVA on EPSP amplitude

pre-HFS [treatment6time (266)] did not reveal significant effects for

the treatment (F(1,8),1, NS), or the time (F(1,8),1, NS), or the

interaction between treatment and time (F(1,8),1, NS).

The effects of chronic exposure to the cannabinoid
receptor agonist WIN55,212-2 during late adolescence
on the rats’ weight, sucrose consumption and
performance in an open field test

To exclude motor deficits or other non-specific alterations that

might have caused the effects on learning and plasticity, rats were

chronically administered with WIN and tested for locomotion and

anxiety levels in the open field and their weights and sucrose

consumption were monitored.

Open field. The data were analyzed using a 2-way ANOVA

with treatment (Vehicle/WIN) and time of testing (24 h, 10 d,

30 d) as independent variables, and time in the center/number of

rearings/distance covered as dependent variables.

Analysis of the time the rats spent in the center of the open field

revealed a significant main effect for time of testing (F(2,47) = 5.39,

p,0.01), a significant effect for treatment (F(1,47) = 5.6, p,0.05),

and a significant interaction effect (F(2,47) = 3.85, p,0.05). Post-

hoc comparisons revealed that the significant main effect of time of

testing stemmed from a significant difference between the 24 h

groups and the 10 d groups (p,0.01), and between the 24 h group

and the 30 d group (p,0.01).

Independent-samples t-test revealed a significant difference

between the treatment groups 24 h after withdrawal (t(12.83),1,

p = 0.01), suggesting that the WIN group (n = 10) spent signif-

icantly more time in the center of the open field than the vehicle

group (n = 10), perhaps indicating their lower level of stress

compared to the vehicle group (Figure 3a). There were no

significant differences between the treatment groups after 10 days

of withdrawal (t(17),1, NS), or after 30 days of withdrawal

(t(8.8),1, NS).

Analysis of the number of rearings the rats performed in the

open field revealed a significant main effect for time of testing

(F(2,47) = 20.78, p,0.001; Figure 3b). Post-hoc comparisons

revealed that this effect stems from significant differences between

the 24 h groups (mean6SD) (WIN: 35.862.94; Vehicle:

32.462.94) and the 10 d groups (WIN: 16.5663.1; Vehicle:

18.662.94; p,0.001), and between the 24 h group and the 30 d

group (WIN: 12.5763.5; Vehicle: 20.4363.52; p,0.001).

Analysis of the distance the rats covered in the open field

revealed a marginally significant main effect for treatment

(F(1,46) = 3.96, p = 0.053). However, independent-samples t-test

did not reveal a significant difference between the treatment

groups at any of the time points tested (24 h: t(18),1, NS; 10 d:

t(16),1, NS; 30 d: t(12),1, NS), suggesting no effect on gross

motoric behavior (Figure 3c). This could indicate a possible

tolerance effect to the chronic administration of WIN.

Sucrose consumption test. To examine the effects of

chronic exposure to WIN during late-adolescence on hedonia,

we used the sucrose consumption test. We measured sucrose intake

before injection (baseline), 24 h, 10 d, and 30 d after the last

injection (Figure 4a).

Two-way ANOVA with treatment (Vehicle/WIN) and time of

testing (baseline, 24 h, 10 d, 30 d) as independent variables, and

sucrose consumption as the dependent variable did not reveal

significant effects for the treatment (F(1,13),1, NS), or the

interaction between treatment and time of testing (F(1,13),1,

NS). There was a significant main effect for time of testing

(F(1,13) = 9.51, p,0.01).

Weight. We also measured the rats’ weight up to 30 days after

the last injection. Rats were weighed before injection (baseline),

24 hrs, 10 days, or 30 d after the last injection (Figure 4b). Mixed

design ANOVA on weight gain [treatment6time point (264)] did

not reveal significant effects for the treatment (F(1,11) = 3.11, NS), or

the interaction between treatment and time point (F(1,11),1, NS), but

there was a significant within-subject effect for the time point

(F(1,11) = 660.98, p,0.001), signifying the rats’ weight gain over time.

Discussion

Our findings suggest that the effects of chronic cannabinoid

exposure in the late-adolescent period in rats on learning and
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memory are task- and brain region-specific (see Table 1). The

most robust effect of chronic WIN administration was the

impairment of short-term memory in the spatial version of the

object recognition task that persisted even after 75 days of

withdrawal. However, we found a gradual recovery of behavioral

and electrophysiological impairments in acquisition and short-

term memory in the water maze, short-term object recognition

memory, and LTP in the vSub-NAc pathway. No significant long-

term effects of chronic WIN were observed on locomotion, sucrose

consumption or weight gain. Hence, most of the deficits observed

were temporary corroborating with previous studies showing that

long-term cannabinoid administration produces CB1 receptor

desensitization and down-regulation in the hippocampus that

recovers to control level at 14 days after cessation of treatment

[39,40].

The effects of chronic exposure to WIN55,212-2 during
late adolescence on performance in behavioral tasks

The acquisition in the spatial task in the Morris water maze was

impaired after 24 hrs of withdrawal corroborating with previous

studies using THC and HU-210 [41,42]. The impairment was no

longer evident after 10 days of withdrawal, suggesting that the

24 hrs effect could be due to drug residue of cannabinoids in the

CNS or to withdrawal effects from the drug. This is consistent with

Wise et al. [43], showing that the induction of withdrawal in

THC-dependent rats impaired performance in the water maze.

Twenty-four hours after withdrawal, both treatment groups

showed poor short-term spatial memory, perhaps due to the less

efficient training in the massed protocol compared with the spaced

protocol used in other studies [33]. Acute treatment with WIN did

not affect the acquisition of the water maze task, excluding the

possibility that an acute single injection of WIN affects spatial

learning 24 h after the injection.

In the spatial version of the object recognition task, WIN-

treated rats showed impairment in short-term memory that was

evident up to 75 days after the last injection. This is a robust effect

suggesting that this type of spatial memory is more sensitive to the

effects of chronic WIN exposure during late adolescence than the

water maze task. The first explanation for the differential effects of

WIN on performance involves the different level of stress in each

task. The water maze is a highly aversive learning task, especially

when using the massed training protocol [33] whereas the object

location task is considered non-aversive. The cannabinoid system

and the stress system are highly interconnected [44–49] and it may

be that the effects of WIN on performance in a stressful learning

paradigm are different than in a neutral task. Several studies

suggested that the cannabinoid system is not involved in the

extinction of non-aversive memories [50–52]. Harloe et al. [50]

examined extinction learning under aversive and appetitive

conditions, and reported impairment of extinction learning by a

cannabinoid antagonist only under aversive conditions, suggesting

that the endocannabinoid system might become activated

specifically in highly aversive situations. Similarly, we have

recently shown that WIN microinjected into the basolateral

amygdala can prevent the effects of stress exposure (elevated

platform stress) on performance in an aversive learning task (i.e.,

conditioned avoidance and extinction of inhibitory avoidance)

[53], but WIN could not prevent the effects of the same stressor on

the performance in the non-aversive object location task [54].

Hence, a possible interaction between WIN and the stressfulness of

the task may have a different outcome on performance. The

second explanation relates to the brain areas involved in these

tasks. The water maze task heavily relies on the dorsal CA1 area

[55–57], and the object location task, although heavily relying on

the hippocampus, also involves other brain areas (i.e., prefrontal

cortex, perirhinal cortex; [58–61,38]) that are also affected by the

chronic systemic administration of WIN. As in the water maze

task, chronic treatment with WIN was necessary in order to cause

impairment in performance, since no impairment was evident

24 hours after a single WIN injection.

In the non-spatial object recognition task, we found a gradual

recovery over time of short-term memory impairment, perhaps due

to drug residue. At 10 days after withdrawal, the WIN treated rats

demonstrated attenuated performance compared to the vehicle

treated rats, however their exploration index was significantly

higher than chance levels, suggesting that they acquired the task.

After 30 days of withdrawal, when the drug components would

reasonably be expected to have disappeared from the CNS [62,63],

no effect on short-term memory could be discerned. The object

recognition task is to a great extent dependent on the prefrontal

cortex and the perirhinal cortex [37,38], which may suggest a

greater sensitivity of the hippocampus than the cortex to the effects

of chronic WIN treatment during late-adolescence. An acute single

injection of WIN did not affect performance in the object

recognition task 24 h after the injection suggesting that chronic

treatment with WIN is required for memory impairment to occur.

Table 1. Summary of results.

Time Point

Test 24 hours 10 days 30 days

Water maze Impairment in acquisition No effect -

Location recognition Impairment in short-term memory Impairment in short-term memory Impairment in short-term memory
(also at 75 days)

Object recognition Impairment in short-term memory Attenuation of short-term memory No effect

Synaptic plasticity – PP-DG No effect No effect No effect

Synaptic plasticity – vSub-NAc Impairment of LTP Impairment of LTP No effect

Open field Increased time in the center No effect No effect

Sucrose consumption No effect No effect No effect

Weight No effect No effect No effect

The table summarizes the effects of chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (1.2 mg/kg) for two weeks during the late adolescence
period (post-natal days 45–60) on behavioral and electrophysiological measures of cognitive performance tested 24 hrs, 10 and 30 days after the last drug injection.
doi:10.1371/journal.pone.0031731.t001
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The effects of chronic exposure to WIN55,212-2 during
late adolescence on synaptic plasticity

Chronic WIN administration during late adolescence had no

significant effect on plasticity in the DG hippocampal area

although there are very high levels of CB1 receptors in all

subfields of the hippocampus, including the DG [64–66]. A

possible explanation for the lack of effect is low sensitivity or

adaptation of DG neurons to high chronic levels of WIN. Yet, a

recent study found that acute WIN affects miniature inhibitory

postsynaptic currents in the DG without altering event amplitude,

area, rise time, or decay [67]. This study showed that WIN

potentiated action potential-independent release of GABA in the

DG which was not mediated through a CB1or CB2 receptor

mechanism [67]. This may suggest that although WIN has no

effect on HFS-induced plasticity in the DG, it affects the

spontaneous release of GABA.

We have recently found that acute administration of WIN

(0.5 mg/kg) significantly impaired LTP in the schaffer collateral-

CA1 projection [12]. Here we found that chronic administration

of either vehicle or WIN impaired LTP in the schaffer collateral-

CA1 pathway (data not shown). Hence, we could not differen-

tiate, using our paradigm, between the effects of chronic WIN

exposure and the stress-induced effects of chronic i.p. injections

on LTP. Daily injections can constitute chronic stress for the rats,

and the CA1 area is highly sensitive to stress [68,69]. Hill et al.

[70] found that rats that were chronically exposed to high levels

of the CB1 receptor agonist HU-210 demonstrate impaired LTP

in the CA1 region when examined 18 h following the final drug

administration. There are several differences between our

experiment and Hill’s; drug administration began when the rats

were 300 g, the same point at which we end our drug

administration; electrophysiological recording and stimulating

electrodes were in different coordinates than in our chronic

experiment; rats injected with HU-210 were taken for electro-

physiology after completing extensive behavioral training.

In the vSub-NAc pathway chronic WIN impaired LTP induced

after 24 hrs or 10 days, but not after 30 days, of withdrawal. LTP

in this pathway is NMDA-dependent [71,72]. Also, it has been

suggested that the NAc, by integrating vSub input of contextual

information, mediates goal-directed behavior and that the

hippocampal input in the NAc is well placed to influence reward

and incentive systems [73,74]. The NAc represents a critical site

for mediating the rewarding and/or addictive properties of several

classes of abused drugs, including ethanol, opioids, psychomotor

stimulants, and marijuana [75–77].

Acute treatment with WIN impaired LTP after 24 hours in

this pathway. This could suggest that the NAc is particularly

sensitive to the effects of WIN due to its involvement in the

neural processing of rewarding stimuli. The role of the NAc in

behavior reinforced by both natural reward [78] and drugs of

abuse is supported by vast experimental evidence [79,80].

Moreover, in vivo experiments indicate that cannabinoids reduce

excitability of NAc neurons [81]. This acute effect is consistent

with Mato et al. [82] who found impairment of LTD in the NAc

and CA1, 24 hours following a single in vivo injection of THC.

This effect was reversible within 3 days, suggesting that the

modification in the functional properties of cannabinoid

receptors was transient. Together with our previous findings on

the impairing effects of acute WIN on LTP in the CA1 [12] the

data suggest that alterations in synaptic plasticity as a result of

cannabinoid treatment can occur within 24 hours of acute

exposure.

The effects of chronic exposure to WIN55,212-2 during
late adolescence on non memory related measures

Chronic exposure to WIN had no effect on weight gain, sucrose

consumption or gross locomotion, but it significantly affected the

rats’ level of anxiety, as measured in the open field, after 24 hrs of

withdrawal. These findings suggest that the long-term effects of

chronic WIN on learning and plasticity are probably not due to

changes in sensory-motor parameters or other non-specific effects.

Since acute administration of cannabinoids results in depression

of motoric activity in the open field, and chronic administration

results in tolerance to these effects [83], the lack of effect here on

locomotion could be the result of tolerance to WIN, developed

over the two weeks of daily injections.

Increased time spent in the central part of the open field arena is

an indication of a reduction in anxiety-like behavior [84].

Activation of the cannabinoid system has anxiolytic properties

[45,85] that could explain the effect in the open field 24 hrs after

withdrawal when drug residue may still be present in the CNS.

Anhedonia, or the decreased ability to experience pleasure, can

be examined in rats by reduction in sucrose intake. Responding to

natural and artificial rewards is mediated by the NAc and its

dopaminergic inputs [86]. Although we found that chronic WIN

interferes with LTP in the NAc, no effect was observed in sucrose

consumption. This may suggest a greater sensitivity of the LTP-

mediated neural circuit in the NAc to the effects of chronic WIN

than the neural circuit mediating sucrose intake.

Long-term effects of cannabinoids
Prolonged exposure to cannabinoid agonists in laboratory

animals is associated with the development of tolerance to most of

their pharmacological effects [87]. There is a brief ‘drug residue’

effect of 12–24 hrs after acute exposure to cannabinoids that may

persist longer in chronic users [63]. The average terminal

elimination half-life of the THC metabolite THCCOOH in plasma

of chronic cannabis users is as long as 4.3 days and may be as long as

12.6 days [88]. WIN has a shorter half-life than THC [89–91] and

undergoes significant metabolism similar to that of other cannabi-

noids [92]. Prolonged treatment with THC or with WIN resulted in

cannabinoid receptor desensitization and down-regulation through-

out the brain, as well as tolerance to cannabinoid-mediated effects,

and attenuation of CB1 receptor-mediated G-protein activation

that persisted for several days after cessation of treatment [39–40].

In adolescent rats, this desensitization of CB1 receptors following

prolonged treatment with THC is slower than in adults, perhaps

contributing to the differentiation in long-lasting cognitive effects

between adolescents and adults [93].

Summary
Our results point to a gradual recovery over time rather than

persistent long-lasting impairments following chronic WIN

administration. Yet, WIN had a long-term impairing effect on

performance in a non-aversive hippocampal-dependent short-term

memory task, corroborating animal and human studies on short-

term memory [94–98].

Studying the lasting effects of cannabinoids on cognitive

function may advance our understanding of the potential harmful

consequences of cannabinoids. Dissociating the short-term from

the long-lasting effects of cannabinoids may indicate whether long-

term exposure to cannabinoids is associated with long-lasting

deficits in higher brain function that persist after drug use stops.

This will help in determining whether the clinical benefits of using
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cannabinoids outweigh the risks, and to better cope with the

deficits induced by cannabinoids.
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87. González S, Cebeira M, Fernández-Ruiz J (2005) Cannabinoid tolerance and
dependence: a review of studies in laboratory animals. Pharmacol Biochem

Behav 81: 300–18.
88. Johansson E, Halldin MM, Agurell S, Hollister LE, Gillespie HK (1989)

Terminal elimination plasma half-life of delta-1-tetrahydrocannabinol (delta-1-
THC) in heavy users of marijuana. Eur J Clin Pharmacol 37: 273–277.

89. Brusberg M, Arvidsson S, Kang D, Larsson H, Lindström E, et al. (2009) CB1

receptors mediate the analgesic effects of cannabinoids on colorectal distension-
induced visceral pain in rodents. J Neurosci 29: 1554–64.

90. Croxford JL, Miller SD (2003) Immunoregulation of a viral model of multiple
sclerosis using the synthetic cannabinoid R+WIN55,212. J Clin Invest 111:

1231–40.

91. Valverde O, Karsak M, Zimmer A (2005) Analysis of the endocannabinoid
system by using CB1 cannabinoid receptor knockout mice. In: Pertwee R, ed.

Cannabinoids: Handbook of experimental pharmacology. Heidelburg: Springer-
Verlag, Vol. 168. pp 117–147.

92. Zhang Q, Ma P, Iszard M, Cole RB, Wang W, et al. (2002) In vitro metabolism
of R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo [1,2,3-de]1,4-

benzoxazinyl]-(1-naphthalenyl) methanone mesylate, a cannabinoid receptor

agonist. Drug Metab Dispos 30: 1077–86.
93. Moore NL, Greenleaf AL, Acheson SK, Wilson WA, Swartzwelder HS, et al.

(2010) Role of cannabinoid receptor type 1 desensitization in greater
tetrahydrocannabinol impairment of memory in adolescent rats. J Pharmacol

Exp Ther 335: 294–301.

94. Hampson RE, Simeral JD, Kelly EJ, Deadwyler SA (2003) Tolerance to the
memory disruptive effects of cannabinoids involves adaptation by hippocampal

neurons. Hippocampus 13: 543–556.
95. Harvey MA, Sellman JD, Porter RJ, Frampton CM (2007) The relationship

between non-acute adolescent cannabis use and cognition. Drug Alcohol Rev

26: 309–19.
96. Jacobsen LK, Mencl WE, Westerveld M, Pugh KR (2004) Impact of cannabis

use on brain function in adolescents. Ann NY Acad Sci 1021: 384–90.
97. Jager G, Kahn RS, Van den Brink W, Van Ree JM, Ramsey NF (2006) Long-

term effects of frequent cannabis use on working memory and attention: an
fMRI study. Psychopharmacology (Berl) 185: 358–68.

98. Kanayama G, Rogowska J, Pope HG, Gruber SA, Yurgelun-Todd DA (2004)

Spatial working memory in heavy cannabis users: a functional magnetic
resonance imaging study. Psychopharmacology (Berl) 176: 239–47.

Cannabinoids Affect Hippocampal Short-Term Memory

PLoS ONE | www.plosone.org 12 February 2012 | Volume 7 | Issue 2 | e31731


