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Abstract

Inprokaryotes, known mechanismsof lateral gene transfer (transformation, transduction, conjugation, and gene transfer agents)

generate new combinations of genes among chromosomes during evolution. In eukaryotes, whose host lineage is descended

from archaea, lateral gene transfer from organelles to the nucleus occurs at endosymbiotic events. Recent genome analyses

studyinggenedistributions have uncoveredevidence for sporadic, discontinuous eventsofgene transfer frombacteria toarchaea

duringevolution.Other studies haveused traditional modelsdesigned to investigategene family sizeevolution (Count) to support

claims that gene transfer to archaea was continuous during evolution, rather than involving occasional periodic mass gene influx

events. Here, we show that the methodology used in analyses favoring continuous gene transfers to archaea was misapplied in

other studies and does not recover known events of single simultaneous origin for many genes followed by differential loss in real

data:plastidgenomes.Using the samesoftwareand the samesettings, wereanalyzedpresence/absencepatterndata for proteins

encoded in plastid genomes and for eukaryotic protein families acquired from plastids. Contrary to expectations under a plastid

origin model, we found that the methodology employed inferred that gene acquisitions occurred uniformly across the plant tree.

Sometimes as many as nine different acquisitions by plastid DNA were inferred for the same protein family. That is, the meth-

odology that recovered gradual and continuous lateral gene transfer among lineages for archaea obtains the same result for

plastids, even though it is known that massive gains followed by gradual differential loss is the true evolutionary process that

generated plastid gene distribution data. Our findings caution against the use of models designed to study gene family size

evolution for investigatinggene transferprocesses, especiallywhentransfers involvingmore thanonegenepereventarepossible.
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Introduction

Lateral gene transfer (LGT) has had a major impact on gene

distributions among archaeal chromosomes during evolu-

tion (Wagner et al. 2017). There are basically two ways

that are currently employed to infer the evolutionary pro-

cesses underlying gene distributions. One approach is to

construct phylogenetic trees for all proteins in a given set

of genomes and to compare topologies in search of phy-

logenetic congruence or incongruence, evoking vertical

inheritance to account for the former and LGT to account

for the latter. Despite the occurrence of historical events of

lateral gene transfer among prokaryotes, applications of

this approach have nevertheless generally led to phyloge-

netic reconstructions favoring a single dominant underly-

ing prokaryotic tree (e.g., in Daubin et al. 2003). However,

some tree building studies with prokaryotes have uncov-

ered significant amounts of phylogenetic incongruence,

also among early diverging lineages, and suggested lateral

transfer of genes from bacteria to archaea (e.g., in Pisani

et al. 2007).
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Species tree reconstructions from multiple independent

gene loci have been used to study gene distributions. This ap-

proach requires reconciliation of all gene tree topologies, all

gene duplications, all gene losses, and all gene transfers simul-

taneously for a given set of species (Szöll}osi, Dav�ın et al. 2015).

The trouble with this approach is that the number of model

parameters is large and the processes of molecular evolution

complex. Models with few parameters run the very real risk of

systematic error from model misspecification. Models with

large numbers of parameters make it difficult to draw precise

conclusions and quantify statistical error, as was recently ob-

served for analyses of gene phylogenies addressing mitochon-

drial origin (Martin, Roettger et al. 2017).

One limitation of tree-based approaches is that they are

impacted by both incomplete taxon sampling and by the fact

that the vast majority of genes in prokaryotes occur in only a

very few genomes (Dagan and Martin 2007). Genes present

in only two or three genomes will appear to have been ver-

tically inherited in all trees, and at least a third of all genes

present in four genomes will also appear to be vertically inher-

ited by phylogenetic congruence criteria alone. The problem

with this potential methodological bias is that it will inflate

ancestral genome sizes to unacceptably large values if one

looks at all genes (Dagan and Martin 2007), not just the

ones for which trees are convenient to construct.

An alternative and still relatively new approach for study-

ing gene distribution is to investigate the factors underlying

gene distributions, to cluster all protein coding genes in a

given set of genomes into protein families, and to examine

not only the presence/absence patterns of those genes along

a given reference tree but also the phylogenies for each indi-

vidual cluster (Nelson-Sathi et al. 2012; Ku et al. 2015). When

applied to archaea, this approach uncovered that haloarch-

aea acquired �1000 genes from bacteria in a process that

transformed a chemolithoautotrophic methanogen ancestor

into a facultative aerobic heterotroph (Nelson-Sathi et al.

2012) and that gene acquisitions from bacteria followed by

extensive differential loss was important in the origin and

evolution of several major archaeal clades (Nelson-Sathi

et al. 2015). The same fundamental pattern is observed in

eukaryote evolution, where the host lineage is thought to

descend from archaea (Martin and Müller 1998; Williams

et al. 2013; McInerney et al. 2014; Zaremba-Niedzwiedzka

et al. 2017), namely events of mass gene acquisition followed

by differential loss (Ku et al. 2015), lossbeing a very important

factor in genome evolution (Albalat and Ca~nestro 2016).

Recently, Groussin et al. (2016) reanalyzed the data of

Nelson-Sathi et al. (2015) using a program called Count

(Cs}urös 2010). Count implements a wide range of methods

and models for reconstructing the evolution of gene family

sizes within multiple species in a phylogeny. These include

birth–death process models for gene gain and loss within fam-

ilies, and LGT between lineages. Groussin et al. (2016) made

the curious decision to use Count (Cs}urös 2010) to investigate

binary (gene presence/absence) data, essentially shoe-horning

binary data into analysis with a method that is designed to

investigate numerical data (integers>1, changes in gene fam-

ily size) across a phylogeny. Groussin et al. (2016) inferred es-

sentially the same amount of LGT as Nelson-Sathi et al. (2015)

found,butCountdistributedtheLGTsacross thereferencetree

in such a way as to evenly distribute gains and losses according

to the models of gene family counts implemented in the soft-

ware. From that result, they concluded that LGT was mostly

uniform and continuous during archaeal evolution (Groussin

et al. 2016), not episodic (Nelson-Sathi et al. 2015). That how-

ever involved misapplication of the models in Count.

The same misapplication of the models in Count also leads

to inference of vast amounts of continuous LGT during eu-

karyote evolution (Szöll}osi, Tannier et al. 2015), even though

there are no known genetic mechanisms for LGT among

eukaryotes (Martin 2017), in contrast to the very well charac-

terized mechanisms of LGT among prokaryotes (Popa and

Dagan 2011). There are reasons to suspect that the amounts

of LGT that Szöll}osi, Tannier et al. (2015) found for fungi

(eukaryotes) are methodological artefacts, because if eukar-

yotes were exchanging genes freely across higher taxonomi-

cal boundaries then eukaryote genomes should exhibit

cumulative effects of LGT as prokaryote genomes do, but

the converse is observed (Martin 2017). Moreover, genome-

scale tests for eukaryote LGT show that gene evolution in

eukaryotes is vertical, mediated by loss, and punctuated by

gene acquisitions at endosymbiotic events (Ku et al. 2015; Ku

and Martin 2016).

We suspected that model misspecification and model mis-

applicationexplaintheunusual resultsobtainedinthestudyby

(Groussin et al. 2016), where Count was forced to analyze

presence/absence data. However even if that problem was

fixed, deeper challenges remain. A critical assumption in this

context is that the evolutionary histories of different gene

families are independent of one another. Thus, an LGT involv-

ing a transfer of n genes would be considered as n individual

events, because each gene is considered individually in gene

presence/absence studies. Major acquisition events, which al-

ter the evolutionary fate of large numbers of genes in a rela-

tively short period of time fall completely outside the scope of

current models that investigate gene presence/absence data

across a reference tree (Groussin et al. 2016). The method of

Nelson-Sathi et al. (2015) does not investigate gene presence/

absencepatternsacrossa referencetree, itestimates theprob-

ability that two independent sets of trees with nonidentical

leaf sets are drawn from the same distribution. Of further

concern is the potential impact of imposing constant rates

of gene birth and death across different gene families

(Szöll}osi, Tannier et al. 2015; Groussin et al. 2016). To

examine the extent to which these systematic problems im-

pact the inference of genome evolution, we apply the meth-

odology used by Groussin et al. (2016) and Szöll}osi, Tannier

et al. (2015) to infer the distribution of plastid genes that
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were acquired via endosymbiosis and then lost during

plastid genome evolution. For plastid genome data, we

know in advance that the “loss only model” correctly

describes the evolution of gene content.

Materials and Methods

Data Collection and Annotation

Archaeal Protein Families

The data set used for the study of the origin of archaeal pro-

tein families included 1,981 prokaryotic genomes—134 ar-

chaea and 1,847 bacteria (Nelson-Sathi et al. 2015),

hereafter referred to as AR data set. The amino acid sequen-

ces were retrieved from RefSeq, NCBI (version June 2012).

The data set consists of 254,938 archaeal proteins in

25,762 protein families, of which the subset consisting of

the import clusters (13,631 archaeal proteins in 2,264 protein

families), used in Groussin et al. (2016), was used as well here.

Plastid Protein Families

A data set encompassing all plastid encoded proteins for 193

photosynthetic eukaryotes (Schönfeld 2012), designated as the

PLdata set,wasused. It consists of254protein families from193

sequencedplastidgenomesofdifferenteukaryotes, encompass-

ing6,561proteinsequencesintotal.Allsequenceswereretrieved

from RefSeq, NCBI (version January 2011). Each protein family

was manually annotated into Uniprot functional categories.

Eukaryote Protein Families

The eukaryotic protein data set was taken from Ku et al.

(2015), hereafter referred to as the EK data set. It contains

21,146 protein sequences from 55 eukaryotic genomes from

six different supergroups. The data set was divided into two

different matrices: one for 1,060 protein families shared in

photosynthetic eukaryotes and densely distributed in cyano-

bacteria (6,528 sequences, corresponding to block A, B, and

C in Ku et al. 2015) and another for 1,397 protein families

present in the eukaryotic common ancestor that are likely to

correspond to the origin of the mitochondrion (14,618

sequences corresponding to block E in Ku et al. 2015).

Foreachdataset,apresence/absencepatternwasconstructed.

In the presence/absence patterns, each row corresponds to a

speciesandeachcolumntoaprotein family,binaryelementsof

the matrix indicate presence or absence in the respective ge-

nome. Phylogenetic reference trees for the AR and EK data sets

were taken fromNelson-Sathi et al. (2015) andKuetal. (2015),

respectively. For the PL data set, the reference tree was assem-

bled from Schönfeld (2012) based on Bayesian inference of

trees for the individual genes. Internal nodes are designated

as HTUs (hypothetical taxonomic units), terminal nodes as

OTUs (operational taxonomic units).

BLAST against Cyanobacterial Genomes

The 15,588 protein sequences in the PL data set were blasted

against 94 cyanobacterial genomes retrieved from RefSeq,

NCBI (version September 2016, listed in supplementary table

1, Supplementary Material online). Hits were filtered with a

threshold of e-value �1E-10 and local identity �25%.

Calculation of Gain and Loss Events with Count

Version 10.04 of Count (Cs}urös 2010), written in Java, was

used. As input, Count requires a presence/absence pattern

and the corresponding phylogenetic reference tree. Count’s

three methods for the analysis of gene evolution—two meth-

ods of maximum parsimony, Dollo (DP) and Wagner (WP) and

the phylogenetic birth-and-death model (BD)—were tested.

All models try to achieve an optimal score, with the exact op-

timization criterion varying according to the settings.

Although using the same mathematical approach, the differ-

ence between the two parsimony methods here is, that DP

weightsa lossof agene less thanagainwhileWPhas the same

cost for a loss or a gain of a gene. The reference tree and the

appropriate presence/absence pattern were loaded into

Count (branch lengths are ignored in parsimony models and

were not used for the BD model). The settings were then op-

timized using likelihood, a necessary step in order to use the

birth-and-deathmodel.All othermodelparametersusedwere

the default Count parameters (Groussin et al. 2016). The fol-

lowing settings were used: the model type was the gain–loss

type, the family size distribution at the root was set to Poisson,

lineage-specific variation was left unspecified, the gain varia-

tion across families was set to 1 for the edge length, the loss

and the gain rate. The maximum number of optimization

rounds was set to 100 with a convergence threshold on the

likelihood of 0.1. The results of the different methods were

displayed foreachCount record in thegraphicaluser interface,

and then evaluated using a Perl script. The respective phylo-

genetic trees were processed and the results were recorded.

Trees were drawn with FigTree v1.4.2 (http://tree.bio.ed.

ac.uk/software/figtree; last accessed April 2018) from the

results provided by Count. The gain and loss events of the

protein families for the respective method were summed and

mapped for each corresponding node, respectively, in the

phylogenetic tree. For the phylogenetic birth-and-death

model the computed numbers for each protein family were

rounded up (� 0.5) and down (< 0.5), respectively.

Results

Reproducing Count’s Results for the Origin of Archaeal
Protein Families

To reproduce the result of Groussin et al. (2016), we analyzed

the subset of the AR data set (Nelson-Sathi et al. 2015) that

they analyzed using the phylogenetic birth-and-death

model of Count. A comparison (supplementary fig. 1,

Kapust et al. GBE
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Supplementary Material online) shows that the number of

gains calculated here using Count versus gains calculated us-

ing Count in Groussin et al. (2016) differed only very slightly

and only for two archaeal groups (Thermococcales—58 vs

56—and Haloarchaea—219 vs 215). The reasons why

Count produced very slight differences for six out of 568

gain events at the roots of the groups in our analysis versus

the results of Groussin et al. (2016) are likely due to numerical

error and the use of heuristic optimization algorithms.

More important is the circumstance that Count attributed

no gains to the root of the archaeal tree in our analyses, nor

did it do so in Groussin et al. (2016) but it does calculate more

than one origin for different protein families. More than one

origin for one protein family may occur when the distance

between the species in the tree which have this protein is

quite large, for example, when a specific protein is present

in the species on both outer edges of the reference tree but is

not present in the center nodes. Count, when instructed to

handle binary data, which it was not designed to do (Cs}urös

2010), then calculates that this protein originates at two or

more different positions in the tree. Supplementary figure 1b,

Supplementary Material online, shows the number of differ-

ent origins per archaeal protein family calculated here for the

AR data set. For 1,726 of the 2,264 archaeal protein families

analyzed, Count calculated a single gain event, for 451 pro-

tein families two different origin events, for 87 families three

different origins and for four of the protein families 6 different

origins. For none of the protein families did Count calculate an

origin at the root of the archaeal reference tree (Groussin

et al. 2016).

Count Does Not Recover a Loss Only Process

To see whether Count can recover even an obvious process of

massive gain followed by differential loss when misapplied to

binary (presence/absence) data, we examined plastid

genomes. It is generally accepted that plastids arose from

cyanobacteria via endosymbiosis (Schwartz and Dayhoff

1978). It is also generally accepted that plastid genomes

underwent reduction during evolution (Ohyama et al.

1986), that many genes were transferred to the nucleus dur-

ing evolution and that many gene losses from cpDNA oc-

curred in independent lineages (Martin et al. 1998, 2002).

Figure 1 shows the presence/absence patterns for chloroplast

encoded proteins in a sample of photosynthetic eukaryotes. A

BLAST search against 94 cyanobacterial genomes (supple-

mentary table 1, Supplementary Material online) shows that

95% of the sequences (highlighted in supplementary fig. 2,

Supplementary Material online) have readily identifiable

homologs in cyanobacteria. The tree is rooted with

Cyanophora, but other roots, including the red lineage have

been proposed (Rodr�ıguez-Ezpeleta et al. 2005).

Regardless of whether we use the parsimony or the

birth-and-death options of Count, the program only

counts about half of the 254 protein families as being pre-

sent in the plastid ancestor (figs. 2 and 3a). The other half

of the (n.b.) plastid-encoded proteins are reconstructed by

Count to have been acquired after the initial symbiotic

event leading to the origin of the plastid, during plant evo-

lution. That is, Count indicated that the primary endosym-

biotic event involved acquisition of half a plastid followed

by later aquisition of the other half via LGT events in inde-

pendent lineages. In the birth-and-death model that

Groussin et al. (2016) used, Count reports that 86 protein

coding genes were acquired once and 36 protein coding

genes were acquired twice in the process of lineage diver-

sification during plastid evolution. That is, Count calculates

that the 122 genes that were acquired from cyanobacteria

after lineage divergence during plant evolution and then

laterally transferred among eukaryotes. Count does not

specify donor or recipient lineages. Another five protein

coding genes were acquired three times during plastid

evolution.

In the 112 years since Mereschkowsky (1905) suggested

that plastids arose from cyanobacteria, no one has seriously

proposed a stepwise acquisition of plastid genomes. Rather,

plastid endosymbiosis operates via mass acquisition of genes

at the cyanobacterial origin of the organelle, followed by gene

loss and transfer to the nucleus (Martin and Herrmann 1998;

Martin and Müller 1998; Timmis et al. 2004; Archibald 2015).

The methods used by Groussin et al. (2016), however, deliver

a result that clearly suggests “continuous” LGT into and

among the members of the eukaryotic lineage in order to

construct plastids “on the fly” in independent eukaryotic lin-

eages. That is important because the central argument of

Groussin et al. (2016) was that Count “supports the contin-

uous acquisition of genes over long periods in the evolution of

Archaea.” The suspicion is that their methodology is system-

atically biased toward the inference of continuous acquisition

and does not recover expected events of periodic massive

gains followed by gradual differential loss even when that is

the true process. This raises serious concerns about the anal-

ysis by Groussin et al. (2016).

Figure 2 shows the gain events calculated by the three

models plotted against the reference tree. Eleven is the max-

imum number of gains at an OTU for the BD model (also high

for WP with 17 gains) at Pyramimonas parkeae, a model or-

ganism for early evolved Viridiplantae (Satjarak and Graham

2017). Wagner Parsimony places the highest number of gain

events (nineteen) at Nephroselmis olivacea, which is consid-

ered a descendant of the earliest-diverging green algae

(Turmel et al. 1999). It should be noted that all models place

a considerable number of gain events at the common ances-

tor of Rhodophyta, Hacrobia, and SAR.

Wagner Parsimony predicts the largest number of different

gain events for the same protein families (fig. 3a)—eight dif-

ferent origins for ycf20, a family of unknown function and

nine for cysT, a sulfate transporter. The BD model predicts a
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FIG. 1.—Presence/absence pattern of plastid protein families of the PL data set. Each black tick indicates the presence of a protein in an OTU. The

number of protein families is indicated on the x axis. On the right side of the matrix are the OTUs, on the left the corresponding phylogenetic reference tree.

Groups containing secondary plastids are marked with an *.
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maximum of 4 different origins for ycf47, a poorly character-

ized probable protein exporter in thylakoid membranes. Dollo

Parsimony does not predict more than one origin for any

family, with only one gain event for all other 129 proteins

occurring somewhere else throughout the tree—this is

expected, as Dollo Parsimony favors the smallest number of

different gain events. In other analyses (Martin et al. 2002) the

corresponding patterns were identified as being the result of

multiple independent gene losses. Both the BD and WP mod-

els predict a large number of gain events at the leaves of the

reference tree—43 and 147, respectively (fig. 3b).

All three models in Count calculate at least one loss event

per protein family for more than half of the families in the

data set (supplementary fig. 3, Supplementary Material on-

line). However, the number of gains (LGTs or convergent gene

sequence homology origin) and losses per protein family is in
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the same order of magnitude. This is evident in the result of

the functional annotation of gain and loss events done for the

PL data set (fig. 4). We annotated 224 of the 254 families.

With the exception of Dollo Parsimony for photosystem II

proteins and Calvin cycle, the tree models in Count predict

at least one gene gain event in all the functional categories.

The Birth-and-Death Model of Endosymbiosis Events

Current views of eukaryote origin have it that eukaryotes

arose from a symbiotic association between an archaeal

host lineage and a mitochondrial endosymbiont (McInerney

et al. 2014; Martin and Tielens et al. 2017; Zaremba-

Niedzwiedzka et al. 2017) involving gene transfers from en-

dosymbiont to host (Timmis et al. 2004; Thiergart et al. 2012).

The origin of plastids entailed an additional influx of genes at

the origin of the plant lineage (Ku et al. 2015). Thus, mito-

chondria and plastids each are currently understood to have

had different, single origins, where large portions of the en-

dosymbiont genomes entered the eukaryotic lineage. We

checked the ability of the gene family size model used within

Count to recover the massive episodic gene acquisition events

at the origin of eukaryotes and chloroplasts, using presence/

absence patterns prepared from the EK data set (Ku et al.

2015) and ignoring (as in Groussin et al. 2016) the fact that

Count (Cs}urös 2010) was not designed to analyze binary

data. The distribution of those families is shown in figure 5,

which is reproduced with permission from Ku et al. (2015).

Indeed, Count’s BD model placed 1,410 of all 2,972 origin

events for Group E proteins on the terminal edges of the

phylogenetic reference tree (fig. 6a). The largest number of

different gain events in a single OTU—98—was calculated

for Amphimedon queenslandica, a sponge species known

as a model for studying the origin and early evolution of

animals (Srivastava et al. 2010). At the inner nodes of the

tree the gain events were distributed almost uniformly,

with only eight of the 53 inner nodes receiving no gain

events with Count.

Out of 1,397 eukaryotic protein families belonging to

Group E (see fig. 5) Count calculated that only 172 had a

single origin at the root and no other gains anywhere else

on the tree (fig. 6b). An additional 168 mitochondrial families

were present at the root, however with additional origins

spread throughout the tree (between one and 5 different

origins). For 885 of the Group E protein families Count calcu-

lated between two and eight independent gain events (from

prokaryotes via LGT or via eukaryote–eukaryote LGT). Count

places a massive number of gain events at the leaves—

1,410—for the Group E protein families (fig. 6c). It is impor-

tant to recall that for the 2,585 genes families present in

eukaryotes and prokaryotes in the data set of Ku et al.

(2015), 87% show evidence for a single origin at the root

using maximum likelihood methods (Ku et al. 2015). By con-

trast, Count reports that eukaryotes have acquired 88% of

their genes independently from prokaryotes, but from the

same prokaryotic donor each time, because otherwise the

gene trees would not reflect a single origin relative to pro-

karyotic homologues (Ku et al. 2015). Clearly, within binary

data, Count does not model adequately mass acquisitions

such as those incurred at endosymbiotic events that gave

rise to organelles, the reason being that it was not designed

to model binary data (Cs}urös 2010).
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In the case of plastid families (Group A, B, and C in fig. 5),

the genes for which are conspicuously widespread among

cyanobacteria (fig. 5), Count produces the same effect: only

38 proteins out of 1,060 originate once and at the root of the

subtree for plastid-containing species (fig. 6a and b). Count

attributes another 191 families to the root and with additional

origins elsewhere on the tree (between two and five different

origins). According to Count, eukaryotes and plastids would

have been acquiring the genes for the proteins that they need

to survive “on the fly,” that is via independent gains (of the

same genes in independent lineages) during eukaryotic origin.

Furthermore, phylogenetic testing has shown that the vast

majority of eukaryotic proteins in Group A, B, C, and E having

homologues in prokaryotes are monophyletic, such that a

single origin, not multiple origins, is the preferred model

(Ku et al. 2015). Count does not recover that aspect of the

data. Moreover, Ku et al. (2015) tested to see whether eu-

karyote to eukaryote LGT could account for the patchy distri-

bution of the eukaryotic genes in figure 5. The result was that

gene evolution in eukaryotes is resoundingly vertical (Ku et al.

2015), not lateral as in prokaryotes, hence the many indepen-

dent origins (LGT) that Count infers do not reconcile with the

phylogenies of the proteins underlying the presence/absence

patterns with which Count operates. Out of the 1,761 calcu-

lated origins of the different plastid protein families, 339, al-

most a fifth, were found at leaves (fig. 6c). In only nine out of

the 31 inner nodes of the plastid subtree there were no gain

events of plastid families. Again, for the 2,585 gene families

present in eukaryotes and prokaryotes in the data set of Ku

et al. (2015), 87% show evidence for a single origin at the

eukaryotic root using maximum likelihood methods (Ku et al.

2015).
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By contrast, Count reports that plastid bearing eukaryotes

have acquired 96% of their genes independently from pro-

karyotes, but from the same prokaryotic donor each time,

because otherwise the gene trees would not reflect a single

origin relative to prokaryotic homologues (Ku et al. 2015).

Clearly, Count is doing something very unusual with pres-

ence/absence pattern data in the case of mass acquisitions

such as those incurred at endosymbiotic events that give rise

to organelles. The same is almost certainly true for the mass

acquisitions in archaea, where Count imposes a uniform pro-

cess of acquisition upon the data, regardless of what the true

process was.

Discussion

LGT is important in archaea (Wagner et al. 2017). Two recent

studies have indicated that in archaea, gene acquisitions from

bacteria can be episodic (Nelson-Sathi et al. 2012, 2015), sim-

ilar results were found for transfers at the origin of eukaryotes

and at the origin of plastids (Ku et al. 2015). Groussin et al.

(2016) used a questionable application of Count (Cs}urös

2010) as evidence that LGT in archaea is uniform, not epi-

sodic. We checked to see if the analysis carried out by

Groussin et al. (2016) could recognize loss-only as the true

model. We investigated proteins encoded in plastid genomes,

which were sequestered from the cyanobacterial lineage ca.

1.6 Ba and have been vertically inherited in eukaryotes since,

except during secondary endosymbiotic events. We analyzed

the three different methods for ancestral reconstruction avail-

able in Count: the birth-and-death (BD) model, Dollo

Parsimony (DP), and Wagner Parsimony (WP). The results

obtained show that with BD and WP, Count distributes the

origin of eukaryotic protein families uniformly throughout the

tree and that more than one eukaryote LGT event is often

calculated for the same protein family. With DP, there are also

gain events throughout the tree, although not at the leaves

(OTUs) and not twice for the same family.

The results of Count would suggest a process of continu-

ous LGT for plastids and for eukaryotes, which runs counter to

data (Ku et al. 2015; Ku and Martin 2016), the standard

FIG. 5.—Gene distributions for eukaryotic genes. Reproduced with permission from Ku et al. (2015).
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Darwinian paradigm of eukaryote evolution (Martin 2017),

and eukaryote diploid genetics (Charlesworth et al. 2017).

Count has it that different eukaryotic lineages independently

assembled the collections of genes that make them eukary-

otic (fig. 6) and that plastids independently assembled their

genomes to look like reduced cyanobacterial genomes (figs. 2

and 3). Such inferences cannot be true.

We can see two potential explanations for why these anal-

yses appear to fail. The first, and most obvious, is the misap-

plication of the models in Count to analyze binary data, rather

than gene family size data. Groussin et al. (2016) carried out a

form of data misrepresentation: gene families of any size in a

genome are all coded as 1. A second, and more serious, prob-

lem with using Count to infer LGT events from binary data is

the assumption of independence of gene families. Clearly this

assumption is violated in the cases of acquisition and loss

studied here (one large single gain followed by many inde-

pendent losses).

However, the independence assumption could also distort

inferences made in a more general setting (Lassalle 2017).

There are two main, but related, effects. Firstly, the relative

cost, to parsimony scores of likelihood, of LGTs are skewed. It

becomes less costly, in terms of likelihoods, cheaper to posit

separate LGTs for each gene family. Secondly, the indepen-

dence of families means that the history for each gene family

is inferred separately with no sharing of information across

families. As each gene history is inferred using only the pres-

ence/absence pattern for that family (and the reference tree),

the position of LGTs fit individually irrespective of whether

they make sense in the larger context. The method that

Nelson-Sathi et al. (2015) used to determine whether gene

gain events correspond to the clade origins is independent of

any reference tree and is even independent of gene presence/

absence patterns: it compares two sets of trees with noniden-

tical leaf sets to determine whether their topologies were

drawn from the same distribution.

In summary, the problem with the study by Groussin et al.

(2016) is not that Count produces erroneous results. Count is

a collection of different, efficient analysis methods for numer-

ical characters, and is highly effective at reconstructing the

evolution of gene family size. The problem with the study

by Groussin et al. (2016) is that Count was applied to a prob-

lem that it was not designed to solve. The results show that

using Count and especially these specific models was inap-

propriate for this data set. The simplifying choices made here,

namely using binary presence/absence data and constant

rates across families, seem to have a large influence and

thus make the inference untrustworthy. The likelihood max-

imization used for the BD method requires a nonbinary

distribution.

This is not a theoretical criticism: we have shown here that

this problem has real and significant impact on inference. In

particular, the systematic error explains the failure of Groussin

et al. (2016) to recover the patterns of archaeal LGT

uncovered in Nelson-Sathi et al. (2015) by methods that esti-

mate the probability that two sets of trees were drawn from

the same distribution.

The incorporation of dependence between gene families

into methods like Count would be challenging both compu-

tationally and mathematically. Significant progress toward a

heuristic solution has been made recently by Lassalle (2017).

However, it could be still impossible to distinguish convinc-

ingly between different scenarios based only on presence/ab-

sence pattern data, there is simply insufficient information per

gene family, and it might be statistically impossible to discrim-

inate between radically different histories. The tests imple-

mented by Nelson-Sathi et al. (2015) lacked the statistical

power of full likelihood-based methods (Yang 2007), but on

the other hand made no assumptions about the species tree

and few assumptions about the process of LGT accumulation,

gaining robustness in turn.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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