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Simple Summary: Oesophageal adenocarcinoma (OAC) is a type of cancer of the oesophagus (food
pipe) which is associated with poor patient outcomes. Barrett’s oesophagus (BO) is a precancerous
condition of the oesophagus associated with chronic heartburn. Currently, surveillance programs
exist which monitor patients with BO to prevent it from developing into OAC. However, these
surveillance programs are expensive and unpleasant for patients. Prognostic biomarkers are signs
which could be measured to determine the chance of someone with BO developing OAC, allowing
more targeted surveillance. Similarly, diagnostic biomarkers are indicators which could be measured
to see if someone has OAC. Developing new diagnostic biomarkers could allow wider population
testing. Only a small proportion of patients with OAC respond to treatment before surgery. Predictive
biomarkers could be measured to predict whether someone would respond to the treatments, allowing
more individualized therapy. This review focuses on potential biomarkers which could improve
patient outcomes in BO/OAC.

Abstract: Oesophageal adenocarcinoma (OAC) incidence has increased dramatically in the developed
world, yet outcomes remain poor. Extensive endoscopic surveillance programs among patients with
Barrett’s oesophagus (BO), the precursor lesion to OAC, have aimed to both prevent the development
of OAC via radiofrequency ablation (RFA) and allow earlier detection of disease. However, given the
low annual progression rate and the costs of endoscopy/RFA, improvement is needed. Prognostic
biomarkers to stratify BO patients based on their likelihood to progress would enable a more targeted
approach to surveillance and RFA of high-risk precursor lesions, improving the cost–risk–benefit
ratio. Similarly, diagnostic biomarkers for OAC could enable earlier diagnosis of disease by allowing
broader population screening. Current standard treatment for locally advanced OAC includes
neoadjuvant chemotherapy (+/− radiotherapy) despite only a minority of patients benefiting from
neoadjuvant treatment. Accordingly, biomarkers predictive of response to neoadjuvant therapy could
improve patient outcomes by reducing time to surgery and unnecessary toxicity for the patients who
would have received no benefit from the therapy. In this mini-review, we will discuss the emerging
biomarkers which promise to dramatically improve patient outcomes along the BO-OAC disease
sequence.

Keywords: Barrett’s oesophagus; oesophageal adenocarcinoma; biomarkers; screening;
neoadjuvant treatment

1. Introduction

Barrett’s oesophagus (BO) is considered a precursor to oesophageal adenocarcinoma
(OAC) and is defined as columnar metaplasia of the stratified squamous epithelium of
the distal oesophagus which arises in the setting of gastro-oesophageal-reflux disease
(GORD) [1]. Given the well-characterized link between BO and OAC, endoscopic screen-
ing for BO in high-risk individuals followed by regular surveillance of BO patients is
recommended by many international medical societies [2].
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Currently, screening for OAC occurs only as part of surveillance in those diagnosed
with BO, while BO diagnosis relies on endoscopy on a background of GORD symptoms
in high-risk patients [3]. Individuals at high risk for BO/OAC include those with GORD
symptoms and multiple risk factors for disease, e.g., age > 50, male, raised BMI, and family
history of BO/OAC [4]. Surveillance involves upper endoscopy with biopsy looking for
BO, BO with dysplasia or OAC. There are important limitations in endoscopic surveillance
as it is relying on invasive and costly techniques and on complex histopathological grading
to make clinical decisions. Therefore, with the exception of patients presenting with
high grade dysplasia (HGD) it remains difficult to identify which patients are likely to
progress from Barrett’s to cancer [5]. The efficacy of radiofrequency ablation (RFA) in BO
in preventing progression to OAC has been shown in randomized controlled trials [6].
The success of RFA in preventing progression of dysplastic BO has increased interest in
stratifying non-dysplastic Barrett’s oesophagus (NDBO) to those with “high risk” disease
that may benefit from RFA as this procedure carries some risks and has high costs for
the healthcare system [7]. Currently, gastrointestinal (GI) society guidelines recommend
endoscopic surveillance over endoscopic ablative therapy in the non-dysplastic population
of BO [2].

Therefore, given the economic and human cost of oesophageal endoscopy/RFA and
the fact that the annual risk of OAC development for a patient with BO is as low as
0.12–0.23% [8,9], prognostic biomarkers to stratify patients based on the risk of BO to OAC
progression are needed to improve care. In fact, the development of a biomarker platform
to discriminate BO patients at low risk of progression could represent a cost-effective way
to manage patients with longer intervals in endoscopic surveillance or discontinuation of
surveillance entirely. In addition, if prognostic biomarkers could clearly indicate that a BO
patient is at high risk for cancer progression, then the balance between risks, costs, and
benefits would be tipped in favor of endoscopic ablation for these specific patients.

The incidence of OAC in the Western world has rapidly increased over the previous
three decades, surpassing oesophageal squamous cell carcinoma (OSCC) as the most
prevalent histologic subtype of oesophageal malignancy in the developed world [10].
Despite this increase, the prognosis has remained relatively poor, with a mean 3-year
survival rate across seven high-income countries of just 25.3% [11]. Reasons for this are
multi-faceted but center on late stage at diagnosis (only approximately 25% of OAC present
with localized disease [12]) and lack of effective treatments [12]. As more than 40% of
those who develop OAC do not experience typical symptoms associated with GORD and
BO [13], the discovery and validation of accessible diagnostic biomarkers would aid in
earlier diagnosis, improving outcomes for OAC patients and could even alleviate the need
for endoscopic surveillance.

Predictive biomarkers for response to treatment could prove similarly beneficial.
Currently, the mainstay therapy for locally advanced disease includes neoadjuvant therapy
(NA-T) followed by oesophagectomy [13]. However, only approximately 30% of patients
achieve a pathological complete response to NA-T [14]. Thus, predictive biomarkers to
stratify non-responders could improve the time to surgery and reduce unnecessary toxicity
of NA-T in this cohort, thereby potentially improving survival.

In this review article, we have focused on recent studies which emphasize translational
biomarker development specifically along the BO-OAC disease sequence, attempting
to capture the variety of techniques being utilized in the field. This article provides a
contemporary review of research in the development of biomarkers to improve surveillance,
diagnosis and management of BO and OAC patients, identifying promising candidates
and offering an insight into the current state of development of biomarkers which could
improve outcomes in this cohort as illustrated in Figure 1.
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Figure 1. The influence of diagnostic, prognostic and predictive biomarkers on outcomes along the
BO-OAC disease sequence.

2. Prognostic Biomarkers of Progression from Barrett’s Oesophagus to
Oesophageal Adenocarcinoma

Patients diagnosed with BO undergo regular endoscopic surveillance despite the low
annual conversion rate to OAC. Aside from the economic cost, patients also experience con-
siderable discomfort and anxiety in relation to endoscopy [15]. Prognostic biomarkers could
play a role in stratifying those with BO into risk categories to improve cost-effectiveness of
surveillance, allow selection for RFA and alleviate unnecessary patient burden. Currently,
the sole method of risk stratification in BO patients is by the degree of dysplasia [ NDBO,
indeterminate dysplasia, low grade dysplasia (LGD), HGD, or carcinoma] detected on
endoscopy [16]. The degree of dysplasia is used to dictate surveillance intervals and endo-
scopic interventions [16]. This histologic approach is subject to the limitations of sampling
error and interobserver variability in dysplasia classification among pathologists [16]. Tis-
sue molecular biomarkers are being examined as a means of overcoming histopathologist
limitations. P53 immunostaining is recommended as an adjunct in the diagnosis of dys-
plasia by the British guidelines as a means of reducing interobserver variability although
the American Gastroenterological Association maintains that the role of p53 in this context
requires further clarification [3,17]. In a 2018 study, the addition of a corresponding p53
immunohistochemistry (IHC) staining to 60 examined H&E stained BO biopsy slides as
examined by 10 GI pathologists was found to significantly increase both interobserver
agreement and diagnostic accuracy (as compared with “gold standard” diagnosis via con-
sensus agreement between five expert BO pathologists) (p = 0.071 and p = 0.0021) [18]. The
results of this study are limited by the use of only one slide per biopsy “case”.

Aberrant p53 expression alone has also been assessed as a prognostic biomarker for risk
of progression from BO/LGD to HGD/OAC. Kastelein et al. analyzed p53 expression (clas-
sified as normal, overexpressed or loss of expression) of formalin-fixed paraffin-embedded
biopsies (FFPE) from 635 BO patients consisting of n = 586 non-progressors (those who
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did not develop HGD/OAC from baseline BO/LGD) and n = 49 progressors (those who
went on to develop HGD/OAC from baseline BO/LGD) via IHC with consensus between
two pathologists required [19]. Patient surveillance period had a median of 6.6 years
and consisted of a median of four follow-up endoscopies. Aberrant p53 expression in
NDBO/LGD was associated with an increased risk of progression with loss of p53 being
more strongly associated with progression (risk ratio = 14) compared to p53 overexpression
(risk ratio = 5.6). The prognostic sensitivity and specificity of aberrant expression was 49%
and 86%, respectively. When aberrant p53 expression coincided with LGD, the risk of
progression was even greater. Davelaar et al. added fluorescent in situ hybridization
(FISH) analysis of p53 to IHC to improve the ability to detect p53 abnormalities and thus
prognostic ability in a cohort of 91 patients, including n = 80 non-progressors (BO patients
diagnosed with at most LGD following minimum 3 years surveillance) and n = 11 pro-
gressors (BO/LGD to HGD/OAC) [20]. Abnormal p53 expression, as detected by IHC
and FISH, was found to be an independent predictor of progression. There were low
levels of overlap of p53 abnormalities detected by the two methods, as highlighted by p53
abnormalities being detected in progressors as follows: five by IHC alone, two by FISH
alone, two by both methods and two by neither method. Combining the methods led
to a prognostic biomarker of progression with a sensitivity and specificity of 81.8% and
85%, respectively. While promising, the small cohort assessed limits the strength of these
results. In a retrospective study including 24 progressors (developed HGD/OAC from
baseline BO/LGD after >1 year of sampling) and 73 non-progressor BO/LGD patients
(with >2 years follow-up since sampling) Stachler et al. used next-generation sequencing
of one tissue sample from each participant to identify genetic abnormalities predictive
of progression [21]. P53 genetic abnormalities were once again shown to be associated
with increased risk of progression with mutations found in 46% of progressors but only
5% of non-progressors. While suggestive, the low number of progressors and use of only
one tissue sample from each participant represent limits of this study.

In a nested case control study, Duits et al. looked at two biomarkers obtained from
FFPEs and analyzed their predictive ability when combined with the presence or absence of
LGD to distinguish progressors (those that develop HGD/OAC from BO/LGD at baseline)
from non-progressors (patients diagnosed with at most LGD following minimum 2 years
surveillance) [22]. The biomarkers measured were p53 (IHC) and aspergillus oryzae lectin
(AOL) (IHC). Presence or absence of LGD was assessed by consensus diagnosis. All partici-
pants required a minimum of 2-year endoscopic surveillance before study end. Similarly,
any patient with >T1 disease at diagnosis was excluded to ensure progressors were devel-
oping new disease. Of note, an expert consensus diagnosis of LGD was associated with a
34-fold increased risk of progression. On multivariate analysis, the panel demonstrated
an area under the receiver operating characteristic (AUROC) of 0.73 and a sensitivity and
specificity range of 41.1–88.9% and 88.1–35.8%, respectively, depending on the cut-off value
selected. Aneuploidy was also intended to be accessed as a biomarker; however, the assay
used was found to produce inconsistent results. One limitation of the panel is the inclusion
of LGD, given the stringent and often unavailable resources (two expert GI pathologists)
required for diagnosis and the fact that endoscopic ablation may be recommended with
repeat findings [4].

Timmer et al. evaluated six molecular markers (p16, p53, Her-2/neu, 20q, MYC,
and aneusomy) by DNA FISH on brush cytology specimens in a prospective cohort of
428 patients with NDBO [23]. Participants were followed up by endoscopic surveillance for
a median of 43 months with a primary study outcome of disease progression (development
of HGD or OAC). In total, 22 progressors were detected within the study with 13 developing
OAC. By combining the three significant molecular markers of progression on univariate
analysis (MYC gain, p16 loss and aneusomy) with age and circumferential BO segment
length, a model to divide patients into high- and low-risk groups was developed. The
model demonstrated a sensitivity of 0.86 and a specificity of 0.54 while the positive and
negative predictive values were 9% and 99%, respectively. Using this model, 19 of the
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22 progressors and 188 of the non-progressors would have been classified as high risk while
3 progressors and 218 non-progressors would have been classified as low risk.

Given that inflammation has long been implicated as a driver in the BO-OAC dis-
ease sequence [24], O’Farrell et al. investigated markers of oxidative stress as potential
biomarkers to indicate likely progressors among BO patients [25]. The group used IHC to
measure the expression of various proteins in tissue samples collected from n = 23 NDBO
patients, consisting of 10 non-progressors (showed no evidence of disease progression over
a median 7.5-year follow-up period) and n = 13 progressors (developed HGD/OAC over a
median follow-up period of 2 years). The intensity and positivity of stromal and epithelial
expression of 8-oxo-dG were found to be significantly weaker among progressors compared
to non-progressors, counterintuitively suggesting that progressors have an environment
of decreased oxidative stress. The authors propose that the explanation for this may be
linked to mitochondrial dysfunction. Regardless, this study, though limited by the small
sample sizes, suggests that 8-oxo-dG has the potential to identify those most at risk of
malignant transformation. The potential prognostic biomarkers discussed are summarized
in Table 1 below.

Table 1. Summary table of prognostic biomarkers for risk of progression with BO.

Biomarker Name
Disease

Progression
Assessed

Biomarker
Type

Regulation (in
Progressors) Sample Type Testing

Method Reference

Aberrant P53 expression NDBO/LGD-
HGD/OAC Prognostic ↑ FFPE Biopsy IHC, FISH,

NGS [19–21]

Panel of abnormal P53
expression, abnormal AOL
expression and diagnosis

of LGD

NDBO/LGD-
HGD/OAC Prognostic ↑ FFPE Biopsy

IHC,
pathologist

review
[22]

MYC gain, p16 loss,
aneusomy, age,

circumferential BO length

NDBO-
HGD/OAC Prognostic ↑ Brush cytology

specimens FISH [23]

8-oxo-dG NDBO-
HGD/OAC Prognostic ↓ Tissue Biopsy IHC [25]

Abbreviations: AOL, Aspergillus Oryzae Lectin; FFPE, Formalin-Fixed Paraffin-Embedded Biopsy; FISH, Fluorescent
In Situ Hybridization; HGD, High Grade Dysplasia; IHC, Immunohistochemistry; LGD, Low Grade Dysplasia; NDBO,
Non-Dysplastic Barrett’s Oesophagus; NGS, Next-Generation Sequencing; OAC, Oesophageal Adenocarcinoma.

3. Diagnostic Biomarkers of Barret’s Oesophagus and Oesophageal Adenocarcinoma

A promising approach to improve outcomes in OAC is to increase early diagnosis
as lower stage at diagnosis is associated with significantly improved 5-year survival [26].
While there is a lack of randomized controlled trials, observational studies have indicated
that endoscopic surveillance in high risk BO patients is beneficial for an early diagnosis
of OAC [27] although the cost-effectiveness of the endoscopic surveillance is debated [28]
given the low annual conversion rate from BO to OAC [29]. To that end, the development
of affordable, accurate diagnostic biomarkers could serve the following roles:

(1) Early, accurate, and cost-effective diagnosis of BO and OAC
(2) Reduce the need for endoscopy in the surveillance of individuals with low-risk BO
(3) Identification of those with current HGD which would benefit from RFA
(4) Enable broader population screening for those who do not meet the referral criteria

for upper endoscopy.

In this section, we have assessed the emerging diagnostic biomarkers which could
meet the clinical needs highlighted. The potential diagnostic biomarkers discussed are
summarized in Table 2 below. Qin et al. performed whole-methylome sequencing on DNA
extracted from frozen tissue samples of oesophageal cancer (OC) and controls to identify
differentially methylated regions for use as biomarkers [30]. Of the regions identified,
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12 demonstrating high discrimination between OC and control tissue were assessed in
archived OC patient plasma (n = 76 OAC, n = 9 OSCC) and control plasma (n = 98). A
panel of five differentially methylated sequences was found to accurately detect OC with
a stage dependent sensitivity of 43% in stage I, 64% in stage II, 77% in stage III, and 92%
in stage IV disease. Although site specificity was not investigated, it was anticipated that
the differentially methylated regions may also be found in other GI tumors. The authors
proposed that an OC-specific hypermethylated region such as DMRTA2 could be included
to optimize specificity of assay. Other limitations of this study include OAC and OSCC
being examined together, BO patient samples being excluded from the analysis (cross-
reactivity with BO patients would limit the utility of the assay) and a largely uniform
ethnic background of samples. However, the study did successfully demonstrate the
feasibility and clinical utility of a panel of differentially methylated sequences as a means
of non-invasive screening.

Since their discovery, there has been a great deal of interest in the role of non-coding
RNAs (ncRNA) in disease pathology. Transcribed ultra-conserved regions (T-UCRs) are
a subtype of ncRNAs which are composed of at least 481 genomic sequences more than
200 bp long and are absolutely conserved between mouse, rat and human genomes [31].
Fassan et al. used custom micro-RNA (miRNA) microarray chips to identify a panel of
nine T-UCRs which were differentially expressed in NDBO (n = 14) when compared to
normal oesophageal tissue (n = 14) [32]. Similarly, when the authors studied progression
from normal oesophagus (n = 10) to NDBO (n = 10) to LGD (n = 10) to HGD (n = 10) to
OAC (n = 10) in resected surgery specimens, they found 5 T-UCRs to be differentially
expressed along the disease sequence. While these results are interesting, the T-UCRs
identified would be of limited use as a diagnostic biomarker given the necessity to access
tissue to measure expression. This lack of a translational approach also applies to other long
non-coding RNAs (lncRNA) identified to be differentially expressed in normal/BO/OAC
tissue [33,34]. However, it would be of interest to see if lncRNAs could play a role as a
prognostic biomarker in BO or indeed, as a predictive biomarker for response to NA-T
in OAC.

In recent years, several studies have examined the potential role of volatile organic
compounds (VOC) for the diagnosis of OAC among other GI cancers. A 2016 pilot study
investigated whether VOCs detected in the “headspace” of a plasma sample (the gaseous
portion of the vial once equilibrium has been reached) could be used to accurately distin-
guish between GORD and OAC patients [35]. Samples were taken from 20 OAC patients
prior to their staging endoscopy as well as 19 patients with GORD. The headspace of each
participant’s plasma was analyzed for 22 pre-selected compounds in duplicate and nine
VOC levels were found to be significantly different between the two groups (statistical
significance was maintained after adjusting for age, sex and BMI). A diagnostic model
to differentiate OAC from GORD was developed using just two VOCs (acrylonitrile and
carbon disulfide) which provided a specificity, sensitivity, and positive and negative pre-
dictive values of 90%, 84%, 86%, and 89%, respectively. While this model would have
mischaracterized 2/12 T3 tumors, it would have properly identified all 8 T1/2 stage tumors.
This study provided a proof of feasibility that VOC headspace analysis could provide an
affordable, non-invasive diagnostic tool for OAC screening. Limitations include the small
sample sizes, the omission of a BO cohort and the fact that patients with atypical GORD
symptoms were excluded despite the fact that more than 40% of those that develop OAC
report no typical history of GORD symptoms [13].

Analysis of VOC profile in the breath has also been trialed as a potential diagnostic
biomarker. Markar et al., in a multicenter study, aimed to validate a previously identified
set of five VOCs measured from the breath, in the diagnosis of oesophagogastric cancer [36].
The breath samples from 162 non-metastatic oesophagogastric adenocarcinoma patients
naïve to treatment and 163 patients with benign conditions or normal upper GIT was
collected. Upon analysis, a sensitivity of 80% and a specificity of 81% for the diagnosis
of oesophagogastric cancer was obtained. Inclusion of BO patients and validation of this
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method could aid screening in the primary care population presenting with upper GI
symptoms. However, it should be noted that when compared to VOCs extracted from
plasma, VOCs measured in the breath are likely to have a larger number of potentially
confounding factors which could limit utility. These include the patient’s diet, microbiome
and the environment the patient was in prior to the breath test [35].

The role of miRNA as biomarkers of disease has been increasingly recognized in recent
years, with potential utility across a wide variety of pathologies, ranging from neurodegen-
erative disorders to cardiovascular disease [37]. In particular, exosomal miRNA detectable
in serum have been coming under increased scrutiny in recent years for development of
cancer biomarkers given their comparative resistance to RNase degradation. Chiam et al.
analyzed serum samples from 47 individuals (19 healthy controls, 10 NDBO patients and
18 OAC patients with locally advanced or metastatic disease) focusing on the exosomal
miRNA components [38]. Exosomal miRNA was profiled using the high throughput Taq-
Man OpenArray microRNA panel comprising 758 human miRNA probes. A panel of
five miRNA ratios was found to distinguish between OAC and NDBO or healthy controls
with an AUROC of 0.99. While promising, limitations of this study include an all-male
cohort, no testing for cancer specificity and no early stage OAC or high grade BO samples
included (which would benefit the most from early detection) [38]. Fassan et al. performed
a similar investigation using serum from NDBO patients (n = 27), HGD patients (n = 8)
and early OAC patients (T1a disease only; n = 10) [39]. Ten new miRNAs were found
to be significantly (p < 0.01) differentially expressed in NDBO when compared with the
other groups with an AUROC range of 0.75–0.83. Construction of a panel containing some
permutation of these ten miRNAs could improve the diagnostic accuracy.

In a retrospective analysis, Campos et al. correlated neutrophil-leukocyte ratio (NLR)
obtained from medical records of complete blood counts within 6 months of biopsy with
diagnosis of NDBO (n = 72) to dysplastic BO (LGD or HGD, n = 11) to OAC (n = 30) [40].
NLR was found to increase significantly across the groups and, using an NLR cut-off of
>2.27, was able to diagnose OAC with a sensitivity, specificity and AUROC of 80%, 71%
and 0.8, respectively. Considering the wide-availability, low cost and non-invasive nature
of NLR measurement, it represents an attractive biomarker. The retrospective nature, the
low number of stage I/II patients included (n = 4) and the broad exclusion criteria represent
important limits in this study.

Haboubi et al. accessed the use of the phosphatidylinositol glycan class A gene
mutation assay, which measures erythrocyte mutations, for correlation with progression
from GORD to BO to OAC [41]. The erythrocyte mutation frequency (EMF) of 192 patients
with GORD (n = 77), NDBO (n = 62), LGD (n = 4), HGD (n = 11) and OAC (n = 42) and
137 healthy volunteers was accessed and correlated with histological status. Average EMF
was significantly higher in HGD and OAC when compared to non-neoplastic cohorts
(p < 0.001), suggesting that EMF could be measured to aid screening for high-risk disease.
An increase in sample size and a longitudinal design would be required to validate the
usefulness of this method.

Porter et al. identified high mobility group box-1 (HMGB1), a ubiquitous nuclear
protein, as a novel potential diagnostic biomarker after analyzing protein expression in
218 human oesophageal tissue samples (including normal tissue n = 39, BO = 121 and
OAC n = 58) via IHC [42]. Importantly, the tissue samples of BO included samples from
NDBO, LGD, NDBO adjacent to dysplasia and NDBO adjacent to OAC. Target protein
expression was assessed by two blinded independent observers using a semi-quantitative
grading system (absent, weak, moderate or strong expression) in both cytoplasmic and
nuclear compartments with conflicting scores resolved by discussion. Notably, there was
an increased nuclear HMGB1 expression in the background BO of those with dysplasia or
OAC when compared to BO from patients with non-dysplatic disease (71%, 67% and 27%,
respectively). Similarly, there was a lower cytoplasmic HMGB1 expression in background
BO of OAC tissue when compared to NDBO. Thus, IHC analysis for HMGB1 in BO
biopsies could aid diagnostics as altered HMGB1 expression in BO could indicate missed
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dysplasia/OAC. This could be particularly useful in combination with novel technologies
to non-invasively obtain oesophageal cell samples such as the Cytosponge [43].

Table 2. Summary table of BO and OAC/OC diagnostic biomarkers.

Biomarker Name Disease State
Tested

Biomarker
Type

Regulation (in
Disease State) Sample Type Testing Method Reference

FER1L4, ZNF671,
ST8SIA1, TBX15,

ARHGEF4
OC Diagnostic

↑
↑
↑
↑
↑

Plasma
Quantitative
Methylation
Specific PCR

[30]

Acrylonitrile, Carbon
disulfide GORD, OAC Diagnostic ↓

↓ Plasma SIFT-MS [35]

Butyric acid, Pentanoic
acid, Hexanoic acid,

Butanal, Decanal

Oesophagogastric
Adenocarcinoma Diagnostic

↓
↓
↑
↑
↑

Breath SIFT-MS [36]

RNU6-1/miR-16-5p,
miR-25-3p/miR-320a,
let-7e-5p/miR-15b-5p,

miR-30a-5p/miR-324-5p,
miR-17-5p/miR-194-5p

OAC Diagnostic

↑

↑

↑

↓

↓

Serum qPCR [38]

miR-92a-3p, miR-151a-5p,
miR-362-3p, miR-345-3p,
miR-619-3p, miR-1260b,
miR-1276, miR-381-3p,
miR-502-3p, miR-3615

NDBO, HGD,
OAC Diagnostic

↑
↑
↑
↑
↑
↑
↑
↓
↓
↓

Serum qPCR [39]

Neutrophil-leukocyte
ratio OAC Diagnostic ↑ Serum Whole Blood Count [40]

Erythrocyte Mutation
Frequency HGD, OAC Diagnostic ↑ Serum

Phosphatidylinositol
glycan class A gene

mutation assay
(Flow cytometry)

[41]

HMGB1 (Nuclear,
Cytoplasmic)

Dysplastic BO,
OAC Diagnostic

↑

↓
Tissue Biopsy IHC [42]

Abbreviations: BO, Barrett’s Oesophagus; ELISA, Enzyme-linked Immunosorbent Assay; GORD, Gastro-oesophageal
Reflux Disease; IHC, Immunohistochemistry; NDBO, Non-Dysplastic Barrett’s Oesophagus; OAC, Oesophageal
Adenocarcinoma; PCR, Polymerase Chain Reaction; SIFT-MS, Selected Ion Flow Tube Mass Spectrometry.

4. Predictive Biomarkers of Neoadjuvant Treatment Response in OAC

While the treatment for early and advanced/unresectable OAC is well-defined (en-
doscopic resection and chemoradiotherapy, respectively), the optimum management of
locally advanced disease is less clear [12]. Therapy for this cohort primarily focuses on
neoadjuvant chemoradiotherapy (NA-CRT) or neoadjuvant chemotherapy (NA-C) fol-
lowed by oesophagectomy [44]. However, with both neoadjuvant therapeutic modalities,
pathological response only occurs in 25–30% of patients [45]. Thus, the majority of patients
experience the toxicity associated with neoadjuvant therapy as well as a delay of surgery
in exchange for little to no benefit, emphasizing the need for predictive biomarkers of
response to NA-T.
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P53 has already been discussed as a potential prognostic biomarker in BO, yet many
have hypothesized that it could also play a role in predicting response to neoadjuvant treat-
ment in OAC, partially due to the observed reduction in overall survival (OS) associated
with p53 mutation as documented by a recent meta-analysis [46]. Kandioler et al. assessed
p53 expression using a standardized gene-specific sequencing kit on DNA extracted from
paraffin-embedded tissue of diagnostic tumor biopsies [47]. Patients went on to receive a
neoadjuvant regimen of cisplatin and fluorouracil prior to surgical resection. This study
included a cohort of 20 with OAC. Normal p53 expression was associated with improved
tumor-associated survival in these patients. However, as association with tumor response
to NA-T as per tumor regression grade (TRG) was not assessed, it is possible that normal
p53 expression was associated with an improved response to surgery also.

In addition to its potential role as a diagnostic biomarker, NLR has also been inves-
tigated for its potential role as a predictive biomarker for response to chemotherapy in
OAC [48]. Patients recruited were diagnosed with OAC (radiological TNM stage of I-III)
which was deemed to be amenable to treatment with curative intent. Of 136 patients
recruited, 23 (16.9%) were considered to have a good pathological response (TRG = 1/2
using the Mandard system) to NA chemotherapy (the majority of patients received cisplatin
and 5-fluorouracil). Baseline NLR was strongly associated with pathological response to
chemotherapy (TRG > 2) with an AUROC, sensitivity and specificity of 0.71, 80.5% and
60.9%, respectively, when a threshold for good vs. poor responders of NLR = 2.25 was
chosen. Similarly, the 5-year OS rate for the low NLR group was 50% compared to 20%
for high NLR. Limitations include the modest sample size and a selective cohort (only ap-
proximately one-quarter of patients diagnosed with OAC are deemed amenable to curative
treatment). A noteworthy similar study by Noble et al. [49] did not find any association
between NLR and TRG after epirubicin-based chemotherapy. However, increased preop-
erative NLR was associated with worse OS. Key differences between the studies include
definition of good responders (the latter study included TRG 3) and the decision not to
dichotomize the continuous NLR data on regression analysis.

Skinner et al. investigated the difference in miRNA expression of pre-treatment OAC
tumor biopsies of NA-CRT (majority received 5-fluorouracil and a platinum compound)
non-responders and responders as defined by presence or absence of tumor cells in resected
specimen as determined by pathologist [50]. The study included three patient cohorts:
discovery (n = 10), model (n = 43) and validation (n = 65). Pre-treatment biopsies of the
discovery cohort (which included five responders and five non-responders) were evaluated
for the expression of 754 different miRNAs of which 306 were found to be expressed in
moderate to high levels. The 44 miRNAs most able to distinguish between responders and
non-responders were assayed for in the model cohort. Four miRNAs (mir-505* (* refers
to the alternative strand of miRNA), mir-99b, mir-451a, and mir-145*) were found to be
significantly differentially expressed between responders and non-responders across both
cohorts. Tumor samples with more of these miRNAs falling under the low-expression
category were associated with a greater likelihood of being a responder in both the model
and validation cohorts. By combining a score derived from expression of the four miRNAs
of interest with clinical stage and tumor grade, a model was developed to predict the
likelihood of a particular patient to respond to NA-CRT with an AUROC of 0.81. Strengths
of this study include the validation of this model across different assay platforms and its
three-cohort design. Limitations include the fact that only a subset of the miRNA profile of
the tumor was assessed and the omission of survival outcomes.

Bibby et al. conducted a similar experiment by profiling the miRNA complement
of 18 pre-treatment OAC biopsies and categorizing the cohort into responders and non-
responders on the basis of post NA-CRT (cisplatin and 5-fluoruracil) TRG (responders
TRG = one or two, non-responders TRG=4 or 5, TRG = three patients excluded) [51]. Of
742 miRNAs analyzed, 67 were found to be differentially expressed between responders
and non-responders with Mir-330-5p being the most significantly altered between groups
(downregulated in non-responders). Of note, Mir-330-5p was not included in the 306
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of 754 miRNAs which demonstrated moderate to high expression in the study by Skin-
ner et al. [50]. Potential reasons for this include the use of different miRNA profiling
arrays and the different classification of responders vs. non-responders. Regardless, Bibby
et al. concluded that Mir-330-5p could form part of a miRNA pre-treatment signature for
stratifying patients based on likely response to NA-CRT.

In a comparable study, Chiam et al. used next-generation sequencing to analyze
the miRNA expression profile of 31 pre-treatment OAC biopsy samples and correlated
the results with the patient’s subsequent response to NA-CRT (as determined by AJCC
tumor regression grading system) [52]. NA-CRT consisted of cisplatin and 5-florouracil
chemotherapy with concurrent radiotherapy. A complete response (AJCC grade = 0, respon-
ders) was observed in nine while the other 22 patients had a partial or absence response
(AJCC grade = 1–3, non-responders). Several predictive miRNA ratios were identified.
In particular, miR-4521/miR-340-5p and miR-101-3p/miR-451a, which demonstrated a
sensitivity and specificity of 95% and 89%, and 91% and 89%, respectively, also showed
an association with relapse-free survival comparable to AJCC TRG. Given the sample size,
verification of these results in independent cohorts is warranted.

Maher et al. used a SELDI-TOF-MS proteomic approach to identify novel predictive
biomarkers of response to NA-CRT in OC. Immunoglobulin and albumin depleted pre-
treatment serum from 16 responder (TRG 1 or 2) and 15 non-responder (TRG 3-5) OC
patients were used in this study [53]. C3A and C4A levels were significantly higher in
non-responders. Although this study included a limited number of OSCC in the sample,
no significant differences were found when only OAC patients were accessed. Of note,
Lynam-Lennon et al. identified mir-187 as one of 67 miRNAs differentially expressed
between responders and non-responders (as per TRG) to cisplatin and 5-fluorouracil-based
NA-CRT in pre-treatment OAC biopsy samples [54]. In vitro analysis demonstrated that
overexpression of mir-187 resulted in down regulation of C3. Given that mir-187 was
significantly lower in non-responders, the link between the two potential biomarkers
is highlighted.

MacGregor et al. identified two more potential predictive biomarkers for OAC re-
sponse to NA-CRT (oxaliplatin-fluorouracil based in this cohort), the proteins XPF and
MUS81 [55]. These candidate biomarkers were identified following testing for association
between the mRNA expression of 280 DNA repair genes in 38 pre-treatment biopsies and
pathological response to chemotherapy (as determined by Mandard TRG), disease-free
survival (DFS) and OS. Significant results were observed for several repair genes including
ERCC1 (high levels associated with low DFS, lack of pathological response and poor OS)
and EME1 (high levels associated with low DFS and lack of pathological response). As
available antibodies used in IHC lack specificity for ERCC1 and EME1, their heterodimeric
endonuclease partner proteins XPF and MUS81 were examined as surrogate markers. Low
XPF levels were associated with pathological response to chemotherapy and high MUS81
levels were associated with worse 1-year DFS and OS. In order to ensure these results
were predictive of response to chemotherapy and not simply prognostic of OAC outcomes,
levels were examined in a retrospective surgery alone cohort (n = 54) with no association
observed with OS. Further validation is required.

Borg et al. investigated the use of Podocalyxin-like protein (PODXL) as a predictive
biomarker for (fluoro-pyrimidine- and oxaliplatin-based) NA-C response in OAC and
gastric adenocarcinomas [56]. PODXL was selected for investigation as the group had
previously linked expression to prognosis in a surgery-only cohort of OAC and GAC
patients [57]. High PODXL expression in pre-treatment biopsy as determined by IHC
was significantly associated with both lower post-neoadjuvant pathological T-stage and
a superior histopathological response rate as determined using the Chirieac TRG system.
Furthermore, using statistical comparison with the previously studied surgery only cohort,
it was demonstrated that patients with PODXL-negative tumors received no obvious benefit
from chemotherapy, in contrast to patients with PODXL-positive tumors. Study limitations
include a heterogeneity of tumor sampling and the retrospective design.
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Kukar et al. analyzed pre-treatment PET-CT standard uptake values for association
with response to NA-CRT [58]. Unfortunately, the model produced was of limited utility as
while it yielded a strong positive predictive value for incomplete pathologic response, the
positive predictive value for complete pathological response was poor.

Lynam-Lennon et al. assessed the expression of four proteins (HSP60, ATP5B, GADPH
and PKM2) linked to mitochondrial metabolism in 23 pre-treatment OAC biopsy samples
for association with NA-CRT (cisplatin and 5-fluoruracil-based) response [59]. ATP5B
expression (as measured by IHC and tissue microarray) was significantly higher in the
tumors of poor responders (Mandard TRG = 3–5) when compared to good responders
(TRG = 1–2), indicating potential utility as a predictive biomarker. However, expression
was not found to be associated with survival data.

The potential predictive biomarkers discussed are summarized in Table 3 below.

Table 3. Summary table of predictive biomarkers of response to neoadjuvant treatment in OC/OAC.

Biomarker Name Disease Therapy Type
Relative

Regulation (Good
Responders)

Sample Type Testing Method Reference

P53 OAC NA-C Not mutated Tumor Biopsy Gene Sequencing [47]

Neutrophil-
Leukocyte

Ratio
OAC NA-C ↓←→ Serum Whole Blood

Count [48,49]

mir-505*, mir-99b,
mir-451, mir-145* OAC NA-CRT ↓ Tumor Biopsy qPCR [50]

Mir-330-5p OAC NA-CRT ↑ Tumor Biopsy qPCR [51]

miR-4521/miR-
340-5p,

miR-101-3p/miR-
451a

OAC NA-CRT ↑ Tumor Biopsy qPCR [52]

C3A, C4A OC NA-CRT ↓
Serum (Ig and

albumin
depleted)

SELDI-TOF-MS [53]

mir-187 OAC NA-CRT ↑ Tumor Biopsy RT-PCR [54]

XPF, MUS81 OAC NA-CRT ↓ Tumor Biopsy IHC [55]

Podocalyxin-like
protein OAC NA-C ↑ Tumor Biopsy IHC [56]

ATP5B OAC NA-CRT ↓ Tumor Biopsy IHC, RT-PCR [59]

Abbreviations: Ig, Immunoglobulin; IHC, Immunohistochemistry; OAC, Oesophageal Adenocarcinoma;
NA-C, Neoadjuvant Chemotherapy; NA-CRT, Neoadjuvant Chemoradiotherapy; PCR, Polymerase Chain Reac-
tion; q, Quantitative; RT, Real Time; SELDI-TOF-MS, Surface Enhanced Laser Desorption/ionization Time-of-flight
Mass Spectrometry; * refers to the alternative strand of miRNA.

5. Discussion

In this article, we have reviewed the recent research and collated the various biomark-
ers for BO/OAC in development, providing a broad overview of the ongoing work in
the field. This collection of data provides a useful insight into the promising candidate
biomarkers, the wide array of technologies used to identify them, and the difficulties faced
in biomarker discovery and validation. By presenting an overview of biomarker devel-
opment, we have also been able to identify common limitations of the existing research
which can help to better design future studies. While the studies reviewed here represent
good first steps for BO/OAC biomarker development, many obstacles remain between the
current landscape and the validation of prognostic, diagnostic or predictive biomarkers for
use in clinical practice.
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Prognostic biomarkers promise to ease both the economic and patient burden of endo-
scopic surveillance in BO by allowing improved risk stratification, thereby enabling more
targeted surveillance. Similarly, by identifying those at high risk of disease progression,
RFA could be used to help reduce the number of patients who go on to develop OAC.
However, the translation of prognostic biomarkers to clinic is hampered by the neces-
sary longitudinal nature of studies and low rate of progressive disease [8]. As such, no
biomarkers have replaced the gold standard of diagnosis of degree of dysplasia as a method
of risk-stratification in BO. The current literature classifies non-progressors based on an
arbitrarily decided length of follow-up, leading to inter-study heterogeneity and limiting
comparability. While panels including a selection of biomarkers to predict risk of progres-
sion offer hope, these tend to be more technically difficult and expensive to implement.
Finally, low statistical power due to small sample cohorts is a common limitation in the
studies of prognostic biomarkers, further hindering progression to use in clinic.

Similarly, an obstacle in the development of diagnostic biomarkers for use in screening
or to reduce the need for endoscopy in surveillance is the omission of a dedicated BO
cohort in many of studies analyzed, thereby restricting the potential real-life utility of the
identified biomarkers. Many studies conducted, particularly those investigating lncRNAs,
also lacked a translational approach and although differential expression was identified
along the BO-OAC disease sequence, potential utility as a diagnostic biomarker was lacking.
Research on the relevance of lncRNAs as potential prognostic and predictive biomarkers in
BO and OAC, respectively, would be of interest. Furthermore, the limited number of BO
patients with HGD or early stage (T1) adenocarcinoma included in these studies represents
another limitation for the development of diagnostic biomarkers for early detection of
disease. Similarly, a number of studies failed to analyze LGD and HGD dysplasia as
separate entities despite differing clinical management [3], therefore limiting the utility of
results. In addition, a large portion of the appeal of a non-invasive diagnostic biomarker
is for use in patient cohorts who would not typically qualify for endoscopic screening.
This is particularly relevant, given that more than 40% of those who develop OAC do
not experience typical symptoms associated with GORD and BO [13]. However, should a
suitable non-invasive diagnostic biomarker be developed, the challenge of what cohorts
of patients it should be used on remains, given the harm which can be associated with
screening programs [60].

Several difficulties exist in comparing the existing literature regarding emerging
predictive biomarkers for response to NA-T in OAC. First, the varying modalities of NA-T
(including varying chemotherapeutic agent) limits their broad application to a specific NA-
T regimen. Additionally, most analyzed studies used pathologic response as a surrogate
for subsequent clinical outcomes. While pathological complete response (TRG1/2) has
demonstrated an association with endpoints such as OS [61], a recent study found that
among those patients considered pathologic non-responders, a substantial subset (21.3%)
with lymph node downstaging (defined as regional lymph nodes which were disease
positive on clinical staging having no evidence of disease during pathological staging)
derived a survival benefit mirroring that of local response [62]. Thus, by associating
potential biomarkers only with local pathologic response, many studies are omitting this
cohort who seem to derive survival benefit from neoadjuvant treatment. Furthermore,
while Mandard TRG was the predominant system used to grade pathologic response,
numerous others were also employed, limiting the comparability of results. Similarly, the
pathological response may be linked to time between NA-T and surgery [63]. However,
many of the studies did not report time to surgery and among those that did, it varied from
2 to 8 weeks, therefore introducing a further potential confounding variable. A possible
method to overcome this is by associating potential biomarkers with survival data in a
second control cohort who do not undergo NA-T as in Borg et al. [56]. However, this
method would be unethical in a non-retrospective design given the proven benefit of
NA-T [12]. Development and use of a pathologic response grading system which accounts
for lymph node downstaging alongside adjusting for time to surgery and incorporating
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survival data represents a valid strategy for standardizing results for predictive biomarker
studies, thereby improving biomarker development.

6. Conclusions

Despite the wealth of research and the recent rise in incidence, patient outcomes in
OAC have remained relatively poor [13]. Further independent studies in larger, prospective
cohorts are needed to validate all biomarkers reviewed before they reach clinical practice.
Of note, a prospective randomized trial in oesophageal cancer (with subgroup analysis
by histological subtype) (NCT00525200), which will aim to determine if p53 mutation has
a predictive role in response to three different types of NA-C, which will be randomly
assigned, has recently completed recruitment. To our knowledge, this is the only ongoing
clinical trial for a potential biomarker we have discussed. Regardless, the development of
prognostic, diagnostic and predictive biomarkers promises to dramatically improve clinical
management and outcomes for BO and OAC patients.
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AOL Aspergillus Oryzae Lectin
AUROC Area Under the Receiver Operating Characteristic
BO Barrett’s Oesophagus
DFS Disease-free Survival
EMF Erythrocyte Mutation Frequency
FFPE Formalin-Fixed Paraffin-Embedded Biopsies
FISH Fluorescent In Situ Hybridization
GI Gastrointestinal
GORD Gastro-oesophageal Reflux Disease
HGD High Grade Dysplasia
HMGB1 High Mobility Group Box-1
IHC Immunohistochemistry
LGD Low Grade Dysplasia
lncRNA long non-coding RNA
miRNA micro RNAs
NA-C Neoadjuvant Chemotherapy
NA-CRT Neoadjuvant Chemoradiotherapy
NA-T Neoadjuvant Therapy
NDBO Non-Dysplastic Barrett’s Oesophagus
NLR Neutrophil-Leukocyte Ratio
OAC Oesophageal Adenocarcinoma
OC Oesophageal Cancer
OS Overall Survival
OSCC Oesophageal Squamous Cell Carcinoma
PODXL Podocalyxin-like Protein
RFA Radiofrequency Ablation
TRG Tumor Regression Grade
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T-UCR Transcribed Ultra-Conserved Regions
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