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Abstract
Gene expression has provided promising insights into the pathophysiology of post-traumatic stress disorder (PTSD);
however, specific regulatory transcriptomic mechanisms remain unknown. The present study addressed this limitation
by performing transcriptome-wide RNA-Seq of whole-blood samples from 226 World Trade Center responders. The
investigation focused on differential expression (DE) at the gene, isoform, and for the first time, alternative splicing (AS)
levels associated with the symptoms of PTSD: total burden, re-experiencing, avoidance, numbing, and hyperarousal
subdimensions. These symptoms were associated with 76, 1, 48, 15, and 49 DE genes, respectively (FDR < 0.05).
Moreover, they were associated with 103, 11, 0, 43, and 32 AS events. Avoidance differed the most from other
dimensions with respect to DE genes and AS events. Gene set enrichment analysis (GSEA) identified pathways
involved in inflammatory and metabolic processes, which may have implications in the treatment of PTSD. Overall, the
findings shed a novel light on the wide range of transcriptomic alterations associated with PTSD at the gene and AS
levels. The results of DE analysis associated with PTSD subdimensions highlights the importance of studying PTSD
symptom heterogeneity.

Introduction
Post-traumatic stress disorder (PTSD) is a complex

condition arising in the wake of exposure to a traumatic
event, and the lifetime prevalence of PTSD in the U.S. is
6.1%1. PTSD is heterogeneous and characterized by
symptoms of intrusive re-experiencing of the trauma (e.g.,
flashbacks), avoidance of reminders of the trauma, emo-
tional numbness and negative effects, and increased arou-
sal2. Many patients with PTSD are treatment refractory3,
placing them at risk of developing chronic physical con-
ditions and long-term cognitive, social, and occupational
impairments4, thus imposing considerable socioeconomic

burden5. As a result, there is a critical need to understand
the biological processes that underpin and maintain PTSD
with a view to identifying novel biomarkers to aid in
diagnosis and monitoring, and ultimately in the discovery
of therapeutic targets.
Increasing evidence from epidemiologic and genetic

studies shows that genetic factors and environmental
exposure play important roles in the etiology of PTSD6–9.
In particular, differential gene expression, which captures
the effects of both genetic and environmental influences,
has emerged as a crucial biological process implicated in
vulnerability to PTSD. Thus, gene expression can serve as
a promising biomarker to understand the pathophysio-
logical mechanisms of PTSD and may prove to be
involved in both the etiology and progression of the dis-
order. Gene expression is a complex process encom-
passing transcription, RNA splicing, translation, and post-
translational modification10. However, to date, most
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PTSD biomarker studies, including those conducted by
our group, have focused on identifying differential gene
expression associated with PTSD only at the gene level
using transcriptomics technologies, such as microarrays
and RNA-sequencing (RNA-Seq)11–14. These studies have
identified differentially expressed (DE) genes that play a
role in the regulation of the glucocorticoid (GC) receptor
in the GC signaling pathway, neuronal signaling, and
immune responses to stress12,14–18.
RNA-Seq has emerged as the state-of-the-art platform

for transcriptomics profiling since it offers a broader
dynamic range than microarrays and allows for the
detection of low-abundance transcripts19. Existing PTSD
studies utilizing RNA-Seq to quantify expression at the
gene level do not extend to the detection of splice variant/
isoform differences and novel transcripts. Alternative
splicing (AS) is an important regulatory mechanism that
increases the functional capacity of a gene. Examples of
AS events include exons or introns of a gene within a pre-
mRNA transcript that are differentially joined or skipped
(i.e., skipping exons, mutually exclusive exons, and
retained introns), resulting in multiple protein isoforms
being encoded by a single gene. Other types of splicing
events include alternative 5’ and 3’ splice sites (see Fig. 1B
of Alamancos, Pages20 for a description of these AS
events). Changes in AS have been shown to contribute to
lymphocyte functions during the immune response and to
regulate T-cell responses to antigens21–23. These studies
provide evidence of AS in T-cell activation and B-cell
stimulation. The gene set regulated by AS does not display
significant changes at the gene level22. Since immune
response genes have been implicated in PTSD, expanding
transcriptomics research beyond the gene level to splice
variant-level analysis could unravel new biological
mechanisms contributing to the maintenance of PTSD
over time.
Another crucial and previously unexplored issue in gene

expression studies is the fact that PTSD is a hetero-
geneous disorder with marked variability in symptom
presentation, etiology, severity, and persistence5. Multiple
models have been proposed; nevertheless, the model that
has received the most support to date in trauma-exposed
samples specifies four dimensions within DSM-IV PTSD:
(1) re-experiencing (e.g., flashbacks of the traumatic event,
intrusive dreams); (2) avoidance; (3) numbing; and (4)
hyperarousal24,25. Twin studies have found that PTSD
dimensions are characterized by distinct genetic patterns8,
suggesting the presence of unique downstream genetic
pathways characterizing each dimension. This is con-
sistent with emerging molecular genetic evidence; for
example a recent genome-wide association study identi-
fied multiple SNPs associated with the risk of certain
PTSD subscales but not others26. Furthermore, our team
previously found that polygenic risk scores for PTSD and

comorbid psychiatric conditions show a degree of differ-
ential association with PCL subscales27. Finally, studies of
immune system biomarkers have identified a specific link
between PTSD-related avoidance and inflammation28,29.
Taken together, these results are consistent with a
growing body of evidence that PTSD dimensions are
associated with separate biological processes30,31, and it is
plausible that PTSD dimensions are characterized by
different gene expression patterns. Nonetheless, all prior
gene expression association studies, including those
conducted by our group, conceptualize PTSD as a unitary
disorder and none examine transcriptomic patterns spe-
cific to PTSD dimensions12,14,32.
The purpose of the present study was to investigate the

associations of gene expression with the overall severity of
PTSD symptoms and its four dimensions using RNA-Seq
to evaluate patterns at the gene, isoform, and AS levels.
To this end, we analyzed whole-blood samples from 226
World Trade Center (WTC) responders who were
exposed to the same disaster, the 9/11 attacks in New
York City, thus minimizing heterogeneity of the trauma.

Methods
Participants and PTSD assessment
Participants were recruited through the Stony Brook

WTC-Health Program33. The present study was approved
by Stony Brook University IRB and written informed
consent was obtained from all participants. Inclusion
criteria were adequate English language skills to complete
the protocol and being male. We included only males
because females show notably different gene expression
patterns from males34, and only <10% of responders in the
Stony Brook cohort were female. Data were collected
during 2014–2016, which was 13–15 years after the WTC
collapse. PTSD symptom severity (total and four dimen-
sions, namely re-experiencing, avoidance, numbing, and
hyperarousal) was measured using the Post-traumatic
Stress Disorder Checklist-Specific Version (PCL-17)35, a
17-item self-report questionnaire modified to assess the
severity of DSM-IV WTC-related PTSD symptoms over
the past month on a scale of 1 (never bothered by) to 5
(extremely bothered by) (Cronbach’s α= 0.96). Our
research team has previously validated the four-
dimensional model in WTC responders and found it to
be more informative than the alternatives36,37. The ana-
lytical sample included 226 participants (an independent
cohort from our previous gene expression study12). All
participants were male; 84.5% were Caucasian; and the
mean age was 52.67 years old (SD= 8.02).

RNA-Seq data preprocessing
Gene expression in whole blood was profiled at the

Genomics Shared Resource of Roswell Park Compre-
hensive Cancer Center. The whole transcriptome libraries
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were prepared using KAPA HyperPrep Kit with RiboErase
(HMR) kit (Roche Sequencing Solutions) and sequenced
on Illumina NovaSeq 6000 sequencer at a sequencing
depth of over 100 million paired end reads (100 bp) per
sample. Raw reads that passed the quality filter from
Illumina RTA were pre-processed using fastqc38 for
sequencing base quality control and cutadapt39 to remove
adapter sequences if applicable. Alignment was performed
with the TopHat2 software40,41, utilizing Bowtie2 (http://
bowtie-bio.sourceforge.net/bowtie2/index.shtml) in the
RefSeq (NCBI Reference Sequence Database) annotation
database42 and the human reference genome (GrCh37-
hg19 version). Other genomic-related data were obtained
using the UCSC genome repository43,44. A second round
of QC using RSeQC was applied to the mapped bam files
to identify potential RNA-Seq library preparation pro-
blems. From the mapping results, the number of reads
aligned to each gene was calculated using HTSeq45. The
raw count data were transformed into fragments per
kilobase of transcript per million mapped reads (FPKM)
and transcripts per million mapped reads (TPM) to
account for library size differences across the samples.

Isoform-level and alternative splicing quantification
Isoform-level quantification was performed with the

Salmon software46, whereas the SUPPA software20 was
used to quantify the different AS events, namely skipping
exons, alternative 5’/3’ splice sites, mutually exclusive
exons, retained introns, and alternative first/last exons.
Each AS event was represented as a PSIori value, defined as
the ratio of abundance of transcripts that include the exon
over the abundance of transcripts that include or skip the
exon. PSI= log(PSIori/(1-PSIori)) was used for AS quanti-
fication in our analysis. Genes and isoforms with low read
counts were filtered out prior to statistical analysis.

Estimation of batch effects
The potential for batch effects was estimated using the

surrogate variable analysis approach for sequencing data
(svaseq)47. Proportions of CD4T, CD8T, monocytes,
natural killer (NK), B-cells, macrophage, dendritic, mast
cells, eosinophils, and neutrophils were estimated using
the CIBERSORT software48. The correlations between the
estimated proportions of cell types and PCL were com-
pared using Pearson correlation coefficients. The esti-
mated surrogate variables and proportion of cell types
were included as covariates in the DE analysis.

Differential expression analysis
DE analysis of gene-level count data was carried out

using NBAMSeq49 to identify genes associated with total
PCL and each dimension, following adjustment for age,
race, cell proportions (CD4T, CD8T, monocytes, NK, and
B-cells), and potential surrogate variables. NBAMSeq is a

recently developed method by our group for RNA-Seq
analysis based on a flexible generalized additive model that
enables the detection of both linear and nonlinear asso-
ciations between gene expression and the phenotype of
interest49.
DE analysis at the isoform and AS levels was performed

with isoform log(TPM+ 1) and PSI, respectively, to iden-
tify events associated with total PCL and its dimensions
using spline regression50, following adjustment for age,
race, cell proportions, and potential surrogate variables.
A false discovery rate (FDR)51 < 0.05 was used to iden-

tify statistically significant DE genes. Statistically sig-
nificant genes with an estimated effective degree of
freedom (edf) > 1.5 were considered nonlinear DE genes49.
The edf can be regarded as a proxy for the degree of
nonlinearity, where edf= 1 implies that the function
reduces to a linear effect model, whereas a large edf
implies greater deviation from the linear effect model.
Among the nonlinear DE genes, post-hoc analysis was
conducted on the estimated smooth functions of total
PCL to characterize the nonlinear patterns. Specifically,
the estimated functions of these genes were clustered via
k-medoid clustering52, and the optimal number of clusters
was determined using gap statistics53. The top genes and
AS events unique to each dimension were defined at FDR
< 0.05 for a target dimension and p > 0.1 for the other
three dimensions. For example, the top genes unique to
re-experiencing were defined as those with FDR < 0.05 in
re-experiencing DE analysis and p > 0.1 in avoidance,
numbing, and hyperarousal DE analyses.
The proportions of different AS events identified by DE

analysis were compared with the transcriptome-wide
proportions detected by SUPPA using the chi-square
goodness-of-fit test, in which categories with expected
counts <5 were combined.

Gene set enrichment analysis (GSEA)
For each PCL dimension DE analysis result, GSEA54 was

conducted on the entire list of genes ranked by negative
log p values. Both the gene ontology (GO)55 and KEGG
canonical pathway56 gene sets were tested. The minimum
and maximum gene set sizes were 15 and 500. FDR < 0.1
was used to identify statistically significant gene sets for
each comparison. If no pathway was significant at FDR <
0.1 (quantified by a q < 0.157), the gene sets at p < 0.001
were reported. The top gene sets unique to each dimen-
sion were defined at FDR < 0.1 or p < 0.001 for a target
dimension, and p > 0.1 for the other three dimensions. For
example, the top gene sets unique to re-experiencing were
defined as those with either FDR < 0.1 or p < 0.001 in re-
experiencing DE analysis and p > 0.1 in avoidance,
numbing, and hyperarousal DE analyses.
For each list of genes unique to each dimension from the

DE analysis, the DAVID functional annotation tool
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(https://david.ncifcrf.gov/) was used to identify enriched
pathways. Pathways significant at FDR < 0.1 were reported.
Additional statistical analyses based on the weighted

gene co-expression network analysis (WGCNA)58 to
identify modules of correlated genes, isoforms and AS
events were provided in Supplementary Materials.

Results
DE genes, isoforms, and AS events associated with total
PTSD
The mean total PCL score was 36.59 (SD= 15.45).

Estimated cell proportions were not associated with total
PCL (| r | < 0.105, p > 0.11 for each cell proportion).
DE analysis identified 76 genes associated with total

PCL at FDR < 0.05. A total of 70 out of the 76 genes
showed nonlinear associations with total PCL, with an
estimated edf ranging from 1.75 to 4.22 (mean edf: 2.54).
DE genes and the estimated edf are provided in Supple-
mentary Table 1. Post-hoc clustering analysis of the esti-
mated smooth functions of total PCL for the 70 nonlinear
DE genes identified 5 as the optimal number of clusters
(Supplementary Fig. 1A). Supplementary Fig. 1B–F shows
the five identified clusters. Within each cluster, the gray
lines correspond to the estimated smooth functions of
individual genes, whereas the red line corresponds to the
mean estimated smooth function of the genes in the
cluster. DE genes and the cluster membership are pro-
vided in Supplementary Table 1.
Next, 12,071 AS events were detected in 6528 genes

using SUPPA and were divided into seven types: A3
alternative 3’ splice sites, A5 alternative 5’ splice sites, AF
alternative first exons, AL alternative last exons, MX
mutually exclusive exons, RI retained introns, and SE
skipping exons. Skipping exons constituted the largest
number of AS events, at 5250. The relative proportions
of each event are given in Fig. 1. The UTY gene con-
tained the largest number of AS events in our dataset,
consistent with previous findings that this gene has a
huge splicing frequency59. At FDR < 0.05, 103 AS events
were associated with total PCL. A total of 101 out of the
103 identified events had nonlinear associations with
total PCL. The relative proportions of the seven event
types are shown in Fig. 1, which suggest that the pro-
portion of alternative first exons (AF) was higher,
whereas the proportion of skipping exons (SE) was lower
as compared with transcriptome-wide proportions (chi-
square test p < 0.05 after combining AL, MX, and RI).
The top AS events included A5 and SE in the BTNL8
gene, in addition to AF and A3 in the BANP gene
(Supplementary Table 2).
No isoform was significantly associated with total PCL

at FDR < 0.05. The smallest FDR was 0.058, which cor-
responded to isoform NM_001143760, EIF5A transcript
variant A.

Gene set enrichment analysis (GSEA) associated with total
PTSD
GSEA identified 45 GO terms and 26 canonical path-

ways associated with total PCL (Supplementary Table 3).
The top GO terms included interleukin-17 production
and response to type I interferon, whereas the top cano-
nical pathways included nervous system development and
interferon-α/β signaling.

DE genes, isoforms, and AS events associated with PTSD
dimensions
The pairwise correlations among the four dimensions

ranged from 0.62 to 0.84 (Supplementary Fig. 2A). On the
other hand, comparison between PCL and cell propor-
tions did not yield significant correlations (Supplementary
Fig. 2B).
DE analysis identified 1, 48, 15, and 49 significant genes

for re-experiencing, avoidance, numbing, and hyperar-
ousal, respectively, at an FDR < 0.05. More than 83% of
the DE genes showed a nonlinear association with the
phenotypes, with an estimated edf ranging from 1.6 to 7.1
(mean edf: 2.7). DE genes and the estimated edf are
provided in Supplementary Table 1. All the genes iden-
tified by re-experiencing, numbing, and hyperarousal had
p < 0.1 in the total PCL analysis. On the other hand, 21
out of the 48 genes associated with avoidance had p > 0.1
in the total PCL analysis (Supplementary Table 1).

Fig. 1 Bar graph comparing the proportions of significant AS
events associated with total PCL to the transcriptome-wide
proportions of AS events detected by SUPPA. A3 alternative 3’
splice sites, A5 alternative 5’ splice sites, AF alternative first exons, AL
alternative last exons, MX autually exclusive exons, RI retained introns,
SE skipping exons.

Kuan et al. Translational Psychiatry          (2021) 11:310 Page 4 of 9

https://david.ncifcrf.gov/


The number of overlapping genes among the four
dimensions is reported in Fig. 2A. Pearson correlation
coefficients computed for the estimated negative log p
values from NBAMSeq to summarize the strength of gene
expression association among re-experiencing, avoidance,
numbing, and hyperarousal are given in Fig. 2B, which
indicate that DE analysis of avoidance had the lowest
correlation as compared with that of the other dimen-
sions. A total of 23 and 2 genes were unique to avoidance
and hyperarousal DE analysis, respectively, whereas no
genes were unique to re-experiencing or numbing (Table
1). Across the p value thresholds, hyperarousal and re-
experiencing had the most and least number of significant
genes, respectively (Fig. 2C).
Only 1 isoform (NM_017668, NDE1 transcript variant

2) was detected in hyperarousal DE analysis, while none
were detected for re-experiencing, avoidance, or numbing
at FDR < 0.05. Global results at the isoform level
mimicked the overall trend observed at the gene level,
where DE analysis of avoidance had the lowest correlation
as compared with that of the other dimensions (Supple-
mentary Fig. 3A). At different p value thresholds, numb-
ing had the largest number of significant genes, followed
closely by hyperarousal; re-experiencing was intermediate
and avoidance had the lowest signals in isoform-level
analysis (Supplementary Fig. 3B).
Finally, 11, 0, 43, and 32 AS events were associated with

re-experiencing, avoidance, numbing, and hyperarousal,
respectively, at FDR < 0.05. All the AS events associated
with re-experiencing and hyperarousal showed nonlinear
associations, whereas 42 out of the 43 AS events had
nonlinear associations with numbing. The proportion of
alternative first exons (AF) associated with hyperarousal
was higher, whereas the proportion of skipping exons (SE)
associated with both hyperarousal and numbing was lower
as compared with transcriptome-wide proportions (chi-

square test p < 0.05 after combining AL, MX, and RI)
(Supplementary Fig. 3C). In total, 3 and 5 AS events were
unique to re-experiencing and numbing DE analysis,
respectively, whereas no events were unique to hyperar-
ousal (Table 1). Global results at the AS level also mimicked
the trend observed at the gene and isoform levels, where DE
analysis of avoidance had the lowest correlation as com-
pared with that of the other dimensions (Supplementary
Fig. 3D). At different p value thresholds, numbing had the
largest number of significant AS events, followed by
hyperarousal; whereas, re-experiencing and avoidance had
lower signals in AS-level analysis (Supplementary Fig. 3E).
DE AS events are provided in Supplementary Table 2.

Gene set enrichment analysis (GSEA) associated with PTSD
dimensions
GSEA identified 27, 31, 32, and 49 GO gene sets asso-

ciated with re-experiencing, avoidance, numbing, and
hyperarousal, respectively (Supplementary Table 3). All
the GO terms identified by numbing and hyperarousal
had p < 0.1 in the total PCL analysis. On the other hand, 3
out of the 27 GO terms associated with re-experiencing
and 18 out of the 31 GO terms associated with avoidance
had p > 0.1 in the total PCL analysis (Supplementary
Table 3). Comparison of the GSEA results of the four
dimensions identified 4, 15, 5, and 4 GO terms unique to
re-experiencing, avoidance, numbing, and hyperarousal,
respectively (Table 2).
GSEA identified 4, 5, 9, and 26 canonical pathways

associated with re-experiencing, avoidance, numbing, and
hyperarousal, respectively (Supplementary Table 3). All
the canonical pathways identified by numbing and
hyperarousal had p < 0.1 in the total PCL analysis. On the
other hand, one out of the four pathways associated with
re-experiencing and two out of the five pathways asso-
ciated with avoidance had p > 0.1 in the total PCL analysis

Fig. 2 Comparisons of DE genes associated with each PTSD dimension. A Venn diagram comparing the overlap among genes associated with
re-experiencing, avoidance, numbing, and hyperarousal. B Pearson correlation coefficients comparing the negative log p values among re-
experiencing, avoidance, numbing, and hyperarousal. C Number of significant genes at different p value thresholds.
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(Supplementary Table 3). Comparison of the GSEA
results of the four dimensions identified 1, 1, 1, and 2
canonical pathways unique to re-experiencing, avoidance,
numbing, and hyperarousal, respectively (Table 2). Global
results at the GSEA level are consistent with those at the
gene and isoform levels, where GSEA of avoidance had

the lowest correlation as compared with the other
dimensions for both GO terms and canonical pathways
(Supplementary Fig. 4A–B). In addition, among the 23
genes unique to avoidance, the hemoglobin chaperone
pathway (Biocarta), acetylation, and cytosol GO terms
were significant at FDR < 0.1.

Table 1 List of DE genes and AS events unique to each PCL dimension analysis.

Dimension Unique DE genes Unique AS events

Re-experiencing None SIGLEC10:A3, UPF2:AF, POLD3:SE

Avoidance AHSP, ALAS2, CA1, CCNDBP1, CMAS, CREG1, CTNNAL1, DPCD, GABARAPL2, GLRX5, H2AFJ, HBD, HMBS,

PAGE2B, PCTP, PITHD1, POLR1D, PRDX2, RGCC, RRAGA, SLC22A4, TERF2IP, TFRC

None

Numbing None ATP2A3:A3, HAUS4:A5, RNPS1:AF,

RAD51B:AL

Hyperarousal LOC728743, STMN3 None

A3 alternative 3’ splice sites, A5 alternative 5’ splice sites, AF alternative first exons, AL alternative last exons, MX mutually exclusive exons, RI retained introns, SE
skipping exons.

Table 2 List of GO and canonical pathway gene sets unique to each PCL dimension analysis.

Dimension Unique GO gene sets Unique canonical pathways

Re-experiencing Positive regulation of chemotaxis

Positive regulation of cyclin dependent protein kinase activity

Positive regulation of dephosphorylation

Regulation of chemotaxis

Matrisome

Avoidance Antibiotic metabolic process

Antioxidant activity

Autophagosome

Cellular detoxification

Cofactor catabolic process

Cofactor metabolic process

Hydrogen peroxide metabolic process

Organelle disassembly

Oxidoreductase activity acting on peroxide acceptors

Regulation of TOR signaling

Response to starvation

Tetrapyrrole biosynthetic process

Tetrapyrrole metabolic process

TOR signaling

Transcription coactivator activity

Energy-dependent regulation of mTOR by

LKB1–AMPK

Numbing Catalytic step 2 spliceosome

Protein targeting to mitochondrion

Regulation of response to cytokine stimulus

Spliceosomal complex

U2 type spliceosomal complex

Spliceosome

Hyperarousal Cytosolic transport

Ribosomal RNA binding

Polysomal ribosome

miRNA metabolic process

Phosphoinositide pathway

RAS pathway

Kuan et al. Translational Psychiatry          (2021) 11:310 Page 6 of 9



Additional analyses based on WGCNA58 showed that
most of the statistically significant modules had nonlinear
associations with total PCL and the dimensions (Supple-
mentary Table 4, Supplementary Fig. 5). These modules
were associated with several immune related ontologies,
including neutrophil activation, interferon signaling
pathway and viral response (Supplementary Table 5). The
results also indicated that analysis of avoidance had the
lowest correlation as compared with that of the other
dimensions (Supplementary Fig. 6A, C, E). Comparisons
of the number of significant module eigen-gene, eigen-
isoform, and eigen-AS at different p value thresholds were
shown in Supplementary Fig. 6B, D, F. Additional details
were provided in Supplementary Materials.

Discussion
The present study is the first to compare differential

expression patterns at the gene, isoform, and AS levels
associated with overall PTSD symptoms and its four
dimensions. IFI17 (interferon-α-inducible protein 27), a
gene involved in innate immunity, was identified as the
top gene associated with total PCL. IFI27 has previously
been found to be associated with chronic exposure to
adverse social environments60. The analysis of down-
stream biological pathways enriched by DE genes revealed
that the top GO terms and canonical pathways for total
PCL included interleukin-17 production, interferon-α/β
signaling, and response to type I interferon. These find-
ings are consistent with the current literature showing
that PTSD is associated with inflammation and the
immune response12–14. The type I interferon pathway has
also previously been found to be a shared inflammatory
pathway across multiple modes of trauma in a tran-
scriptome mega-analysis14.
Our results demonstrate a pattern of distinct yet inter-

correlated DE associated with each of the four dimensions,
adding to the growing body of evidence that unique bio-
logical pathways underpin the disorder subtypes. Specifi-
cally, the largest gene expression difference was between
the avoidance dimension and the other PCL dimensions.
The 23 DE genes unique to avoidance were enriched in the
hemoglobin chaperone pathway, acetylation, and cytosol
GO terms. Furthermore, three DE genes unique to
avoidance, namely AHSP, ALAS, and HMBS, were involved
in the hemoglobin chaperone pathway. Hemoglobin is
responsible for delivering oxygen to tissues, and AHSP is a
molecular chaperone that prevents its precipitation,
thereby acting as a balancing component of hemoglobin61.
The biological mechanism underlying hemoglobin reg-
ulation in PTSD is unclear; however, some studies have
established an association between depression/anxiety
disorders and hemoglobin levels and anemia62,63. GSEA
identified energy-dependent regulation of mTOR by the
LKB1–AMPK pathway unique to avoidance. Both the

AMPK and mTOR serine/threonine kinases were involved
in growth control, cell proliferation, and metabolism64. In
addition, several of the GO terms unique to avoidance
were involved in metabolic processes. This observation is
interesting given that PTSD has been found to be a risk
factor for metabolic syndromes65,66, suggesting that fur-
ther investigation of the molecular and cellular mechan-
isms associated with the avoidance dimension may provide
important insights into metabolic problems in PTSD.
In contrast to previous studies, the present study utilized

transcriptome-wide AS quantification and identified 103,
11, 0, 42, and 32 AS events associated with total PCL, re-
experiencing, avoidance, numbing, and hyperarousal,
respectively. AS is a process by which gene diversity is
increased. Among the DE AS events associated with total
PCL, the proportions of AF and SE were different from
transcriptome-wide proportions. Emerging evidence
shows that variability in the human immune response is
associated with differential splicing and isoform usage67,68,
suggesting that the DE AS events identified in the present
study could contribute to the link between PTSD and the
inflammatory and immune responses. Specifically, differ-
ential SE and alternative 5’ splice sites in the BTNL8 gene
were among the top DE AS events associated with total
PCL. BTNL8 is involved in the primary immune response
and co-stimulates T-cell proliferation and cytokine pro-
duction69. This gene was not significantly associated with
total PCL in gene-level analysis, indicating that analysis at
the AS level could provide additional insights into gene
regulation. In addition, across different p value thresholds,
the numbing association analysis identified the largest
number of AS events as compared with other PCL
dimensions. This result is consistent with the GSEA ana-
lysis, in which the gene sets unique to the numbing
dimension were involved in the spliceosome, a large
molecular complex that catalyzes the splicing process70.
Last, among the DE genes in PTSD, many showed a

nonlinear association with the total PCL and each
dimension, suggesting that future research on gene
expression and quantitative measurements of psycho-
pathology (i.e., continuous) could potentially gain power
by exploring nonlinear patterns.

Strengths and limitations
The present study has several strengths including a

state-of-the-art RNA-Seq approach and a common
trauma in all participants. Nonetheless, our findings must
be considered in the context of several limitations. First,
gene expression analysis was performed in RNA-Seq on
whole blood consisting of a mixture of different cell types.
We adjusted for cell-type differences statistically; how-
ever, future work should examine the association in iso-
lated cell types. Second, gene expression analysis was
conducted using a cross-sectional design; thus, we cannot
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determine whether the observed associations with PCL
are a consequence of the disorder or a part of its etiology.
Third, participants were male responders to the WTC
disaster, and while this helps to improve the biological
heterogeneity of analyses, it is unknown how our results
generalize to other traumatized samples or females. A
longitudinal design across both genders is needed to
determine the gender effect and direction of the associa-
tion of gene expression with PCL. Fourth, we filtered out
~64% of the transcripts due to low counts in isoform-level
analysis. The filtered transcripts may either not be
expressed in our samples or not have been detected due to
insufficient sequencing depth. Thus, a future direction for
this research includes deeper sequencing to ascertain
whether these filtered transcripts are truly not expressed
and to replicate the results of the present study.

Conclusions
The present study identified both shared and specific

differential expression patterns at the gene and AS levels
associated with total PTSD and its dimensions. This is the
first study to characterize the landscape and relevance of
AS in PTSD, and the results show that it is a promising
direction for future studies. Inflammatory and metabolic
pathways emerged as hypothesized, which may have
implications in the treatment of PTSD. DE analysis
associated with each dimension offers complementary
findings, emphasizing the importance of studying the
homogeneous components of PTSD.
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