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Introduction
Cadmium (Cd) is a toxic metal and common 
environmental contaminant, with human 
exposures most commonly occurring through 
occupational inhalation, tobacco use, ingestion 
(food and drinking water), or inhalation of 
ambient air (Agency for Toxic Substances and 
Disease Registry 2012; International Agency 
for Research on Cancer 2012). Data from the 
National Health and Nutrition Examination 
Survey (NHANES 2011) show that > 60% 
of the U.S. population has detectable blood 
Cd levels (range, 1.25–77.14  nmol/L). 
Chronic Cd exposure has been associated with 
increased lung and prostate cancers in occupa-
tionally exposed workers in the United States 
(Verougstraete et al. 2003), and elevated levels 
of serum Cd correlate with human pancreatic 
cancer (Kriegel et al. 2006). Evidence from 
rodent and in  vitro studies shows a direct 
causal link between Cd and cancer (Jing et al. 
2012; Qu et al. 2012). Molecular studies have 
suggested that the underlying mechanism of 
the carcinogenic activity of Cd is multifactorial 
and may include DNA damage (Zhang et al. 
2010), phenotype transitioning (Benbrahim-
Tallaa et al. 2009), modification of Cyp1a1 

(cytochrome P450) expression (Kluxen 
et al. 2012), Sp1 inactivation (Youn et al. 
2005), and promotion of angiogenesis (Jing 
et al. 2012).

Recent studies have suggested that Cd 
is an environmental “metalloestrogen” with 
effects that may be mediated by the estrogen 
receptor (ER) (Johnson et al. 2003; Kluxen 
et al. 2012). The proposition of Cd being an 
endocrine disruptor is plausible due to reports 
of its wide spectrum of deleterious effects on 
experimental Xenopus laevis (Lienesch et al. 
2000), mice (Ali et al. 2010), rats (Johnson 
et  al. 2003), and the developing human 
reproductive tract (Kippler et  al. 2012). 
Johnson et al. (2003) reported that exposure 
of ovariectomized rats to Cd resulted in 
increased uterine wet weight with accompa-
nying proliferation of the endometrium and 
induction of the progesterone receptor. Other 
investigators have reported that Cd regulates 
progesterone synthesis in cultured granulosa 
cells (Nampoothiri et al. 2007) and in pseudo-
pregnant rats (Henson and Chedrese 2004). 
In addition, a recent cohort study suggested 
a definite role for Cd in postmenopausausal 
breast cancer in women (Julin et al. 2012), 

which is consistent with prior observations 
of Cd’s ability to transform human breast 
epithelial cells into a cancer phenotype in vitro 
(Benbrahim-Tallaa et al. 2009).

There is reasonable evidence suggesting 
that Cd may be associated with uterine disease 
in women (Jackson et al. 2008). Nasiadek 
et al. (2005) detected Cd in uterine tissue 
of women with leiomyoma, although the 
concentrations were slightly lower than in 
surrounding myometrium. These investiga-
tors also found that tissue Cd levels correlated 
with levels of ER expression in leiomyoma 
tumors, indicating a possible link between 
Cd and estrogen signals (Nasiadek et  al. 
2011). Considering that uterine fibroids (i.e., 
leiomyomas, myomas) are one of the most 
common hormonally responsive tumors clini-
cally affecting women of reproductive age, 
it is a first-line strategy to identify potential 
environmental risk factors for the management 
of this disease (Di et al. 2008; Gao et al. 2012).

The ability to activate ERα is central to 
estrogen and “estrogen mimics” inducing 
cell proliferation in many cancers and other 
disease processes (Osborne and Schiff 2005). 
At the molecular level, estrogens, such as 
17β-estradiol (E2), bind to either ERα or ERβ 
and function through classical or nongenomic 
signaling pathways, with the latter including 
the pro‑proliferation, mitogen-activated 
protein kinase (MAPK)/ERK1/2 signaling 
pathway (Creighton et al. 2006). The MAPK 
pathway is a critical regulator of cell prolifera-
tion in both normal development and tumor 
growth. (Dhillon et al. 2007; Osborne and 
Schiff 2005). Conversely, the role of ERβ 
has largely been associated with inhibition 
of proliferation or proapoptotic events when 
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Background: It has been proposed that cadmium (Cd) is an environmental “metalloestrogen” 
and that its action is mediated via the estrogen receptor (ER). Cd mimics the effects of estrogen in 
the rat uterus, and blood Cd concentrations positively correlate with ER levels in uteri of women 
with fibroids.

Objectives: In the present study we explored whether Cd could stimulate proliferation of 
estrogen-responsive human uterine leiomyoma (ht-UtLM) cells and uterine smooth muscle cells 
(ht-UtSMCs) through classical interactions with ERα and ERβ, or by nongenomic mechanisms.

Methods: We used estrogen response element (ERE) reporters, phosphorylated receptor tyrosine 
kinase arrays, Western blot analysis, estrogen binding, and cell proliferation assays to evaluate the 
effects of Cd on ht-UtLM cells and ht-UtSMCs.

Results: Cd stimulated growth of both cell types at lower concentrations and inhibited growth at 
higher concentrations (≥ 50 μM). Cd did not significantly bind to ERα or ERβ, nor did it show 
transactivation in both cell types transiently transfected with ERE reporter genes. However, in both 
cells types, Cd (0.1 μM and 10 μM) activated p44/42 MAPK (ERK1/2), and a MAPK inhibitor 
(PD98059) abrogated Cd-induced cell proliferation. Cd in ht-UtLM cells, but not in ht-UtSMCs, 
activated the growth factor receptors EGFR, HGFR, and VEGF-R1 upstream of MAPK. Additional 
studies in ht-UtLM cells showed that AG1478, an EGFR inhibitor, abolished Cd-induced phos-
phorylation of EGFR and MAPK.
Conclusions: Our results show that low concentrations of Cd stimulated cell proliferation in 
estrogen-responsive uterine cells by nongenomic activation of MAPK, but not through classical 
ER-mediated pathways.
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coexpressed with ERα; however, recent studies 
in ERα-negative breast cancer cells may 
suggest a role of ERβ in cell survival (Leygue 
and Murphy 2013).

In the present study, we examined whether 
Cd could induce growth in estrogen-responsive 
human uterine fibroid and myometrial cells, 
and if so, did ERs mediate the effects. We 
first examined the effects of low and high 
concentrations of Cd on cell growth, and 
then explored possible molecular mechanisms 
mediating any Cd-induced effects. Our results 
have important clinical and environmental 
risk implications, and provide evidence of a 
molecular mechanism of Cd-induced effects in 
uterine fibroid cells.

Materials and Methods
Cells and reagents. The UtLM-hTERT 
(ht-UtLM) cells and UtSMC-hTERT cells 
(ht-UtSMCs) (passage 24) were established 
in our laboratory and maintained in supple-
mented medium as previously described 
(Carney et  al. 2002). Cadmium chloride 
(CdCl2; 99.999%, catalog no. 439800; 
Sigma-Aldrich) was dissolved in double 
distilled water to make a 1‑M stock solution. 
The ER antagonist ICI 182,780 (ICI; Sigma-
Aldrich), the MAPK inhibitor PD98059 (PD; 
catalog no. 9900; Cell Signaling Technology), 
and the epidermal growth factor receptor 
(EGFR) inhibitor Tyrphostin AG 1478 
(catalog no. 9842; Cell Signaling Technology) 
were dissolved in DMSO. 

Cell proliferation assay (MTS). CellTiter 
96® Aqueous One Solution Cell Proliferation 
Assay (MTS, G3581; Promega) was used to 
measure cell proliferation according to the 
manufacturer’s instructions. Briefly, cells 
were seeded into 96-well plates and cultured 
in phenol red–free DMEM/F12 medium 
containing 10% charcoal/dextran-stripped 
fetal bovine serum (FBS) for 24 hr, followed 
by various Cd treatments without or with PD 
(10 μM) preincubation (2 hr).

ERα and ERβ competitive binding assay. 
The binding affinity of E2 and Cd to ERα 
and ERβ was evaluated by fluorescence polar-
ization following the instructions provided 
in the LanthaScreen® TR-FRET Competitive 
Binding Assays for ERα and ERβ (PV6041 
and PV6042, respectively, Invitrogen). E2 
or Cd, at increasing concentrations, was 
added to ER/FluormoneTM ES2 Green mixer 
according to the manufacturer’s protocol. 

Transient transfection luciferase assays. 
Cells were transfected using Lipofectamine® 
RNAiMAX Transfection Reagent (catalog 
no .   13778-075;  Inv i t rogen by  L i fe 
Technology) as described previously (Gao 
et  al. 2012). Transfected cells, equipped 
with luciferase reporters, were maintained 
in phenol red–free medium containing 10% 
charcoal/dextran-stripped FBS for 24 hr prior 

to treatment with 10 nM E2 or Cd (0.01, 0.1, 
1.0, 10, 20 μM) in the presence or absence of 
1 μM ICI for 24 hr. Luciferase activity was 
measured using the Dual-Luciferase Reporter 
Assay System (Promega).

Western blot analysis. Whole cell lysates 
were obtained and used for Western blotting 
as described previously (Gao et al. 2012). The 
primary antibodies phospho-p44/42 MAPK 
(catalog no. 9101), p44/42 MAPK (catalog 
no. 9102), phospho-EGFR (catalog no. 3777), 
and EGFR (catalog no. 2232) (Cell Signaling 
Technology) were diluted at 1:1,000. We used 
ECL (enhanced chemiluminescence) horse-
radish peroxidase (HRP)-linked rabbit IgG 
(1:5,000, catalog no. NA934; GE Healthcare) 
the  secondary  ant ibody and HPRT 
(hypoxanthine-guanine phosphoribosyl
transferase) antibody (sc-376559, Santa 

Cruz) as the loading control. The density of 
the respective bands was quantitated using a 
densitometer with AlphaView Software for 
FluorChem Systems (ProteinSimple™).

Phosphorylation of receptor tyrosine 
kinases (RTKs). To assess the phosphoryla-
tion status of human receptor tyrosine 
kinases (RTKs), we used Proteome Profiler™ 
Human Phospho-RTK Array Kits (catalog 
no. ARY001; R&D Systems) according to the 
manufacturer’s protocol. Briefly, aliquots of 
cell lysates were incubated with the RTK array 
membranes spotted with 42 anti-phospho-
RTK antibodies. An HRP-conjugated pan 
anti-phospho-tyrosine antibody was then used 
to detect phosphorylated signals. 

Confocal immunofluorescence staining. 
Pretreated cells were harvested, processed, 
and stained for confocal immunofluorescence 

Figure 1. The effects of Cd on cell growth in ht-UtLM cells (A) and ht-UtSMCs (B) as measured by the MTS 
proliferation assay. Cd concentrations < 50 μM significantly increased cell growth in ht-UtSMCs, and at 
most low concentrations in UtLMs, whereas ≥ 50 μM Cd significantly inhibited cell growth at 24 hr, 48 hr, 
and 72 hr in both cell lines. Data were collected with an absorbance wavelength of 490 nm. Data represent 
mean ± SE of experiments repeated three times with independent cultures. 
ap < 0.05 compared with control at 24 hr. bp < 0.05 compared with control at 48 hr. cp < 0.05 compared with control at 72 hr. 
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Figure 2. Effect of Cd (0.1 μM or 10 μM) on the phosphorylation (phospho) of p44/42 MAPK (pMAPK) in 
ht-UtLM cells (A,B) and ht-UtSMCs (C,D) shown by Western blots (A,C) and quantitation of the blots (B,D). 
Cd treatment resulted in increased phosphorylation of p44/42 MAPK at 10 min and 60 min. Quantitative 
data represent mean ± SE of experiments repeated three times with independent cultures. 
*p < 0.05 compared with the 0-min time point. 
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microscopy as previously reported (Gao et al. 
2012). Briefly, fixed cells were incubated with 
phospho-p44/42 MAPK antibody (1:100) 
at 4°C overnight, followed by incubation 
with Alexa Fluor® 594 goat anti-rabbit IgG 
secondary antibody (1:3,000, red fluores-
cence; catalog no. A11037; Molecular Probes) 
at room temperature for 1 hr. After counter
staining with DAPI (4´,6-diamidino-2-
phenylindole; catalog no. D1306; Molecular 
Probes) for 30 min, slides were examined 
under a Zeiss LSM510-UV meta confocal 
microscope (Carl Zeiss).

Statistical analysis. All experiments were 
performed at least three times in duplicate. 
Results are expressed as mean  ±  SE. Cell 
proliferation data were analyzed by one-way 
analysis of variance (ANOVA) followed 
by Dunnett’s multiple comparisons test. 
Luciferase assay data and MTS data were 
analyzed by two-way ANOVA followed by 
Sidak’s multiple comparisons test. Two-tailed 
Student’s t-tests were used to compare pairs of 
time points for data on phosphorylation and 
RTK expression (SAS 9.3; SAS Institute Inc.). 
For binding assays, concentrations producing 
50% of the maximum inhibition (IC50) were 
estimated from Hill models using Prism® 6.02 
(GraphPad Software). p-Values < 0.05 were 
considered statistically significant.

Results
Effects of Cd on cell proliferation in ht-UtLM 
cells and ht-UtSMCs. To evaluate the 
effects of Cd exposure on proliferation of 
human ht-UtLM cells and ht-UtSMCs, we 
conducted MTS proliferation assays using Cd 
at concentrations of 0.0001 μM to 200 μM. 
Compared with vehicle controls, ht-UtSMCs 
and ht-UtLM cells incubated with Cd for 
24 hr, 48 hr, or 72 hr showed statistically 
significant proliferative responses as measured 
by absorbance at 490 nm, (Figure 1A,B). 
Therefore, we chose two representative inter-
mediate doses (0.1 and 10 μM) to carry out 
further mechanistic studies.

Influence of Cd on ERα or ERβ responses 
in vitro. We sought to determine whether 
ERs are involved in the proliferative effects 
observed in ht-UtLM cells and ht-UtSMCs 
after Cd exposure. First, we conducted 
competitive binding assays to examine the 
binding affinity of Cd to ERα and ERβ. 
The affinity of Cd to bind ERα or ERβ was 
nondetectable at concentrations ranging from 
0.01 nM to 10 mM, whereas E2 bound to 
ERα and ERβ with high affinity (calculated 
IC50 of about 1.04 nM and 0.93 nM, respec-
tively) (see Supplemental Material, Figure S1). 
Next, we determined whether Cd could 
modulate ER-dependent gene regulation in 
ht-UtLM cells and ht-UtSMCs. By using a 
luciferase reporter system, we found that 
10 nM E2 resulted in significant responses in 

ERE-mediated luciferase activity in hERα and 
hERβ, which was fully abrogated by 1.0 μM 
ICI; however, Cd had a negligible influence on 
hERα or hERβ luciferase activity in ht-UtLM 
cells or ht-UtSMCs (see Supplemental 
Material, Figure S2). Collectively, these results 
do not support that Cd directly interacts 
with either ERα or ERβ in vitro. Therefore, 
we speculate that nonclassical ER mecha-
nisms might be responsible for the prolifera-
tive effects observed in ht-UtLM cells and 
ht-UtSMCs after Cd treatment. 

p44/42 MAPK pathway and Cd-induced 
cell proliferation in ht-UtSMCs and ht-UtLM 
cells. The MAPK pathway, well recognized 
as a critical mediator of cell proliferation 
in both normal growth and tumorigenic 
overgrowth, has been reported to be acti-
vated after exposure to Cd (Ali et al. 2010). 
Therefore, we evaluated the influence of Cd 
on activation of p44/42 MAPK in ht-UtLM 
cells and ht-UtSMCs. Using Western blotting, 
we found that treatment with 0.1 μM and 

10 μM Cd resulted in marked increases in 
phosphorylation of p44/42 MAPK as early as 
10 min in ht-UtLM cells (p < 0.01, vs. 0 min) 
(Figure 2A,B) and in ht-UtSMCs (p < 0.01, 
vs. 0 min) as well (Figure 2C,D). Our data 
indicate that the p44/42 MAPK pathway was 
activated by Cd and occurred as an early event 
in both ht-UtLM cells and ht-UtSMCs.

We evaluated whether the activation of 
the p44/42 MAPK pathway plays a role in 
Cd-induced cell proliferation. By adding a 
specific ERK inhibitor (PD, 10 μM) prior to 
Cd treatment (0.1 and 10 μM), Cd-induced 
cell proliferation was substantially abolished 
(p < 0.05, vs. Cd alone) in both cell types 
(Figure 3A,B). As shown in Figure 3C, treat-
ment with 10  μM Cd resulted in robust 
activation of p44/42 MAPK as indicated by 
intense red positive signals in ht-UtLM cells 
and ht-UtSMCs (Figure 3C‑b, 3C‑f), whereas 
PD dramatically inhibited phospho-p44/42 
MAPK expression (Figure 3C‑c and 3C‑g). 
Cd administration in the presence of PD did 

Figure 3. Effect of PD98059 (PD) on Cd-induced cell proliferation and p44/42 MAPK phosphorylation. Cell 
proliferation was evaluated in ht-UtLM cells (A) and ht-UtSMCs (B) treated with vehicle (control), Cd 
(0.1 μM or 10 μM), with 10 μM PD98059 (PD) alone, or Cd in combination with 10 μM PD for 72 hr. The experi-
ments were repeated three times with independent cultures. Absorbance values were determined at a 
490 nm wavelength. Data are presented as mean + SE (n = 6). (C) Confocal images of ht-UtLM cells (a,b,c,d) 
and ht-UtSMCs (e,f,g,h) treated with vehicle (control; a,e), 10 μM Cd (b,f), PD (50 μM; c,g), or Cd plus PD (d,h) 
for 10 min. Red indicates phospho-p44/42 MAPK, and blue indicates DAPI staining; bar = 50 μm.
*p < 0.05 compared with control. 
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not result in activation of p44/42 MAPK 
(Figure 3C-d, 3C‑h). Taken together, these 
data suggest that Cd-induced cell prolifera
tion in ht-UtLM cells and ht-UtSMCs was 
mediated by activation of p44/42 MAPK.

Cd-induced p44/42 MAPK phosphoryla-
tion is EGFR-dependent in ht-UtLM cells. 
Various cell surface growth factor receptors 
(the RTKs) can trigger the p44/42 MAPK 
cascade and phosphorylation. In an attempt 
to identify specific upstream RTKs involved 
in Cd-induced p44/42 MAPK activation, 
we used phosphorylation RTK arrays on 
ht-UtLM cells and ht-UtSMCs incubated 
with 10 μM Cd for 10 min. Among 42 RTKs, 
seven candidate proteins were significantly 
expressed (p < 0.05, vs. 0 min) in ht-UtLM 
cells, with EGFR most highly expressed at 
baseline, and phosphorylation significantly 
increased at 10  min after Cd exposure 
(Figure  4A). The phosphorylated RTKs 
were differentially expressed in ht-UtSMCs 
compared to ht-UtLM cells following Cd 
treatment. In ht-UtSMCs, the most highly 
phosphorylated RTKs were Ephrin receptors, 
which maintain a critical role in angiogenesis 
(see Supplemental Material, Figure S3).

Because EGFR has recently been reported 
to mediate Cd-induced cell proliferation 
and survival (Carpenter and Jiang 2013; 
Martinez Flores et al. 2013), we sought to 
further determine the contribution of EGFR 
phosphorylation in p44/42 MAPK activation 
in the ht-UtLM cells. Cd treatment resulted 
in phosphorylation of EGFR, which was 
largely disrupted by the addition of AG1478 
(1 μM), a selective EGFR-RTK inhibitor 
(Figure 4B,C). Accordingly, p44/42 MAPK 
activation induced by Cd was substan-
tially abolished in the presence of AG1478 
(Figure 4D,E). In short, these data suggest 
that Cd-induced p44/42 MAPK activation is 
EGFR dependent in ht-UtLM cells.

Discussion
Cd is a heavy metal associated with ubiquitous 
air and water pollution that is also a contami-
nant in cigarette smoke. Circulating levels 
of Cd in chronically exposed women have 
been reported to be as high as 0.33–3.5 μg/L 
(Nasiadek et al. 2011). Moreover, Pollack 
et al. (2011) observed higher concentrations 
of Cd in tissue (0.047 and 0.075 μg Cd/g 
wet tissue in leiomyoma and myometrium, 
respectively) than in blood. In the present 
study, we found that environmentally relevant 
concentrations of Cd sufficiently induced cell 
proliferation in estrogen-responsive ht-UtLM 
cells and ht-UtSMCs. These effects were more 
likely to be mediated through activation of 
the p44/42 MAPK pathway than through 
direct interactions with ERα and ERβ. These 
data suggest that Cd should be considered an 
environmental risk factor for uterine fibroids 

and that EGFR could be a potential target in 
managing this risk. Our findings add benign 
tumors, such as uterine fibroids, to a long list 
of targets and adverse effects of Cd exposure.

The acute toxic effects of high concen-
trations of heavy metals such as lead and 
arsenic have long been acknowledged as life 
threatening. Moreover, recently, consider-
able efforts have been invested in exploring 
the adverse health effects of low-level and 
chronic exposures to heavy metals. For 
example, long-term, low-level lead expo-
sures in children have been reported to lead 
to compromised neurobehavioral/cognitive 

capabilities (Olympio et  al. 2009), and 
chronic Cd exposure has been associated with 
cancerous transformation of epithelial cells 
in vitro (Benbrahim-Tallaa et al. 2009; Jing 
et al. 2012). However, attempts to demonstrate 
the endocrine-disrupting or estrogenic effects 
of low-level Cd exposure in in vitro studies 
have produced inconsistent results (Höfer et al. 
2010; Isidori et al. 2010; Silva et al. 2006). 
Nevertheless, these complexities coincidently 
support the notion that further investigations 
regarding the effects of Cd on human health, 
including the endocrine and reproductive 
systems, hold significant interest and urgency.

Figure 4. Effect of Cd on the phosphorylation (phospho) of receptor tyrosine kinases (RTKs) as well as 
EGFR (pEGFR) and p44/42 MAPK (pMAPK) activation in ht-UtLM cells. (A) Expression of growth factor RTKs 
in ht-UtLM cells after Cd (10 μM) treatment for 10 min shown by a representative RTK array (top) and as 
quantitated dot blot intensity values (mean ± SE) of ht-UtLM cells (bottom). The up‑regulated RTKs were 
EGFR, hepatocyte growth factor receptor (HGFR), vascular endothelial growth factor receptor (VEGFR1), 
fibroblast growth factor receptor 2 (FGFR2α), receptor tyrosine kinase-like orphan receptor 1 (ROR1), 
platelet-derived growth factor receptor beta (PDGFRβ), and insulin receptor (IR); the Ephrin (Eph) recep-
tors EphA2 and EphA1 were not significantly expressed. The array was repeated at least three times. 
(B–E) Effect of 0.1 or 10 μM Cd on phosphorylation of EGFR (B,C) and p44/42 MAPK (D,E) at 10 min. In the 
presence of AG1478 (1 μM), an EGFR inhibitor, the increased EGFR phosphorylation induced by Cd was 
abolished; AG1478 also abrogated Cd-induced phosphorylation of p44/42 MAPK. The experiments were 
repeated three times with independent cultures.
*p < 0.05 compared with 0 min. 
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In regard to female reproductive health, 
we observed that Cd induced cell prolifera
tion in ht-UtLM cells and ht-UtSMCs in a 
classical ER-independent manner. Previous 
studies have reported that Cd has estrogen-like 
activity and acts as an endocrine-disrupting 
chemical (Höfer et  al. 2010; Kluxen et al. 
2012). Environmentally relevant doses of Cd 
have been found to induce several estrogenic 
responses both in cultured breast cancer cell 
lines and in rats via the ER (Höfer et al. 2010; 
Kluxen et al. 2012; Siewit et al. 2010; Zang 
et al. 2009). In contrast, our data consistently 
showed that Cd did not directly bind to 
human ERα or ERβ and had no significant 
ER transcriptional activity in the presence or 
absence of ICI. These negative, but impor-
tant, findings suggest that the effects of Cd 
on ht-UtLM cells and ht-UtSMCs most 
likely occur in a nonclassical ER manner, 
without significant contributions from ER 
binding or transactivation. Our findings are 
in agreement with those of Ali et al. (2010, 
2012) who found that the estrogenic effects 
of Cd may be mediated, in part, by the 
MAPK/ERK1/2 signaling pathway. Ali et al. 
(2010, 2012) ruled out classical ER signaling 
through ERE-regulated genes in Cd-induced 
estrogenic responses observed in  vivo and 
observed that activation of MAPK pathways 
was a mode of action for Cd. Liu et al. (2008) 
suggested that rapid activation of ERK1/2 and 
AKT in human breast cancer cell lines may 
occur through membrane ERα and GPR30, 
suggesting the presence of crosstalk between 
hormone and growth factor signaling pathways 
involved in Cd-induced cell signaling. 

There are a number of factors that might 
account for these differences in observations 
regarding Cd’s estrogenicity. Variability 
and lack of standardized protocols for ER 
binding and transactivation assays make 
interlaboratory comparisons and validations 
difficult (Silva et al. 2006). In addition, differ-
ences in estrogenic responses observed with 
Cd treatment may be explained by varia-
tions in ER content, transcription factors, 
and coregulators present in diverse cell types 
utilized in in vitro studies. (Heldring et al. 
2007; Wilson et al. 2004). 

Another important finding in our study 
is that EGFR-dependent p44/42 MAPK acti-
vation appears to be critical in Cd-induced 
cell proliferation in ht-UtLM cells. MAPK 
pathways are evolutionarily conserved kinase 
modules that link extracellular signals to the 
machinery that controls fundamental cellular 
processes such as normal growth, proliferation, 
and differentiation (McKay and Morrison 
2007). The ERK1/2 pathway, the most studied 
mammalian MAPK pathway, is dysregulated 
in approximately one-third of all human 
tumors including uterine fibroids. Activation 
of the RTK/MAPK pathway has been well 

documented in the development of uterine 
fibroids by our laboratory (Di et al. 2008; Yu 
et al. 2008) as well as by other investigators 
(Jiang et al. 2010). Interestingly, we found 
that EGFR phosphorylation was up‑regulated 
by Cd, which mimicked the effects of E2; 
Shimomura et  al. (1998) reported that E2 
can up‑regulate EGFR expression in cultured 
human uterine leiomyoma cells, and we found 
similar results in fibroid tissue samples from 
women in the proliferative (estrogenic) phase 
of the menstrual cycle (Yu et al. 2008). Other 
investigators have also found an association 
between Cd exposure and the induction of 
MAPK (Ali et al. 2010) and EGFR expression 
(Kundu et al. 2011).

Given that EGFR is a critical molecule 
linked with multiple human tumors, our 
findings may have many important clinical 
implications (Ciarmela et  al. 2011). It is 
possible that Cd may have synergistic effects 
on uterine fibroids in settings in which Cd 
exposure occurs in combination with expo-
sures to other EGFR-inducers/activators, such 
as estrogen. It is also promising that inter
ventions targeting EGFR might be meaningful 
in managing the effects of Cd exposure on 
uterine fibroids and other disorders (Ciardiello 
and Tortora 2008; Paez et al. 2004). Besides 
these implications, there are also several 
other important directions that should 

be encouraged in this field. Because exces-
sive extracellular matrix (ECM) is another 
critical feature of uterine fibroids, it may be 
extremely helpful to evaluate the full spectrum 
of risks of Cd on fibroids by exploring the 
potential effects of Cd on ECM turnover in 
ht-UtLM cells and ht-UtSMCs. In addition, 
optimized animal studies and human cohort 
studies may strengthen the viewpoint that 
Cd is an environmental estrogen mimic and 
a risk factor for uterine fibroids and other 
reproductive tract diseases. 

Conclusions
In the present study we found that Cd-induced 
growth in ht-UtLM cells and ht-UtSMCs was 
not mediated by a classical ER mechanism 
of receptor binding and ERE-mediated gene 
activation, but through nongenomic pathways 
involving differential activation of growth 
factor receptors and subsequent MAPK/
ERK1/2 phosphorylation (Figure  5). Our 
results suggest that Cd is a potential environ-
mental risk factor for uterine fibroids. Further 
exploration of Cd-induced nongenomic 
signaling and the interaction between the 
different signaling pathways may be critical 
for developing new preventive strategies and 
risk assessment exposure paradigms for fibroids 
and other hormonally regulated disorders 
and cancers.

Figure 5. Schematic diagram of proposed molecular mechanism of EGFR and p44/42 MAPK (MAPK) 
phosphorylation in Cd-induced cell growth in fibroid cells. Classical ER pathways are not directly involved 
in Cd-induced cell proliferation in ht-UtLM cells. EGFR and MAPK played a role in Cd-induced proliferation 
in ht-UtLM cells. We propose that Cd mediates the phosphorylation of growth factor RTKs, such as EGFR, 
HGFR, and VEGFR1, which in turn activate downstream effector MAPK. The EGFR inhibitor AG1478 can 
diminish Cd-induced EGFR and MAPK phosphorylation; the MAPK inhibitor PD98059 can also decrease 
Cd-induced MAPK phosphorylation and cell growth.
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