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Abstract

Background: The regulation of the transcription factor sex-determining region Y-box transcription factor 9 (SOX9)
in lung development has been described in mouse, but the same principles apply to human lung development is
unknown due to a lack of appropriate experimental approaches and models.

Methods: Here, we used gene editing technology to inactivate SOX9 in human embryonic stem cells that were then
induced to differentiate into lung organoids to investigate the role of SOX9 in human lung epithelium development.

Results: Complete knockout of the transactivation domain of SOX9 by gene editing resulted in indels in both alleles of
SOX9. SOX9™~ hESCs could be induced to differentiate into lung progenitor organoids. In vitro long-term expansion
showed that SOX9 inactivation did not affect the differentiation of pulmonary epithelial cells, but promoted apoptosis
and reduced proliferative capacity in the organoids. When lung progenitor organoids were transplanted under the
kidney capsule of immunodeficient mice, expression of the club cell marker secretoglobin family 1A member 1
(SCGB1AT1) was detected in SOX9™~ transplants but was absent in wild-type (WT) transplants. The maturation of goblet
cells was also affected by SOX9 inactivation, as evidenced by the presence of mucin 5 AC (MUC5AC) in the cytoplasm
of SOX9™~ grafts as compared to WT grafts in which most MUC5AC was secreted into the lumen. In vivo lung
orthotopic transplantations showed that SOX9 inactivation had a limited effect on the differentiation of alveolar cells
and lung regeneration in injured mice.

Conclusions: SOX9 modulates the proliferative capacity of lung epithelium but is not an indispensable transcription
factor in the regulation of human lung epithelium development.
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Background

The lung is one of the most important organs of the
human body as it enables efficient gas exchange between
air and blood. In mammals, this function requires a
complex tissue structure consisting of multiple cell types
that is connected to other systems such as the cardiovas-
cular system. The anatomic and functional complexity is
the product of a stepwise developmental process involv-
ing precisely controlled proliferation, differentiation, and
apoptosis along with multicellular self-organization and
-patterning. The endoderm passes through embryonic,
pseudoglandular, canalicular, saccular, and alveolariza-
tion stages to achieve the highly branched construction
of mature lungs [1].

Early lung progenitors (LPs) in mice are characterized
by the expression of the transcription factor NKX2.1
from proximal to distal lung epithelium, which is
followed by proximal sex-determining region Y-box
transcription factor 2 (Sox2) and distal Sox9 and inhibi-
tor of DNA-binding 2 (Id2) expression [1]. In contrast,
in the developing human lung, pseudoglandular tip pro-
genitors are Sox2"/Sox9" and become Sox27/Sox9" dur-
ing the canalicular stage [2].

The transcription factor Sox9 was first investigated in
the context of campomelic dysplasia (CD), a disease re-
lated to defective chondrogenesis and XY sex reversal
[3]. During lung development, Sox9 is a marker of distal
LPs and cartilage formation [1, 4]. A study using SP-
CrtTA/tetOCre/Sox9"1°* mice reported normal lung
morphology, differentiation, and tissue repair following
oxygen-induced lung injury after Sox9 inactivation [5].
However, it was later shown that Sox9 is essential for
proper branching morphogenesis and lung epithelium
development. Conditional Sox9 ablation in the lung epi-
thelium using Shh-Cre/Sox9™**1°* mice caused a lethal
branching defect in embryos, inappropriate epithelial cell
proliferation and differentiation, and multiple cellular le-
sions [6]. Mesenchyme-specific knockout of Sox9 in
Tbx4-rtTA/tetOCre/Sox9"*1°* mice resulted in cartil-
age ring defects and aberrant differentiation of the air-
way epithelium [4, 7]. These conflicting findings on the
role of Sox9 in lung development may be attributable to
the different genetic backgrounds of the mice that were
used in the studies [8], which reflects the limitation of
using a mouse model to study development processes.
Moreover, because of species differences, the progres-
sion of human lung development and disease cannot be
easily or accurately modeled using animal models. As
such, there is a lack of information regarding the regula-
tion of SOX9 during human lung development.

Organoids are stem cell-derived 3-dimensional (3D)
structures that contain multiple self-assembled cell types
supported by extracellular matrix [9]. The spatial ar-
rangement and cell—cell interactions of organoids mimic
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those of the native organ, making them a powerful tool
to study human developmental and disease processes [9,
10]. In this study, we used lung organoids derived from
SOX9™'~ human embryonic stem cells (hESCs) gener-
ated using gene editing technology to study the role of
SOX9 during human lung development.

Methods

Maintenance of hESCs

The H9 hESC line was obtained from WiCell Research
Institute. Stem cells were maintained in mTeSR1
medium (STEMCELL Technologies, Vancouver, BC,
Canada) on plates coated with Matrigel (BD Biosciences,
Franklin Lakes, NJ, USA; cat. no. 354277) with the
medium changed daily. Cells were passaged by digestion
with TrypLE Express (Gibco, Grand Island, NY, USA)
and reseeding at a concentration of 1:10—1:15.

CRISPR design and targeted mutagenesis

A SOX9-null HI line was generated using the CRISPR/
Cas9 method. Briefly, gRNAs targeting exon 3 of the
SOX9 gene were cloned into a vector containing the
puromycin resistance gene (gRNA1, 5'-GGGCTGTAGG
CGATCTGTTGGGG-3"; gRNA2, 5'-TCCTACTACA
GCCACGCGGCAGG-3"). gRNAs and Cas9 plasmid
DNAs were combined and transfected into H9 cells.
Positive clones were obtained by puromycin selection
and seeded at a limiting dilution for subcloning. Individ-
ual colonies were isolated and expanded. For genotyping,
genomic DNA was isolated from cells to screen for
SOX9 deletion by sequencing a PCR-amplified fragment
spanning the 2 gRNA sites.

Induction and passaging of airway and alveolar organoids
Stepwise differentiation of hESCs was carried out as pre-
viously described [11, 12], with some modifications.
Briefly, to induce definitive endoderm (DE), hESCs (~
90% confluence) were cultured in 24-well tissue culture
dishes for 3 days in RPMI1640 medium containing 100
ng/ml activin A (R&D Systems, Minneapolis, MN, USA;
cat. no. 338-AC-050) and 2 uM CHIR99021 (Tocris Bio-
science, Bristol, UK; cat. no. 4423-10MG). From days 4—
7, the medium was replaced with Advanced DMEM/F12
(Life Technologies, Carlsbad, CA, USA; cat. no.
12634010) supplemented with 200 ng/ml Noggin (R&D
Systems; cat. no. 6057-NG-100), 500 ng/ml fibroblast
growth factor 4 (FGF4) (Peprotech, Rocky Hill, NJ, USA;
cat. no. 100-31-1MG), 2uM CHIR99021, and 10puM
SB431542 (Tocris Bioscience; cat. no. 1614-10MQG) to
generate anterior foregut endoderm (AFE). On day 8,
cells were embedded in Matrigel (BD Biosciences; cat.
no. 356237) to initiate the 3D culture. “Ventralized” an-
terior foregut endoderm (VAFE) was generated by cul-
turing cells in Dulbecco’s Modified Eagle’s Medium
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(DMEM)/F12 (Life Technologies; cat. no. 11320033)
with 20 ng/ml human bone morphogenetic protein 4
(BMP4) (R&D Systems; cat. no. PRD314-10), 0.5 uM all-
trans retinoic acid (Sigma-Aldrich, St. Louis, MO, USA;
cat. no. R2625), 3.5uM CHIR99021, 1% Glutamax
(Gibco; cat. no. 35050061), and 2% B27 supplement (Life
Technologies; cat. no. 17504044) from days 8-14. For
LP induction, VAFE-enriched cells were cultured in
DMEM/F12 supplemented with 3 uM CHIR99021, 10 ng/
ml human FGF10 (R&D Systems; cat. no. 345-FG-025),
10 ng/ml human keratinocyte growth factor (KGF) (Novo-
protein, Shanghai, China; cat. no. CM88), and 20puM
DAPT (Sigma-Aldrich; cat. no. D5942) from days 15-21.
To generate airway organoids, the cells were incubated in
Ham’s F12 (Gibco; cat. no. 21127022) with 50 nM dexa-
methasone (Sigma-Aldrich; cat. no. D4902), 100 nM 8-Br-
cAMP (Biolog Life Science Institute, Bremen, Germany;
cat. no. B007-500), 100 nM 3-isobutyl-1-methylxanthine
(Wako, Osaka, Japan; cat. no. 095-03413), 10 ng/ml KGF,
1% B-27 supplement, 0.25% bovine serum albumin (BSA)
(Sigma-Aldrich; cat. no. A1470), 15 mM HEPES (Sigma-
Aldrich; cat. no. H0887), 0.8 mM CaCl, (Sigma-Aldrich;
cat. no. C3881), and 0.1% ITS premix (Corning, NY, USA;
cat. no. 354351) starting from day 21. For human alveolar
organoid induction, the above-described human airway
organoid medium was supplemented with 3uM
CHIR99021 and 10 uM SB431542. To passage organoids
in a cluster, cell aggregates were mixed with fresh pre-
cooled Matrigel and placed in a 12-well cell culture plate.
After incubation at 37°C for 20 min, 1.5ml of medium
was added to the plates, with medium replacement every
3 days. For single-cell passaging, organoids were incubated
in 0.1% trypsin-EDTA (0.25% trypsin-EDTA [Gibco] di-
luted with Dulbecco’s phosphate-buffered saline [DPBS])
to obtain single cells that were passaged in fresh Matrigel.

Real-time gPCR

Total RNA was extracted using TRIzol reagent (Molecular
Research Center, Cincinnati, OH, USA; cat. no. TR1187),
and 1 pg was reverse transcribed using the Evo M-MLV
RT Kit (Accurate Biology; cat. no. AG11711). The cDNA
was diluted and used as the template for qPCR, which was
performed with the SYBR Green Premix Pro Taq HS
qPCR Kit (Accurate Biology; cat. no. AG11701). The glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) gene
was used as the internal control. Three biological repli-
cates of each sample were prepared, and data are pre-
sented as the mean + SD. Primers used for amplification
are listed in Additional file 1: Table S1.

Immunofluorescence and histological analyses

For immunofluorescence labeling, organoids or lung tis-
sue was fixed for 15-30 min at room temperature or
overnight at 4°C in 4% paraformaldehyde. The tissue
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was then dehydrated overnight at 4°C in 30% sucrose
solution. The samples were overlaid with Optimal Cut-
ting Temperature compound (Thermo Fisher Scientific,
Waltham, MA, USA) and frozen at —80°C. Sections
were cut at a thickness of 6-10 clip that were
permeabilized for 30min in 0.2% Triton X-100
(Sigma-Aldrich) and blocked for 1h in 5% BSA at
room temperature. The sections were then incubated
overnight at 4°C with primary antibodies, washed 3
times with PBS, incubated with secondary antibodies
at room temperature for 1h, washed 3 times with
PBS, and counterstained for 5min with 4',6-diami-
dino-2-phenylindole (Sigma-Aldrich; cat. no. D9542),
before imaging with a confocal microscope (LSM
880; Carl Zeiss, Jena, Germany). Antibodies used are
listed in Additional file 2: Table S2.

For histological analysis, lung tissue was fixed over-
night at 4°C in 4% paraformaldehyde, dehydrated in a
tissue processor (TP1020; Leica, Wetzlar, Germany), and
embedded in paraffin. Sections were cut at a thickness of
5-10pm on a microtome (Leica). Hematoxylin and
eosin and Masson’s trichrome staining was performed
according to standard protocols, followed by imaging
with a light microscope (Nikon, Tokyo, Japan).

Kidney capsule transplantation

Immunodeficient B-NSG (NOD-Prkdc®™™?  IL2rg™"/
Bcgen) mice were purchased from Beijing Biocytogen
(Beijing, China) and were housed in the SPF animal fa-
cility. Organoids were transplanted under the kidney
capsule of the mice. Briefly, female mice aged 6 to 9
weeks were anesthetized with isoflurane, and the fur of
the left back was removed using fur clippers. Ophthal-
mic ointment was placed on the eyes to prevent drying
of the cornea, and carprofen (5 mg/kg) was injected sub-
cutaneously to relieve pain. Then, the left back was ster-
ilized using chlorhexidine and isopropyl alcohol. The
kidney was exposed through a left lateral incision and a
small incision was made by syringe in the capsule over
the caudal-lateral aspect of the kidney. Day 21 LP orga-
noids (2-3 drops of organoids per mouse) were placed
under the kidney capsule using P20 pipette. The kidney
was returned to the abdomen and the incision in the ab-
dominal wall was closed with a 5-0 absorbable suture
and the skin was closed with 3 M Vetbond™ Tissue Ad-
hesive (cat. no. 1469SB). Erythromycin was applied to
the wound and the mice were placed under incandescent
lamp (50-75 watt) until ambulatory. Incisions were
checked daily to ensure that they were intact and not in-
fected until they were healed. Five months after trans-
plantation, mice were sacrificed by cervical dislocation
under anesthesia and kidneys were harvested through a
left lateral incision. The xenografts were fixed in 4%
paraformaldehyde for further immunofluorescence and
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histological analyses. All experiments involving mice
were approved by the Institutional Animal Care and Use
Committee of Southern Medical University (IACUC ap-
proval number: L2019018).

Bleomycin injury and in vivo orthotopic transplantation
For bleomycin injury, 1 week before transplantation, B-
NSG mouse was anesthetized with pentobarbital and
placed on a home-made sterilized foam plate. The
mouse was hanged by its incisors on the wire and re-
strained with a piece of ribbon in a supine position.
Ophthalmic ointment was placed on the eyes and the
tongue was pulled out to the side to prevent choking.
The fur of the neck was removed using fur clippers and
the surgical area was sterilized using chlorhexidine and
isopropyl alcohol. A skin incision (5-7 mm) along the
tracheal was made by fine scissors and the tracheal car-
tilage was exposed by blunt dissection of subcutaneous
tissue and muscle; 1 U/kg bleomycin was filled into a 1-
mL syringe and was injected gently into the trachea
(20 pL per mouse). The mouse was held upright for a
few seconds to allow bleomycin to be inhaled into the
lung. The skin was closed with 3M Vetbond™ Tissue
Adhesive, and the mouse was placed under incandescent
lamp (50-75 watt) until ambulatory. On the day of
transplantation, organoids were digested into single cells
as described above; the cells were diluted to a concentra-
tion of 100,000/20 pL in sterile DPBS and administered
to anesthetized mice via intratracheal injection following
the same protocol as bleomycin injury. Five months after
transplantation, mice were anesthetized to collect arter-
ial blood and then sacrificed by cervical dislocation
under anesthesia and lungs were harvested for further
immunofluorescence and histological analyses.

Arterial blood gas measurements

Mice were anesthetized with pentobarbital and placed in a
supine position. Carprofen (5mg/kg) was injected sub-
cutaneously to relieve pain. Incision of the abdominal wall
along the midline was started below the xiphoid process,
continued to near the pubic bone and then along the flank
to expose the viscera. The intestine was moved to the left
side of the mouse and the connective tissues were re-
moved to expose the caudal vena cava and the abdominal
aorta. Arterial blood was collected from the abdominal
aorta into a 1mL syringe containing 60IU of dry,
electrolyte-balanced heparin (Sigma-Aldrich; cat. no.
H3149). The partial oxygen pressure, partial carbon diox-
ide pressure, and oxygen saturation were measured with a
blood gas and chemistry analyzer (i15 vet; EDAN Instru-
ments, Shenzhen, China). Mice were sacrificed immedi-
ately by cervical dislocation under anesthesia and lungs
were harvested for further analysis.
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Statistical analysis

Statistical analysis was performed using Prism 8 software
(GraphPad, La Jolla, CA, USA). The 2-tailed Student’s t
test was used to assess the statistical significance (P <
0.05) of differences between 2 experimental groups.

Results

Generation of SOX9~'~ hESCs and LP organoids
Truncations or frameshift mutations in the C-terminal
transactivation domain of SOX9 have been linked to the
development of CD [13]. Specifically, the C-terminal
44 residues were shown to be critical for maximal
transactivation [14]. Using clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) technology, we designed
a pair of guide RNAs (gRNAs) for targeted inactiva-
tion of the C-terminal transactivation domain of
SOX9 (Fig. 1A). We successfully generated transacti-
vation domain knockout clonal lines (hereafter re-
ferred to as SOX9”") and DNA and ¢cDNA mutations
were detected by Sanger sequencing (Fig. 1B). The
cell line showed typical pluripotent stem cell (PSC)
morphology (Fig. 1C), and quantitative PCR (qPCR)
analysis indicated that the expression levels of the
pluripotency markers POU class 5 homeobox 1
(POUSFI), gamma-aminobutyric acid type A receptor
subunit beta 3 (GABRB3), NANOG, SOX2, and
teratocarcinoma-derived growth factor 1 (TDGFI)
were similar to those in the parental H9 human em-
bryonic stem cell line (hereafter referred to as wild
type [WT]) (Fig. 1D).

To induce the differentiation of hESCs into LP orga-
noids, we modified the lung differentiation protocol used
in our previous work [11, 15]. (Fig. 1E). We first differ-
entiated the hESCs into definitive endoderm (DE), and
then into anterior foregut endoderm (AFE) in 2D cul-
ture. The cells were then enveloped in Matrigel to gen-
erate “ventralized” AFE (VAFE) and finally, NKX2.1-
positive LPs in 3D organoids over the next 14 days (Fig.
1E, F). The qPCR analysis indicated that the pluripo-
tency marker POUSFI was downregulated after 3 days;
the DE markers SOX17 and Forkhead box A2 (FOXA2)
were upregulated on day 3 or 7; and the LP marker
NKX2.1, proximal progenitor marker SOX2, and distal
progenitor marker SOX9 were upregulated on day 21
(Fig. 1G). Immunofluorescence labeling confirmed that
day 21 organoids expressed NKX2.1 and SOX2. How-
ever, both qPCR and immunofluorescence analysis re-
vealed that LP organoids derived from SOX9™'~ hESCs
had far fewer SOX9-expressing cells than WT cells
(Fig.1G-I). These results suggest that we successfully
generated SOX9”~ hESCs and differentiated it into lung
progenitor organoids.



Li et al. Stem Cell Research & Therapy (2021) 12:343 Page 5 of 12
p
A gRNA1 gRNA2 G
5 -— - 3
— — POUSF1 FOXA2 SOXI7 gwr
24 1000 100000+ ns
N o < |mns 500 s = SOX9-/-
S -
[ DIM [ T ] 7 I= NS ps ns LS_IS 4 i ns ns s
1 402 509 9 o=~ B A, 0+ =
g Do D3 D7 D21 DO D3 D7 D21 DO D3 D7 D21
B cine PAM gRNA1 gRNA2 PAM_INDEL 2 , = SOX2, 50 SOX9 = NKX2.1
WT CCCCAACAGATCGCCTACAGCCC..... TCCTACTACAGCCACGCGGCAGG NA & ns 200001 ns
SOX9-/-(Al-1) CCCCAACAGATCGCCTACAGCCC...... TCCTACTACAGC----mmr- GecAGG 5 ®  |If " ns -
(Al-2) CCCCAACAGATCG GGCAGG  -109 I ns L 10000 1
0 ..'.i.o._. e ns x ns
c D £ 14 DO D3 D7 D21 DO D3 D7 D21 '
12 DO D3 D7 D21
wT SOX9* e H
| 7 P 208 WT Day21 SOX9--Day21 WT Day21 SOX9--Day21
g S o 06
J sl =2 04 -
S \ 7 5 T 02 o ~
Tl ¢ 0 ] kS
0 ) z «
v b7 &
S
E NKX2.1*lung ~ Alveolar g o
ES DE AFE VAFE progrnitor organoids i~ x
Day0 Day3 Day7 Day8 Day14 Day21 g 3
1 |
ActivinA Noggin ATRA CHIR99021 Dexamethasone
CHIR99021 FGF4 BMP4 FGF10 8-Br-cAMP
SB431542 CHIR99021 KGF IBMX ) )
CHIR99021 3p DAPT KGF g g
culture 2i:CHIR99021
SB431542
F Day0 Day3 SOX2
5 = 150 5 = 100
(Ol Q o
Ho WT 23 : 23 &
S NETRIE
LT w = = w =
SOX9* * 5 g A
X O X D
<5 0 T T <5 0
: WT SOX9™
Fig. 1 Generation of SOX9™~ hESCs and differentiation of human lung organoids. A Schematic structures of the SOX9 gene and protein. gRNA
sites (QRNAT and gRNA2) are indicated. DIM, dimerization domain; HMG, high-mobility group domain; K2/PQA/TA, transactivation domains. B
Sequenced genotypes of SOX9 wild-type (WT) and knockout (SOX9 ") clones. The targeted mutation in each allele (Al-1 and Al-2) is indicated.
The protospacer adjacent motif (PAM) is shown in red and gRNA sequences are shown in blue. Deletions in SOX9 are indicated on the right side.
C Morphology of SOX9 wild-type (WT) and knockout (SOX97) hESCs. Scale bars, 500 um. D mRNA expression levels of pluripotency-related
genes. E Schematic of the directed differentiation protocol for generating alveolar organoids from hESCs. F Representative bright-field images of
the differentiation time course of WT and SOX9™~ cell lines. Scale bars, 500 um. G mRNA expression levels of differentiation markers (n = 3,
representative of 3 separate experiments). *p < 0.05, **p < 0.01 (unpaired 2-tailed Student's t test). POU5F1, embryonic stem cell marker; FOXA2
and SOX17, definitive endoderm markers; NKX2.1, lung progenitor marker; SOX2, embryonic stem cell and proximal airway progenitor marker;
SOX9, distal progenitor marker. H Immunofluorescence labeling of NKX2.1, SOX2, SOX9, and Ac-TUB in day 21 WT and SOX9™~ organoids. Scale
bars, 50 um. I Quantification of NKX2.1, SOX2 and SOX9 positive cells in H. NKX2.1: n =12 (WT), n = 10 (SOX97); SOX2, SOX9: n = 16 (WT), n = 14
(SOX9-/-). *p < 0.05, ****p < 0.0001 (unpaired 2-tailed Student's t test).

Maturation of distal lung epithelial cells is not
significantly affected by SOX9 inactivation

To investigate whether SOX9 is essential for the forma-
tion of the 2 types of distal lung epithelial cell—i.e., al-
veolar epithelial type 2 and type 1 cells (AT2 and AT1,
respectively), we further differentiated day 21 LP orga-
noids into alveolar organoids (Fig. 1E). Bright-field mi-
croscopy analysis revealed alveolar organoids with a
bubble-like structure (Fig. 2A) that expressed AT2
markers (surfactant protein B [SP-B], SP-C, and
lysosomal-associated membrane protein 3 [LAMP3])
and AT1 markers (Advanced Glycosylation End-Product
Specific Receptor [AGER], aquaporin 5 [AQP5]) after a
short induction time of 31 days, as detected by qPCR.

The expression of these genes was further increased
after 65 days compared to day 31 organoids (Fig. 2B).
Immunolabeling demonstrated that the AT2 marker SP-
C and AT1 marker AQP5 were expressed in both WT
and SOX9™'~ organoids on days 31 and 67 (Fig. 2C, D).
Another AT1 marker podoplanin (PDPN) was detected
on day 67 organoids (Fig. 2D). These results indicate
that SOX9 inactivation does not significantly affect the
maturation of alveolar organoids.

Maturation of airway epithelial cells is not significantly
affected by SOX9 inactivation

As SOX9 knockout in the tracheal mesenchyme resulted
in aberrant differentiation of the tracheal airway
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epithelium in mouse [4], we examined whether it is also
affected in human lung. We adjusted the alveolar orga-
noid differentiation protocol by removing CHIR99021 (a
canonical Wnt agonist that acts by inhibiting glycogen
synthase kinase 3B [GSK-3p]) and SB431542 (a trans-
forming growth factor f [TGF-p] inhibitor) after induc-
tion on day 21 (Fig. 3A). Bright-field microscopy, qPCR,
and immunocytochemical analyses showed that both
WT and SOX9™'~ airway organoids were generated by
day 35 that expressed the basal cell marker P63, club cell
marker secretoglobin family 1A member 1 (SCGB1A1l),
ciliated cell marker acetylated a-tubulin (Ac-TUB), and
goblet cell marker mucin 5 AC (MUC5AC) (Fig. 3B-D).
Thus, SOX9 inactivation does not affect the maturation
of airway organoids.

SOX9 inactivation reduces the proliferation and promotes
apoptosis of lung organoids

On day 98 of alveolar organoid differentiation, SOX9~/~
organoids were unhealthy as almost all organoids were

died whereas WT organoids were morphologically nor-
mal and could be expanded for over 120 days (Fig. 4A).
The expression levels of lung lineage markers in
SOX9™'~ organoids were 10—20% of those observed in
WT organoids, as determined by qPCR (Fig. 4B). Ki67
immunolabeling showed that the ratio of Ki67" cells to
total cells was significantly reduced in SOX9~~ orga-
noids compared to WT organoids, whereas the percent-
age of cleaved caspase-3* cells was higher (Fig. 4C-F).
These data suggest that SOX9 inactivation reduced pro-
liferation and promoted apoptosis in organoids over
long-term expansion.

To further confirm the effect of SOX9 inactivation on
airway organoid proliferation, the organoids were pas-
saged by digestion into single cells and repackaging into
new Matrigel (Fig. 4G). After 2 generations of single-cell
passaging, SOX9~'~ organoids did not grow well whereas
WT organoids showed normal growth (Fig. 4H), indicat-
ing that SOX9 inactivation reduced the proliferative cap-
acity of lung organoids.
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J

It was reported that thrombospondin-1(TSP1) is a nega-
tive regulator of pluripotency transcription factors OSKM
(Oct4, Sox2, KlIf4, and c-Myc) [16]. In the lung, TSP1 pro-
motes lung stem cell proliferation and differentiation [17,
18]. We therefore quantified the expression of TSP1 dur-
ing lung organoids differentiation by qPCR. As expected,
in ES stage (day 0) when the OSKM were highly
expressed, the expression of TSP1 was nearly undetect-
able. Furthermore, we found the expression of TSP1 was
upregulated during organoid differentiation and then
downregulated in long-term culture. After long-term ex-
pansion or single-cell passaging (day 98 in alveolar orga-
noids and day 59 in airway organoids), the expression
level of TSP1 was lower in SOX9” than WT organoids
(Fig. 41, ]). These phenomena were in line with the expres-
sion pattern of some differentiation marker such as SPB,
SPC, LAMP3 and AGER (Fig. 2B; Fig. 4B). Collectively, we
hypothesized that inactivation of SOX9 may partly disrupt
the role of TSP1 in regulating lung stem cell proliferation.

In vivo long-term engraftment of lung organoids
We investigated the differentiation potential of WT and
SOX9™'~ organoids by transplanting day 21 organoids—

which were mainly composed of NKX2.1" LPs (Fig.
1H)—under the kidney capsule of 6- to 8-week-old mice
(Fig. 5A). Five of the 6 organoids survived for more than
5 months (Fig. 5B). We next examined the angiogenic
activity of the grafts and found that there were CD31"
endothelial cells forming microvessels in both WT and
SOX9™" grafts (Fig. 5C). Immunolabeling revealed that
both WT and SOX9~'~ grafts expressed the human nu-
clear marker MABI1281, as well as the LP marker
NKX2.1, proximal stem cell marker SOX2, basal cell
marker P63, ciliated cell marker Ac-TUB, and goblet cell
marker MUC5AC (Fig.5D-F). Notably, a group of cells
in SOX97/~ transplants expressed the club cell marker
SCGB1A1, which was absent in WT grafts (Fig. 5D).
This is similar to the observation in mouse that Sox9 in-
activation in mesenchyme resulted in more cells in the
trachea that were positive for Scgblal [4]. Additionally,
there were differences between the 2 grafts in terms of
the localization of MUC5AC: in the WT graft, most of
the protein was secreted into the lumen, whereas in
SOX9™'~ grafts it remained in the cytoplasm (Fig. 5E).
Both WT and SOX97/~ grafts expressed the AT2 marker
pro—SP-C but lacked the distal stem cell marker SOX9
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and AT1 marker PDPN (Fig. 5G, H). These data demon-
strate that when transplanted under kidney capsule, both
WT and SOX9™'~ organoids mature, but with some
differences.

As SOX9 is a distal progenitor marker of the lung, we
examined whether inactivation of SOX9 affects the mat-
uration of distal lung epithelium. Damage to the lung
epithelium has been shown to improve graft survival,
and hPSC-derived lung bud tip progenitor cells survived
for up to 6weeks in NOD/SCID/IL2ry™" (NSG) mice
while giving rise to multiple epithelial cell lineages [19].
We therefore used a bleomycin-induced alveolar damage
model to determine whether SOX9 inactivation affected
the ability of the cells to regenerate lungs (Fig. 6A). Im-
munofluorescence analysis showed that in both WT and

SOX9™'~ transplanted lungs, a small proportion of cells
were positive for the human mitochondria marker
MABI1273 (Fig. 6B, D). Some cells co-expressed
MAB1273 and pro—SP-C, indicating a potential to differ-
entiate into AT2 cells (Fig. 6B). Meanwhile, most of the
engrafted cells were positive for human PDPN expres-
sion, implying that they were AT1 cells (Fig. 6C). Only a
few cells were in a PDPN*/SP-C* bipotent progenitor
state and none were MAB1273%/SOX9", suggesting that
nearly all transplanted cells were undergoing maturation
(Fig. 6C, D). Hematoxylin and eosin and Masson’s tri-
chrome staining revealed areas of fibrosis reflecting
damage caused by bleomycin in both WT and SOX9~'~
transplanted mice (Fig. 6E). Pulmonary function was im-
proved in both groups with no significant difference
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between them (Fig. 6F). Taken together, our results
demonstrate that inactivation of SOX9 does not affect
the differentiation of alveolar cells or their ability to pro-
mote functional recovery of injured lung in mice.

Discussion

In this study, we used CRISPR/Cas9-mediated gene edit-
ing to inactivate SOX9 in hESCs. SOX9~/~ hESCs could
be induced to form lung organoids, suggesting that
SOX9 is not a key transcription factor regulating the fate

decision of human LPs. Using hPSC-derived

noids, we studied the role of SOX9 in human lung epi-
thelium development for the first time. Mutations in
SOX9 were identified as the cause of campomelic dyspla-
sia (CD) in humans [3, 20]. Infants born with CD could
not survive the neonatal period because of respiratory
distress [21]. We therefore believe that the method we
took and the phenotypes we found might help to under-
stand the mechanism of respiratory distress in CD

patients.

In mouse models, Sox9 inactivation resulted in the early
differentiation of lung alveoli, with elevated expression of
AT2 genes such as Sftpc and Sftpb (encoding SP-C and
SP-B, respectively) and Lamp3 [6, 22]. Although our re-
sults showed that transcript levels were slightly elevated in
SOX9™'~ alveolar organoids relative to WT organoids,
there were no statistically significant differences in either
mRNA or protein expression (Fig. 2B-D). As immune
defense-related factors (SP-A and SP-D) and AT1 markers
(receptor for advanced glycation end products [RAGE]
and AQP1) are unaffected by Sox9 mutation [22], we
speculate that the reason alveolar differentiation was not
greatly affected in SOX9™'~ organoids is due to interspe-
cies differences or because this process is controlled by
SOX9-independent mechanisms [22]. In vivo orthotopic
transplantation results confirmed that SOX9 inactivation
did not affect AT1 and AT2 cell differentiation or their
role in tissue repair after lung damage (Fig. 6).

Inactivation of Sox9 in lung mesenchyme was found to
alter the tracheal epithelium in mouse, with more

lung orga-
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Scgblal® club cells and fewer P63" basal cells and
AGR2" goblet cells [4]. In the present study, the tracheal
epithelium appeared normal after SOX9 inactivation in
airway organoids (Fig. 3). However, our kidney trans-
plantation experiment showed that SOX9 inactivation
led to the emergence of SCGB1A1" club cells and inhib-
ited the maturation of MUC5AC" goblet cells (Fig. 5),
which is consistent with earlier findings [4].

A key finding of our work is that SOX9 inactivation
affected the proliferative capacity of lung organoids
(Fig. 4). It was previously reported that loss of Sox9
reduced proliferation in the distal epithelium but had
no effect in the proximal epithelium [6], but in our
study, both proximal and distal organoids were af-
fected. This implies that SOX9 is involved in the
maintenance of lung stem cells and that its inactiva-
tion promotes their apoptosis.

Ultimately, our findings, together with previously pub-
lished works [10, 23, 24], have proved that hPSC-derived
lung organoids are powerful tools to model human lung
development and diseases. However, lung organogenesis
is regulated by multiple factors, including complex
mesenchymal-epithelial interactions, extracellular matrix
(ECM) remodeling, and physical forces such as fluid
pressure and the basal degree of lung expansion [25, 26].
Alterations to any of these factors could have dramatic
and long-term impacts on the lung. To date, lung orga-
noids cultured in vitro cannot achieve full maturation to
the adult stage [27-29]. After 6 months of culture, the
organoids only matched the second trimester of human
gestation [27, 28]. Even with technical modification, only
a fraction of the cells was able to undergo further matur-
ation [29]. The absence of cell diversity (e. g., endothelial
and immune cells), naive ECM components, and
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physiological-like mechanical stress in organoids are the
limitations [30]. Further optimization of the lung orga-
noids is needed to make them as faithful models of hu-
man biology.

Conclusions

In this study, we used CRISPR/Cas9 technology and
hESC-derived lung organoids to demonstrate that SOX9
affects the proliferative capacity of lung epithelial cells
but may not be an indispensable transcription factor
regulating the development of human lung epithelium.
Using this model, it is possible to study the embryonic
development of human organs, which was previously
only approximated by animal models such as zebrafish
or mouse.
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