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Moderate exercise prevents neurodegeneration in 
D-galactose-induced aging mice

Introduction
Aging populations are increasing worldwide, and many health 
problems, such as cognitive decline, cardiovascular disease, 
oxidative stress, cancer, stroke, and hypertension, can serious-
ly affect elderly individuals. Lifestyle interventions, such as 
physical activity and exercise, environmental enrichment, and 
energy restriction, were demonstrated to prevent and pos-
sibly restore health problems in aged individuals (van Praag 
et al., 2005; Mora et al., 2007; Adams et al., 2008). Regardless 
of exercise intensity, physical activity and exercise might be 
an accessible way to protect or enhance cognitive brain func-
tions of elderly individuals. However, the mechanism that 
mediates physical activity impact on the rate of cognitive 

decline is still under investigation. The mouse hippocampus, 
the memory area of the brain, is stimulated by exercise, and 
running increases neurogenesis in the granule cell layer of the 
adult hippocampus (Ferrari, 2007). In addition to increasing 
the proliferation of hippocampal cells, exercise also up-regu-
lates neurotrophic factors, and most research has focused on 
brain-derived neurotrophic factor (BDNF) (Duman, 2005). 
Exercise also enhances the functional brain capabilities by 
acting on synapses and changing the number, structures, and 
functional features of synapses, termed as “synaptic plasticity”. 
Synaptic plasticity is essential for learning and memory, and 
it is believed necessary to preserve or restore brain function 
during aging or injury (Kim and Linden, 2007). Therefore, 
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this study used D-galactose-induced aging mice to investigate 
the factors involved in mediating the positive effects of exer-
cise on spatial learning and memory capacity.

Materials and Methods
Ethics statement
Animal studies were approved by the Care And Use of Ani-
mals for Scientific Purposes in China and were performed in 
accordance with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals. Precautions were 
taken to minimize suffering and the number of animals used 
in each experiment.

Aging model establishment and exercise treatment 
A total of 40 healthy 3-month-old Institute of Cancer 
Research (ICR) male mice were obtained from the Ex-
perimental Animal Center of Capital Medical University 
in China (license No. SCXK (Jing) 2012-0006), and were 
housed individually in specific pathogen-free conditions 
with 12-hour light-dark cycles. All animals were fed stan-
dard laboratory rodent chow and tap water ad libitum, 
and were weighed weekly. For specific intervention, mice 
were randomly assigned to one of four groups (10 in each 
group): aging model groups with (ECA) or without (SECA) 
exercise, and normal control groups with (ECN) or without 
(SECN) exercise.

Aging was induced in mice by administering daily sub-
cutaneous injections of D-galactose (Sigma, St. Louis, MO, 
USA) (100 mg/kg body weight in 0.9% saline), at the base 
of the neck for 10 consecutive weeks (Gao et al., 2015; Yu et 
al., 2015; Zhou et al., 2015). Mice were subjected to exercise 
training by running on a mouse treadmill (Respironics, 
Bend, OR, USA) for 6 days a week with 1 day of rest. Initial-
ly, they ran for 10 minutes per day at a speed of 15 m/min, 
with a progressive increase of time (5 minutes) and speed 
(5 m/min) per week until reaching a total of 20 minutes at 
25 m/min per day during the 4th week. Then the mice were 
maintained on this exercise regimen until the end of the 10th 
week (Jeong et al., 2015; Shibuya et al., 2015). Normal con-
trol mice in both the sedentary and exercise training groups 
were administered subcutaneous injections of the vehicle 
only (0.9% saline) in an equivalent volume (same volume 
as 100 mg/kg body weight D-galactose in 0.9% saline) at the 
base of the neck for 10 consecutive weeks (Figure 1).

Morris water maze test
After 10 weeks of exercise, the mice had 1 week of rest. Then 
the Morris water maze task was used to evaluate the spatial 

Figure 1 Experiment schedule of the establishment of the aging 
model and exercise treatment. 
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memory performance of the animals (Morris, 1984; Li et al., 
2015). The water maze required the mice to swim and find 
a submerged platform 1 cm below the surface of the water 
for safety. The pool had a diameter of 1.20 m and a depth 
of 0.5 m, and was filled with 30 cm of water at 22–24°C. 
For each trial, a mouse entered the pool from an ambulato-
ry position for a maximum of 2 minutes. The mouse used 
spatial cues held at fixed positions in the room to find the 
escape platform. If the platform was not located in time, 
the mouse was directed to the platform and allowed to stay 
there for 15 seconds. Two trials were conducted per day for 
each animal with an interval of 2 hours between trials for 7 
days. All trials were recorded by a monitor system (Nodulus, 
Wageningen, Netherlands). For data analysis (escape laten-
cy, distance moved), the last 5 days’ test records were used. 

Apoptosis analysis by terminal deoxynucleotidyl 
transferase (TdT)-mediated dUTP nick-end-labeling 
(TUNEL) staining 
Following the water maze test, five animals from each group 
were sacrificed by cervical dislocation under intraperitoneal 
sodium pentobarbital anesthesia (40 mg/kg). The brains 
were rapidly removed and the hippocampi (Głombik et al., 
2015) were bilaterally dissected on ice. These two regions 
from one hemisphere were homogenized with 3 mL of phos-
phate-buffered saline (PBS) (pH 7.0). After the homogenate 
was centrifuged, the sediments were collected and prepared 
for mono cell suspension (the cell mortality was less than 
5%, and the cell counts were 1 × 106/mL). TUNEL staining 
was performed using the TUNEL apoptosis detection kit 
(Roche, Mannheim, Germany) according to the manufactur-
er’s instructions. Briefly, the number of apoptotic cells was 
determined by nuclear DNA fragmentation using the deoxy-
nucleotidyl transferase-mediated dUTP nick-end labeling 
assay according to the manufacturer’s recommendations. 
A total of 1 × 106/mL cells were pelleted by centrifugation, 
resuspended in 3.7% formaldehyde solution and incubated 
at room temperature for 10 minutes. The cells were collected 
by centrifugation, resuspended in PBS and incubated for 2 
minutes at room temperature. Following another centrifu-
gation, 100 µL of cytonin was added to the cell pellets, and 
pellets were incubated for 30 minutes. The cells were washed 
with TdT labeling buffer and incubated with labeling reac-
tion mix for 1 hour at 37°C. The reaction was stopped, and 
the cells were incubated with streptavidin-FITC working 
solution for 10 minutes at room temperature. The cells were 
centrifuged, resuspended in 500 µL of PBS, and then submit-
ted to flow cytometer analysis with an excitation wavelength 
of 488 nm (emission wavelength of 550 nm for FITC).

Synapse assessment by flow cytometry
The frontal cortex and hippocampus from the other hemi-
sphere were homogenized with 0.32 M ice-cold glucose 
water. After the homogenate was centrifuged, the superna-
tants were collected and covered with 1.2 M ice-cold glucose 
water. The samples were then centrifuged at 4°C, and the 
middle layer was carefully collected. The surface was then 
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3,5-hexatriene work fluid was added to each of the 500-µL 
synapse suspensions. The final concentration was 10 µM. 
The control synapse suspensions did not contain 1,6-di-
pheny-1,3,5-hexatriene. The fluid was incubated for 15 
minutes at 37°C in the dark and then centrifuged at 4°C. The 
supernatants were removed, and the remaining samples were 
resuspended with Na-PSS buffer and reacted for 10 min-
utes at 37°C. The fluorescence intensity was analyzed with 
a fluorescence spectrophotometer (Eppendorf, Hamburg, 
Germany). The stimulation light wavelength was 360 nm, and 
the emission light wavelength was 430 nm. The fluorescence 
intensity was analyzed using control fluid (I90

0, 0
0, I90

0, 90
0). The 

fluorescence polarization correction factor (G= I90
0, 0

0/I90
0, 90

0) 
was calculated. Then, each sample’s fluorescence intensity of 
I90

0, 0
0 and I90

0, 90
0 was assessed. The fluorescence polarization 

degree [(P= (I90
0, 90

0–G I90
0, 0

0)/(I90
0, 90

0+G I90
0, 0

0)] and mem-
brane viscosity [(η=2P/(0.46–P)] were also calculated.

Immunohistochemistry staining 
Fas, Bax, and Bcl-2 are related to apoptosis (Hyun et al., 
2015), and BDNF plays a supporting role in synaptic plas-
ticity and promoting the growth of neurons (Yang et al., 
2015). Another five animals in each group were anesthetized 
with intraperitoneal sodium pentobarbital (40 mg/kg). 

covered with 0.8 M ice-cold glucose water and centrifuged. 
The sediments were stored for further analysis. For all spec-
imens, four-color flow cytometer was performed on a BD 
FACSCanto II flow cytometer (BD BioSciences, NJ, USA) 
with commercially available reagents. The sediments were 
washed with 1 mL of Na-PSS buffer (145 mM NaCl, 2.6 
mM KCl, 2.4 mM KH2PO4, 0.02 mM CaCl2, 1.2 mM MgCl2, 
10 mM glucose, 10 mM HEPES, pH 7.4) and resuspended 
to the desired protein concentration in Na-PSS according 
to the protein concentration of the sediments assessed by 
the Bradford method (Ku et al., 2013). Next, 100 µL of the 
suspension was incubated with 50 µL of primary antibodies 
(anti-synaptophysin, dilution 1:500, Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) for 1.5 hours at 4°C, washed 
with wash buffer, centrifuged and incubated with 50 µL of 
secondary antibodies (FITC-anti-mouse-antibodies, dilution 
1:1,000, Santa Cruz Biotechnology) for 1.5 hours at 4°C. 
Then, the samples were washed twice with wash buffer, cen-
trifuged, and resuspended with appropriate amounts of PBS. 
The number of synapses was analyzed by flow cytometry. 

Membrane fluidity of synaptosomes detected by 
fluorescence polarization method
The same volume (20 µM) of fluorescence 1,6-dipheny-1, 

Figure 2 Effects of exercise on the performance of mice in the Morris water maze test.
(A) Mean latency in the hidden platform test after training. (B) The number of platform crossings in 3 hours. (C) The mean swimming distance on 
day 6 in each group. (D) The mean swimming speed on day 6. All data are reported as the mean ± SEM. One-way analysis of variance or unpaired 
Student’s t-test was used for statistical analyses. *P < 0.05. ECA: Aging model groups with exercise; SECA: aging model group without exercise; 
ECN: normal control group with exercise; SECN: normal control group without exercise.

SECA         ECA          ECN        SECN SECA          ECA         ECN        SECN

60

50

40

30

20

10

0

800

700

600

500

400

300

200

100

0

10

9

8

7

6

5

4

3

2

1

0

80

70

60

50

40

30

20

10

0

SECA
ECN
ECA
SECN

Day 1           Day 2           Day 3           Day 4 SECA          ECA         ECN        SECN

E
sc

ap
e 

la
te

nc
y 

(s
ec

on
d)

S
w

im
m

in
g 

di
st

an
ce

 (c
m

)

N
um

be
r o

f c
ro

ss
in

gs
 (/

3 
ho

ur
s)

S
w

im
m

in
g 

sp
ee

d 
(c

m
/s

)

 A   

 C   

 B   

 D   

*

*

*



810

Li L, et al. / Neural Regeneration Research. 2016;11(5):807-815.

Heart perfusion was performed with PBS and then with 4% 
paraformaldehyde in 0.1 M PBS. The brains were removed 
and hemispheres were post-fixed in 4% paraformalde-
hyde overnight at 4°C (the other hemispheres were used 
for real-time PCR examination of gene expression). The 
hemispheres were cut into 35-µm-thick sections and incu-
bated overnight with mouse anti-rat fas/bax/bcl-2/BDNF 
antibody (Santa Cruz Biotechnology; 1:500 in Tris-buffered 
saline containing 3% bovine serum and 0.1% Triton X-100) 
at 4°C followed by biotinylated goat or rabbit anti-mouse 
IgG, 1:500; Santa Cruz Biotechnology). Then, 3,3′-diam-
inobenzidine tetrahydrochloride (DAB, Sigma) was used 
for immunohistochemistry staining. An irrelevant primary 
antibody served as a negative control. Assessments were 
independently performed by two pathologists who were 
blinded to the experimental conditions. Positive cells were 
counted in several hippocampal subregions and all images 
were acquired using a Nikon microscope (Nikon 80i, Tokyo, 
Japan).

Glucose transporter-1 (GLUT1) and glucose transporter-4 
(GLUT4) mRNA expression measurement by real-time 
PCR
Previous studies indicated that glucose tolerance can im-
pact cognitive performance (Nilsson et al., 2013). Poor 
glucose tolerance appears to be strongly associated with 
detrimental verbal memory, logical memory, and spatial 
memory (Soares et al., 2013). Total RNA was extracted 
from a 100-mg tissue sample (50 mg cortex and hippo-
campus each) using the RNeasy kit (Qiagen AG, Hilden, 
Germany) according to the manufacturer’s instructions. 
Two micrograms of total RNA was reverse transcribed us-
ing the T-primed first strand kit (Amersham, Piscataway, 
NJ, USA). Oligonucleotide primers and MGB fluorescent 
probes were purchased from Applied Biosystems. cDNA 
(2 µL) of GLUT1 and GLUT4 was amplified using primer 
pairs (Table 1). Real-time PCR was performed at 95°C for 3 
minutes, followed by 40 cycles of denaturation at 94°C for 
45 seconds, annealing at 60°C for 45 seconds, and extension 
at 72°C for 1 minute. For each PCR run, a standard curve 
was produced with four consecutive 1:10 dilutions of a pos-
itive sample. All samples were performed in triplicate. An 
Applied Biosystems Prism 7300 Sequence Detection System 
(Applied Biosystems, Foster City, CA, USA) was used for 
detection and quantification. 

Statistical analysis
The data were presented as the mean ± SEM derived from a 
minimum of two separate cell preparations. One-way analysis 
of variance (ANOVA) or unpaired Student’s t-test was used 
for statistical analyses between experimental groups. A value 
of P < 0.05 was considered significant. The data were analyzed 
using SPSS 16.0 software (SPSS, Chicago, IL, USA).

Results
Effect of moderate exercise on the body weight of 
D-galactose-induced aging mice
As expected, the mice with exercise weighed less than sed-
entary mice, but there was no significant difference between 
groups (P > 0.05).

Moderate exercise improved learning in D-galactose-
induced aging mice
As shown in Figure 2A, the escape latency gradually short-
ened in all groups. SECA mice had a longer latency to find the 
hidden platform compared with the other groups (P < 0.05), 
but the prolonged escape time was significantly reduced in 
ECA mice compared with the SECA group (P < 0.05). There 
were no significant differences among the other groups except 
for the SECA group (P > 0.05). The SECA group performed 
significantly fewer platform crossings than the other three 
groups (P < 0.05; Figure 2B). The spatial memory curve for 
swimming distance and speed did not show the same pattern 
as the latency curve. There were no differences in swimming 
pattern or speed between groups (P > 0.05), but the swim-
ming pattern and speed of the ECN group had a tendency to 
be longer and faster (Figure 2C and D). 

Effect of moderate exercise on neuronal apoptosis in the 
hippocampus of D-galactose-induced aging mice
The results of immunohistochemistry showed significant-
ly greater amounts of Fas and Bax positive neurons in the 
mouse hippocampus of the SECA group compared with the 
SECN and ECA groups (P < 0.05). The number of Fas and 
Bax positive neurons in the mouse hippocampus of the ECN 
group was significantly lower than in the SECN group (P < 
0.05). The number of BDNF positive neurons in the mouse 
hippocampus of the SECA and ECA groups was significantly 
lower than in the SECN and ECN groups (P < 0.05). The 
number of Bcl-2 positive neurons in the mouse hippocam-
pus of ECA group was significantly greater than in the SECA 
group (P < 0.05). The number of Bcl-2 positive neurons in 
the mouse hippocampus of the ECN group was significant-
ly greater than in the SECN group (P < 0.05). There were 
no significant differences in the number of BDNF positive 
neurons in the mouse hippocampus of the ECA and SECA 
groups (P > 0.05), or the ECN and SECN groups (P > 0.05; 
Figure 3). 

The TUNEL assay showed that the neuronal apoptosis ra-
tio in the hippocampus of the ECA group was much lower 
than in the SECA group (P < 0.05). There were no significant 
differences in the neuronal apoptosis ratio among the ECA, 
SECN, and ECN groups (P > 0.05; Figure 4).

Table 1 Primer sequences and the size of amplification products

Gene Primers (5′–3′)
Length
 (bp)

GLUT1 Sense: CCG CTT CCT GCT CAT CAA TCG TAA 
Antisense: CTG ACA GCT CGG CCA CAA TGA AC

568

GLUT4 Sense: CCC ACA GAA GGT GAT TGA ACA G
Antisense: GAT GGC CAG TTG GTT GAG TG

186

β-Actin Sense: GTT ACC AAC TGG GAC GAC A
Antisense: GGA ACC GCT CGT TGC CAA

541

GLUT1: Glucose transporter-1; GLUT4: glucose transporter-4.



811

Li L, et al. / Neural Regeneration Research. 2016;11(5):807-815.

Effect of moderate exercise on hippocampal synapse 
number and membrane fluidity of synaptosomes in the 
D-galactose-induced aging mice
The number of hippocampal synapses in aged mice (SECA 
group) was significantly lower than that in the SECN group 
(P < 0.05). The number of hippocampal synapses in the 
mice in the ECA group was greater than those in the SECA 
group (P < 0.05), but there was no significant difference in 
the number of hippocampal synapses between the ECN and 
SECN groups (P > 0.05). The membrane viscosity of synap-
tosomes in the mice of SECA and ECA groups was signifi-
cantly higher than that in the SECN and ECN groups (P < 
0.05), but there was no difference in the membrane viscosity 
of synaptosomes in the mice between the ECA and SECA 
groups (P > 0.05; Figure 5).

Effect of moderate exercise on GLUT1 and GLUT4 gene 
expression in the brain of D-galactose-induced aging mice
The expression levels of GLUT1 and GLUT4 mRNA in the 
mouse brains of the SECA group were significantly de-
creased compared with the other three groups (P < 0.05). 
There was no significant difference in the expression levels 
of GLUT1 mRNA in the mouse brain among the ECA, ECN 
and SECN groups (P > 0.05). The expression level of GLUT4 
mRNA in the mouse brain of the ECA group was signifi-
cantly decreased compared with the ECN and SECN groups 
(P < 0.05). The level of GLUT4 mRNA in the mouse brain 
of the ECN group was significantly higher than in the SECN 
group (P < 0.05; Figure 6). 

Discussion
D-galactose is a natural substance found in the body, but ex-
cessive levels of D-galactose can occur by the overexpression 
of superoxide anions and free radicals, resulting in neurode-
generation and cognitive dysfunction (Lu et al., 2006). Previ-
ous studies revealed that D-galactose increased apoptosis in 
the hippocampal neurons of mice, causing a decline in spa-
tial learning and memory and ultimately resulting in brain 
aging (Lipman et al., 1999; Lu et al., 2007; Wu et al., 2008; Yu 
et al., 2013). D-galactose-induced neurobiological and be-
havioral changes imitate the characteristics of the natural ag-
ing brain, and D-galactose-induced rodents have been used 
as an animal model for the study of brain aging (Wei et al., 
2005; Cui et al., 2006; Kumar et al., 2009). Here, our findings 
show the results of an intervention with exercise training in 
an animal model of D-galactose-induced aging mice.

We first investigated the expression of GLUT1 and GLUT4 
in the brain of aging mice and the influence of exercise on 
their expression. Many studies have suggested that cell ener-
gy metabolism supports brain function and survival (Attwell 
and Laughlin, 2001). Glucose transporters (GLUTs) acceler-
ate glucose transport across the blood-brain barrier and the 
entry of glucose into neurons (Brown, 2000; McEwen and 
Reagan, 2004; Simpson et al., 2007). Brain GLUTs display 
a cell type and region-specific distribution, indicating the 
transfer of glucose across the blood-brain barrier is tightly 

compartmentalized. GLUT1 is widely expressed in the brain 
and is responsible for the majority of its glucose uptake and 
utilization. Insulin-sensitive GLUT4 (Temofonte et al., 2009; 
Ong et al., 2012; Osorio-Fuentealba et al., 2013) is mainly 
distributed in neurons, especially those with somatodendrit-
ic expression, suggesting it may be involved in the central 
actions of insulin and highly specialized activities in the cen-
tral nervous system. We found that the expression of GLUT1 
and GLUT4 in aging brains was reduced. The expression 
level of GLUT1 and GLUT4 was increased by exercise. These 
results indicate exercise increased glucose uptake by elevat-
ing insulin sensitivity, which in turn improved the effects of 
GLUT-4 by trafficking to the cell membrane and elevating 
GLUT4 expression levels. Exercise also elevated GLUT1 ex-
pression levels. These results are consistent with the findings 
reported by Kivelä and Henriksen et al. (Henriksen, 2002; 
Kivelä et al., 2006). This experiment also indicated that cog-
nitive function is partially associated with insulin sensitivity 
and brain glucose metabolization, which are impaired in the 
elderly, causing increased or reduced cognitive impairment, 
respectively. Biessels et al. (1998) and Magariños et al. (2001) 
reported that insulin replacement reversed impaired cogni-
tive function and hippocampal synaptic plasticity in strep-
tozotocin-treated rats. In summary, impaired glucose utili-
zation, gluco-regulatory activities and transport of GLUTs 
have a negative impact on hippocampal cognitive functions. 
Exercise may partially reverse these effects.

In addition, we measured BDNF expression levels in the 
hippocampus. BDNF promoted the survival and differenti-
ation of neurons, protected neurons against neurodegener-
ation and neural damage, and inhibited age-related decline 
in memory and cognition (Mu et al., 1999; Tyler et al., 2002; 
Yamada et al., 2002). Exercise regulated the expression of 
BDNF with age (Oliff et al., 1998). Previous studies showed 
that exercise alone did not improve spatial memory or only 
had mild positive effects. However, complicated environ-
mental enrichment paradigms improved and increased neu-
rogenesis and growth factor levels in the hippocampus (Frick 
and Benoit, 2010). In this study, we observed that BDNF in 
the ECA group was not significantly improved compared 
with the SECA group. Only the ECN group displayed a slight 
elevation compared with the SECN group. Normal mice 
with or without exercise had significantly different BDNF 
levels from the D-galactose-induced aging mice. This result 
is similar to a previous study reported by Adlard et al. (Adlard 
et al., 2005). This indicates that BDNF is decreased in the 
hippocampus of aging mice and is in agreement with Kuhn 
et al. (Kuhn et al., 1996). Exercise may not effectively reverse 
the BDNF levels of aging mice. This suggests that improved 
learning and memory ability in aging mice might not be 
induced by BDNF. Although BDNF has a crucial role in the 
maintenance of neuron survival and normal cognitive func-
tions, it is not the only factor involved in these processes. 
Other factors, such as basic fibroblast growth factor, can also 
regulate neural cell survival, differentiation, learning, and 
memory processes (Benito and Barco, 2010). Other growth 
factors should therefore be observed in future studies.



812

Li L, et al. / Neural Regeneration Research. 2016;11(5):807-815.

an important factor in determining whether cells undergo 
apoptosis, and this Bax/Bcl-2 balance can be altered during 
aging (Savory et al., 1999; Almeida et al., 2000). In the pres-
ent study, it was observed that Bcl-2-immunopositive cells 
were enhanced after training in all exercise groups regardless 
of whether they were injected with D-galactose with respect 
to the sedentary groups, and Bax showed the opposite result. 
Furthermore, the other indicator of apoptosis, Fas, displayed 
the same results as Bax. To confirm that apoptosis was in-
creased in the SECA group, we determined the neuronal 
apoptosis ratio in the hippocampus of each group by flow 
cytometry. The results verified that the SECA group had the 
highest neuronal apoptosis ratio among the four groups. 
Treadmill exercise suppressed D-galactose-induced apoptosis 
in the hippocampus, which indicated that treadmill exercise 
inhibits the effect of D-galactose-induced apoptotic neuro-
nal cell death and aging. Consistent with other studies (Kuhn 
et al., 2005; Chae and Kim, 2009; Kim et al., 2010), forced, 
moderate-intensity treadmill exercise also ameliorated apop-
totic neuronal cell death caused by D-galactose-induced 
brain aging. The current explanation is that a loss of mem-
ory occurs through decreased neurogenesis and increased 
apoptosis in the hippocampal dentate gyrus. Treadmill exer-
cise improves the spatial memory by increasing neurogenesis 

Figure 4 Effect of moderate exercise on cell apoptosis in the 
hippocampus of D-galactose-induced aging mice (TUNEL assay).
Data are presented as the mean ± SEM, derived from a minimum of 
two separate cell preparations. One-way analysis of variance or un-
paired Student’s t-test was used for the statistical analyses. *P < 0.05. 
ECA: Aging model group with exercise; SECA: aging model group 
without exercise; ECN: normal control group with exercise; SECN: nor-
mal control group without exercise.

Figure 3 Effect of moderate exercise on BDNF, Bcl-2, Fas, and Bax immunoreactivity in the hippocampus of D-galactose-induced aging mice.
(A) The images show BDNF, Bcl-2, Fas, and Bax immunoreactivity in the hippocampus of mice (immunohistochemistry). Scale bars: 50 µm. (B) 
Quantitation of BDNF, Bcl-2, Fas, and Bax immunoreactive cells (200-fold field) in the hippocampus of mice. Data are presented as the mean ± 
SEM. One-way analysis of variance or unpaired Student’s t-test was used for statistical analyses. *P < 0.05. BDNF: Brain-derived neurotrophic fac-
tor; ECA: aging model groups with exercise; SECA: aging model group without exercise; ECN: normal control group with exercise; SECN: normal 
control group without exercise.  
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In addition to the above-mentioned neurotrophic fac-
tors, other molecules, such as anti-apoptotic Bcl-2 family 
members, promote neural-protective actions (Akhtar et 
al., 2004). In this study, we investigated Bcl-2 and the main 
pro-apoptosis protein Bax, which forms heterodimers with 
Bcl-2 to prevent the protective functions of Bcl-2 (Kuwana 
and Newmeyer, 2003). The balance between Bax/Bcl-2 is 
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and suppressing apoptosis in the hippocampus of D-galac-
tose-induced aging mice.

The decline in spatial memory is caused by structural and 
physiological alterations in the hippocampus (Kuhn et al., 
1996; Mattson and Magnus, 2006; Jacobson et al., 2008). We 
also investigated the numbers of synapses and membrane flu-
idity of synaptosomes, termed “synaptic plasticity” (Mattson, 

2012). We found that the membrane fluidity was decreased in 
the SECA and ECA groups, and was not significantly improved 
by exercise. The number of synapses was significantly decreased 
in aged mice. Exercise prevented the aging-related decline in 
the number of synapses. These results are consistent with that 
of Patten et al. (2013). Other studies indicated that higher syn-
aptic numbers have a beneficial effect on the performance of 

Figure 5 Effect of moderate exercise on hippocampal synapse number and membrane fluidity of D-galactose-induced aging mice.
Synapse number and membrane fluidity of synaptosomes analyzed by flow cytometry (A) and fluorescence polarization (B). Higher synapse mem-
brane viscosity indicates lower synapse membrane fluidity. Data are presented as the mean ± SEM, derived from a minimum of two separate cell 
preparations. One-way analysis of variance or unpaired Student’s t-test was used for statistical analyses. *P < 0.05. ECA: Aging model group with 
exercise; SECA: aging model group without exercise; ECN: normal control group with exercise; SECN: normal control group without exercise.  

Figure 6 Influence of exercise on GLUT1 and GLUT4 mRNA expression in the aging mouse brain (quantitative real-time PCR). 
The expression of GLUT1 and GLUT4 mRNA was expressed as the optical density ratio of GLUT1 and GLUT4 mRNA to β-actin. Data are present-
ed as the mean ± SEM, derived from a minimum of two separate cell preparations. One-way analysis of variance or unpaired Student’s t-test was  
used for statistical analyses. *P < 0.05. ECA: Aging model group with exercise; SECA: aging model group without exercise; ECN: normal control 
group with exercise; SECN: normal control group without exercise; GLUT1: glucose transporter-1; GLUT4: glucose transporter-4; M: marker.
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the central nervous system (deToledo-Morrell et al., 1988). 
Tamakoshi et al. (2014) reported that motor skill training 
enhanced the neural activity and synaptic plasticity of the 
exercise group compared with the no exercise group. The 
synapse membrane fluidity in the ECA group was not sig-
nificantly improved compared with the SECA group, which 
may be explained by the short-term training periods. These 
results suggest that long-term training is required to en-
hance hippocampal functions.

Based on the results of the current study, D-galactose-in-
duced apoptosis and cognitive deficiency in the hippocam-
pus can be prevented by exercise training. Moreover, exercise 
is a simple, low-cost intervention easily performed by the 
young and old under many conditions.
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