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Abstract

Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We
calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome
Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward
East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous
nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk
differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of
migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk
differentiation.
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Introduction

Analyzing the impact of human migration on genetic disease

susceptibility is critical to the understanding of complex disease.

Moving to new environments causes adaptation, which can also affect

disease susceptibility. The availability of methods to measure genomic

differences between worldwide populations has increased our under-

standing of human migration. For example, a worldwide human

relationships phylogenetic tree was constructed after genotyping over

50 worldwide populations [1]. This process has enabled researchers to

characterize worldwide genetic variation and has provided information

regarding migrations that founded entire populations [2,3]. At the

same time, Genome-Wide Association Studies (GWAS) have increased

discoveries of disease-associated genetic loci. These developments have

paved the way for studies investigating the effects of migration on the

genetic basis of disease [4–6].

The human genome has been subjected to many selective pressures

in recent history. They include changes brought about by the

domestication of crops and animals, and the rise of urbanization [7].

These changes may increase the frequency of mutations that are

beneficial in the new environment. They may also lead to disruptions

of biological processes. When mutations confer a net increase in fitness,

they are expected to increase in frequency in affected populations [8,9].

A mutation increasing disease risk can accompany a beneficial

mutation through linkage disequilibrium (LD).

Studies have shown that unlinked single nucleotide polymor-

phisms (SNPs) associated with a single phenotype may be affected

as a group if the phenotype undergoes differentiation [10,11].

While a large set of loci may increase susceptibility to complex

disease, individual loci generally make modest contributions, and

their effect sizes indicate that they would not be expected to

decrease reproductive success [12]. This situation allows differ-

ences in the genetic basis of disease to build naturally via genetic

drift. However, deviations from genetic drift are expected when

environmental changes occur due to migration [13]. Such changes

provide an opportunity to learn about factors elevating disease risk

in multiple populations.

Adaptation to new environments may have caused genetic risk

differences across many human populations. Despite the recent

explosion of knowledge regarding disease-associated loci and the

genetic structure of different world populations [14–19], few

studies have examined population-based differences in the genetic

risk factors for disease. Additionally, they have included only a

modest number of diseases, populations, or genetic samples. For

example, Myles et al. [6] genotyped 25 disease-associated SNPs in

,1,000 individuals from 53 populations in the HGDP-CEPH

Human Genome Diversity Cell Line panel [15]. The study

measured allele frequency differences in the SNPs and concluded

that while risk allele differentiation was unusually high in some

cases, overall, disease SNPs were not more differentiated between

populations than random SNPs. However, 25 SNPs may not be

sufficient to determine whether disease-associated SNPs as a whole

have undergone risk allele differentiation in worldwide popula-

tions. These 25 SNPs are a small subset of variants that influence a
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small number of specific diseases. Other studies have examined

interactions between migration, selection, and disease. One

examined the impact of selection on hypertension variants during

the migration out of Africa [20]. Others reported increased allele

frequency differentiation of type 2 diabetes variants [21–23].

It is also plausible that allele differentiation may have occurred

in unexamined combinations of diseases and populations. One

study probed 2,186 disease-associated SNPs in the HapMap CEU

cohort and concluded that they were enriched for low-frequency

alleles [24]. This study used a large number of SNPs, but was

conducted on a single population. A study incorporating a

comprehensive catalog of SNPs and a large genetically diverse

cohort would implicitly place genetic risk in the context of

migration and reveal worldwide genetic risk variation with respect

to many diseases.

In a previous study, we surveyed 8,377 SNPs representing 437

diseases in 11 subpopulations. We found differences in risk

distribution and protective alleles in different diseases across many

subpopulations [25]. The current study examines how the

differences in these distributions could have arisen. We analyzed

correlations between genetic risk and migration trajectories. Our

goal was to identify populations with different genetic dispositions

to disease, and to pinpoint migrations preceding these differences.

Our analysis highlights the role evolution has played in changing

disease susceptibility across populations.

Importantly, our approach controls for genetic substructure within

and among diverse populations [26]. To detect differences in the

genetic basis of disease across migratory events, we integrated a large

curated database of geographically-annotated, disease-associated SNPs

with human variation measurements in 51 populations from the

Human Genome Diversity Panel (HGDP). We controlled for

established genetic similarity in subpopulations in order to detect

differences in genetic risk exceeding those expected under genetic drift.

Results

Type 2 Diabetes
Figure 1A summarizes our findings for type 2 diabetes on a

world map. Consistent with our previous work [25], we found that

African populations have the highest genetic risk for type 2

diabetes, followed by people from the Middle East, Europe, and

Asia. The Mandinka population had the greatest risk, at a mean

0.95 log likelihood ratio (LLR), while the Surui population had the

lowest risk (LLR: 20.87). This high-level view revealed stark

differences in genetic risk between African and Asian populations.

European and Middle-Eastern populations had an intermediate

genetic risk for this disease.

These patterns identified worldwide trends of increases or decreases

in genetic risk and show a high-level view of variation in genetic risk for

different diseases. An interactive version of Figure 1A is available for

over 100 diseases at geneworld.stanford.edu.

Placing genetic risk on a map does not reveal close relationships

between populations. Figure 2 is a worldwide phylogenetic tree

displaying the relative genetic risk for each population in the

context of population relationships. Relationships were inferred in

a previous study [1] by analyzing 650,000 SNPs using a

maximum-likelihood approach. Results from that analysis have

been incorporated here. Each branch in the figure represents the

ancestral population common to all populations below it.

Figure 1A and Figure 2A show that genetic risk for type 2

diabetes has undergone independent differentiation multiple times

as humans migrated out of Africa to East Asia, and finally to the

Americas. ‘‘Independent differentiation event’’ was defined as

genetic risk differentiation occurring de novo in a population rather

than via inheritance from an ancestral population. ‘‘Dependent

risk differentiation’’ is a genetic risk inherited from an ancestor.

Table 1 shows individual populations with genetic risk differences

for type 2 diabetes that are larger than expected under genetic

drift; however, it does not distinguish between dependent and

independent genetic risk differentiation.

We used a maximum likelihood method to identify branches in

the phylogenetic tree representing independent genetic risk

differentiation events in Figure 2A. The log-likelihood of having

only one event for type 2 diabetes was l1 = 2108.848. The log-

likelihoods for 2,3,4,5, and 6 events were l2 = 266.6083,

l3 = 240.7165, l4 = 233.7324, l5 = 226.8371, l6 = 223.3415. We

used the likelihood ratio test to determine the number of branches

undergoing genetic risk differentiation independently that exceed-

ed what would be expected under genetic drift. This test allows for

the calculation of a p-value for n independent branches by

converting two log-likelihood scores to a x2 variable as follows:

2(ln2ln21),x2
1. The p-value for 2 branches versus 1 branch

undergoing independent genetic risk differentiation for type 2

diabetes was less than 1.00610216, meaning there was evidence

for more than one independent genetic risk differentiation event.

The p-values for 3, 4, 5, and 6 branches were 6.30610213,

1.8661024, 8.1961023, and 5.6461022, respectively. There was

evidence for 5 distinct genetic risk differentiation events (high-

lighted in green in Figure 2A). Figure 3 shows the genetic risk of all

1043 individuals. Each type 2 diabetes-associated genotype in each

individual is displayed. The x-axis shows individual genetic risk;

the y-axis corresponds to West (bottom) to East (top) migration.

The figure shows that genetic risk for type 2 diabetes decreases as

populations move into East Asia. The figure shows that genetic risk

decreases steadily, as opposed to being caused by a single genetic

risk differentiation event.

Analysis of individuals showed that a person in the Mozabite

population (HGDP1255) had the highest genetic risk (LLR:2.81),

and an individual in the Han population (HGDP1291) had the

lowest risk (LLR: 22.21).

The effect size of each individual variant is not necessarily the

same in each population [27]. While the genetic risk of disease is

currently computed using all available GWASs, there is a well-

known European bias, as most GWASs are based on European-

derived populations [28]. Table S1 displays the populations in

which SNPs associated with type 2 diabetes in this study have been

replicated. In order to ensure that effect sizes unique to European

populations were not solely responsible for observed levels of

genetic risk differentiation, the genetic risk for type 2 diabetes was

recomputed using Asian-specific effect sizes for all variants. This

was accomplished by using GWASs exclusively based on Asian

Author Summary

The environment humans inhabit has changed many times
in the last 100,000 years. Migration and dynamic local
environments can lead to genetic adaptations favoring
beneficial traits. Many genes responsible for these adap-
tations can alter disease susceptibility. Genes can also
affect disease susceptibility by varying randomly across
different populations. We have studied genetic variants
that are known to modify disease susceptibility in the
context of worldwide migration. We found that variants
associated with 11 diseases have been affected to an
extent that is not explained by random variation. We also
found that the genetic risk of type 2 diabetes has steadily
decreased along the worldwide human migration trajec-
tory from Africa to America.

The Genetic Basis of Disease and Human Migration
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populations. Table S2 compares the likelihood ratio computed

using GWASs in which European populations are overrepresented

with the Asian-specific likelihood ratio computed using Asian

based GWASs. Table S3 compares the genetic risk estimates using

all available GWASs and Asian-specific GWASs. Despite major

differences in overall risk estimates, significant risk differentiation

was still observed in Asian populations when risks were computed

with Asian-specific GWASs.

Biliary Liver Cirrhosis
Figure 1B shows the genetic risk of biliary liver cirrhosis (BLC)

across worldwide populations. In contrast to type 2 diabetes, no

worldwide trend is apparent. Figure 2B shows risk differences that

were larger than expected under genetic drift (q,0.05). Branches

were colored green if the deviation of a population below them

shifted toward decreased risk compared to all other populations

and red if the shift was toward increased risk. The maximum

likelihood model was not applied to Figure 2B, as each population

showing signs of genetic risk differentiation did not have

descendant populations in the phylogenetic tree. The maximum

likelihood test only distinguishes between inherited and indepen-

dent genetic risk differentiation and is therefore only suitable for

diseases displaying obvious worldwide deviation trends. Figure 2B

shows that the Druze and Japanese populations have genetic risk

differentiation exceeding what is expected under genetic drift. The

Druze population shows significantly less risk, with only 28 out of

100,000 random draws showing less risk (q,0.05) than all other

populations combined. The genetic risk in the Japanese population

was higher, with only 18 out of 100,000 random draws showing a

higher risk. Genetic risk differentiation in BLC was localized in

one European and an Asian population.

We examined genetic risk in individuals to expose potential

outliers (Figure 4) and to visualize variation in genetic risk

estimates across all individuals. The person with the lowest risk

(HGDP1201) was from the Mandinka population and had a risk

score (combined LLR) of 24.372. The person with the highest risk

(HGDP1279) was from the Mozabite population and had

combined LLR of 9.521. This person appears to be an outlier.

The individual with the second highest genetic risk (HGDP998)

was from the Karitiana population (combined LLR: 5.54).

Other Diseases
We observed genetic risk trends associated with migration in

other diseases, including prostate cancer, alopecia areata, mela-

noma, asthma, neuroblastoma, polycystic ovary syndrome, and

pancreatic cancer. One of the most extreme examples of genetic

risk differentiation was observed in ulcerative colitis. Figure 5

displays the distribution of the expected amount of genetic risk

difference for this disease between the Sinhdi population and all

others. The red vertical line represents the actual observed genetic

risk difference between the two populations. Only 15 out of

100,000 randomly generated genetic risk values had a larger

ulcerative colitis genetic risk difference.

We found genetic risk differentiation in multiple worldwide

populations for pancreatic cancer and other diseases (Table 1).

Detailed information relating to genetic risk differences for many

other diseases are available on (geneworld.stanford.edu).

Individual SNPs may have a large impact on overall levels of

genetic risk differentiation (Text S1 and Figure S1). One notable

case is rs13151961, associated with inflammatory bowel disease.

Figure S1 shows examples of diseases in which a few SNPs have a

disproportionate impact as well as examples in which all SNPs

have a uniform impact on genetic risk differentiation.

Figure 1. Differences in genetic risk among populations. Each population is ranked by risk, which is denoted by a color. Populations with the
greatest risk are bright red, and those with the lowest risk are green. (A) Populations for East Asia and the Americas have lower genetic risk for type 2
diabetes than those from Africa and Europe. Genetic risk differentiation is sharply divided along major population migration events. Type 2 diabetes
is represented by 16 SNPs. (B) Genetic risk for biliary liver cirrhosis is represented by 44 SNPs. Genetic risk peaks in East Asia and in the Karitiana
population in South America. The background is a public domain world map from NASA Earth Observatory (http://eoimages.gsfc.nasa.gov/images/
imagerecords/73000/73909/world.topo.bathy.200412.36540062700.jpg); an interactive online tool is available at http://geneworld.stanford.edu
using Google Maps technology.
doi:10.1371/journal.pgen.1003447.g001
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Fst and Differentiation
Our method can detect genetic-risk differentiation that is not

captured by Fst calculations. Figure S2 shows that rank

normalized Fst values, after binning with SNPs having matching

allele frequencies, failed to detect population structure differenti-

ation among SNPs associated with biliary liver cirrhosis. After

combining p-values for each individual SNP, the combined p-

value was 0.91. Our method detects genetic-risk differentiation in

the Japanese and Druze populations (Figure 2B). Figure S3 shows

the rank normalized Fst values for SNPs associated with type 2

diabetes. The combined p-value for the observed type 2 diabetes

Fst scores was not significant (p = 0.30). Our method detects

genetic-risk differentiation for multiple populations in type 2

diabetes, as can be observed in Figure 2A. Text S1 has additional

details on the Fst analysis.

Individual Outliers
Individuals may be outliers with respect to genetic risk, leading

to false detection of genetic risk differentiation in a population. We

defined outliers as individuals deviating .1.5 times the inter-

quartile genetic risk range from the median genetic risk and

removed them from each population-disease sets showing genetic

risk differentiation (Table S4). Each disease showed strong signs of

genetic risk differentiation after removing outlying individuals.

Controlling for Association Ascertainment Bias
Disease-associated SNPs are likely to be biased towards genomic

regions with higher LD levels where they are tagged more

efficiently. We addressed this bias by resampling from SNPs

reported to be associated with any phenotype (disease or not) as

opposed to resampling from all SNPs. We discarded 614,563 and

retained 46,192 of the genotyped SNPs in the HGDP cohort.

Genetic risk differentiation was still detected after resampling

exclusively from SNPs associated with a phenotype (Table S5).

Discussion

Our findings place the genetic basis of disease susceptibility in

the context of human migration and increase understanding of the

role of population differentiation in complex disease. The HGDP-

CEPH cohort represents 51 populations from around the world,

with .650,000 genotyped SNPs per person. We combined this

cohort with SNPs from our disease association database and were

able to assess the genetic risk of disease of all populations in the

HGDP-CEPH cohort. We demonstrated that differences in

genetic risk for multiple diseases go well beyond what is expected

by genetic drift. In addition, using a human population

phylogenetic tree allowed us to incorporate a substructure of

worldwide relationships.

A certain amount of variation can be expected due to random

frequency variation in disease-associated genotypes. Genetic risk

differentiation not caused by genetic drift is more likely to be

caused by environmental adaptation, and provides insight into

factors affecting disease susceptibility. Our method controls for

random genetic risk variation by randomly sampling SNPs across

the genome. When testing for significance in our model, the

baseline was the expected amount of risk differentiation caused by

genetic drift between a population of interest and all others. The

low q-values in Table 1 are of particular interest, as they indicate

that genetic drift is unlikely to account for the amount of observed

genetic risk differentiation.

Genetic risk differentiation occurred in multiple populations in

type 2 diabetes. In contrast, genetic risk differentiation in biliary

liver cirrhosis was found in only two populations. Ulcerative colitis

exhibits the single most extreme example of genetic risk

differentiation (Figure 5). These three diseases capture the

observable distinct genetic risk differentiation patterns.

Admixture
While the HGDP is an important sampling of the worldwide

distribution of genotypes, it is possible that some populations are

admixed. Detecting genetic risk differentiation in admixed

populations may be more difficult, as the levels of genetic risk

would most likely be less extreme. The genetic risk for any two

populations in which admixed individuals were erroneously

sampled is expected to be somewhere between the population

with the least and most genetic risk. This explains why controlling

for admixture is unlikely to decrease the significance of our

findings.

Type 2 Diabetes
Multiple independent genetic risk differentiation events have

occurred in various worldwide populations. Table 1 shows individual

populations reported to have undergone or inherited an increase/

decrease in genetic risk. We applied a maximum likelihood method to

identify branches in a phylogenetic tree representing independent

genetic risk differentiation events for type 2 diabetes (Figure 2A).

Individuals migrate toward decreased genetic risk of type 2 diabetes as

populations migrated East. Figure 3 shows that while there was great

variability in risk within populations, there was still a steady decrease in

susceptibility to type 2 diabetes.

Biliary Liver Cirrhosis
There were 44 SNPs associated with biliary liver cirrhosis used

in this study. We found genetic risk differentiation in the Japanese

and Druze populations (Figure 2B). Risk was increased in the

Japanese population. The genetic risk score (combined LLR) was

1.691, compared to 0.026 for all other populations combined. The

q-value for such a large risk difference was 0.0112 (Table 1).

Consistent with results in this study, our previous work shows

significantly higher biliary liver cirrhosis risk in the Japanese

population (p: 0.013) in the Hap Map III cohort [29].

Ulcerative Colitis
Like all the diseases discussed in this study, ulcerative colitis has

genetic and environmental components [30]. Our results suggest

that genetic risk differentiation for this condition is increased in

South Asian Sindhis (Figure 5). Previous studies have reported that

prevalence rates are not necessarily correlated to significant

increases in genetic risk [31,32]. However, our results imply that

some event affected pathophysiology of this disease in a particular

population. The environment, as well as currently unidentified

Figure 2. Genetic risk in the context of human relationships. The figure superimposes genetic risk for type 2 diabetes on a maximum
likelihood phylogenetic tree based on the HGDP. Branch color indicates whether the subtree has shifted towards increased or decreased risk (q-
value,0.05). Red:increased risk; green:decreased risk. Each colored branch also represents an independent genetic risk differentiation event as
determined by a maximum likelihood model. Numbers in colored rectangles show percentile of genetic risk, with a zero being lowest. (A) Type 2
diabetes risk was decreased in East Asia and America. (B) Biliary Liver Cirrhosis shifted towards increased genetic risk in the Japanese population and
towards decreased risk in the Druze population. The Karitiana population also showed borderline signs of genetic risk differentiation (q = 0.057).
doi:10.1371/journal.pgen.1003447.g002
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Table 1. List of populations with disease risk differentiation.

Disease Population Genetic Risk
World Genetic
Risk Q-value SNPs

Alopecia areata Mozabite 23.546 20.121 1.00061025 26

Biliary liver cirrhosis Druze 20.989 0.122 1.73561022 30

Biliary liver cirrhosis Japanese 1.691 0.026 1.12361022 27

Bladder cancer Tu 20.535 20.072 3.67361022 7

Inflammatory bowel disease Balochi 20.679 21.051 1.00061025 11

Inflammatory bowel disease Burusho 20.886 21.046 2.45061022 9

Inflammatory bowel disease Makrani 20.792 21.048 1.53361022 10

Inflammatory bowel disease Palestinian 20.784 21.056 3.43361024 11

Inflammatory bowel disease Sindhi 20.704 21.051 3.43361024 10

Membranous nephropathy French Basque 21.876 25.217 1.00061025 17

Pancreatic cancer Biaka Pygmies 0.972 20.215 2.60261022 9

Pancreatic cancer Mbuti Pygmies 0.872 20.194 2.78061022 9

Pancreatic cancer Mandenka 0.877 20.204 2.24461022 9

Pancreatic cancer Yoruba 1.007 20.207 1.42961022 9

Pancreatic cancer Sardinian 0.244 20.191 2.99861022 7

Pancreatic cancer Cambodian 20.644 20.174 3.90061022 7

Pancreatic cancer Japanese 20.679 20.165 2.70261022 7

Pancreatic cancer Han 20.601 20.160 4.77461022 7

Pancreatic cancer Naxi 20.673 20.175 4.87161022 7

Pancreatic cancer Xibo 20.722 20.174 2.45361022 7

Pancreatic cancer Daur 20.732 20.174 2.63061022 7

Pancreatic cancer Maya 20.783 20.164 2.48761022 7

Systemic lupus erythematosus French Basque 22.76 20.975 4.01261022 29

Systemic lupus erythematosus Maya 1.354 21.074 4.59161022 29

Systemic lupus erythematosus Pima 1.882 21.087 3.26561022 29

Systemic sclerosis French Basque 20.746 0.079 5.40761022 15

Systemic sclerosis Maya 1.151 0.033 3.52061022 17

Type 2 diabetes Bedouin 0.576 0.079 4.34161022 13

Type 2 diabetes Cambodian 20.643 0.11 2.57761022 13

Type 2 diabetes Colombian 20.787 0.114 3.65961022 12

Type 2 diabetes Daur 20.839 0.111 2.65361022 13

Type 2 diabetes Han 20.646 0.135 2.09861022 13

Type 2 diabetes Hezhen 20.806 0.11 1.91861022 13

Type 2 diabetes Japanese 20.723 0.126 1.73461022 13

Type 2 diabetes Lahu 20.674 0.11 4.82661022 13

Type 2 diabetes Mongola 20.807 0.111 3.87761022 13

Type 2 diabetes Mozabite 0.749 0.083 2.18361022 15

Type 2 diabetes Naxi 20.78 0.11 2.05161022 13

Type 2 diabetes Oroqen 20.803 0.111 1.85361022 13

Type 2 diabetes Palestinian 0.6 0.077 2.47061022 13

Type 2 diabetes She 20.834 0.111 1.87461022 13

Type 2 diabetes Tu 20.681 0.11 2.01261022 13

Type 2 diabetes Tujia 20.721 0.11 2.40161022 13

Type 2 diabetes Xibo 20.668 0.109 2.57661022 13

Type 2 diabetes Yakut 20.466 0.116 4.45861022 13

Type 2 diabetes Yizu 20.841 0.111 2.07461022 13

Ulcerative colitis Balochi 20.525 21.778 1.00061025 27

Ulcerative colitis Palestinian 21.052 21.784 9.18361022 29

Ulcerative colitis Sindhi 20.749 21.772 1.02561022 27

The Genetic Basis of Disease and Human Migration
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loci, may also affect the absolute risk. In addition to the Sindhi

population, genetic risk differentiation was detected in the

Palestinian and Balochi populations (Table 1).

Cause(s) of Type 2 Diabetes Genetic Risk Differentiation
Specific environmental differences inducing genetic risk differ-

entiation in type 2 diabetes and other diseases have not been

found. However, there is evidence that climate, diet, and living

conditions have led to them [33]. For example, exposure to viruses

may have increased risk for type 1 diabetes [34]. Autoimmune

diseases show disproportionate positive selection in a trajectory

toward increased versus decreased risk [35]. This finding has given

rise to speculation that viral epidemics are likely to have increased

the risk of these diseases by selecting for an overactive immune

system. It is also established that modern cultural changes can

cause drastic differences in disease prevalence in related popula-

tions [36]. However, little is known about how these changes

modify risk profiles and disease prevalence over time. This study

provides critical clues for the foundation for future analyses.

Detection of Disease Inter-Relationships
The concepts discussed here could be used to link diseases that may

share pathophysiology and environmental triggers. It is possible that

modulation of environmental features in different global regions

Table 1. Cont.

Disease Population Genetic Risk
World Genetic
Risk Q-value SNPs

Vitiligo French Basque 0.339 20.467 2.65361022 8

Vitiligo Russian 0.239 20.466 3.67361022 8

The populations in this table have undergone disease risk differentiation exceeding what would be expected by genetic drift for the diseases listed. Population-specific
and overall genetic risks are shown. Genetic risk is the mean combined LLR for all SNPs associated with a disease. The q-value corrects for the number of populations
tested. Certain diseases, such as bladder cancer, showed localized genetic risk differentiation while worldwide trends were evident for others, like pancreatic cancer and
type 2 diabetes.
doi:10.1371/journal.pgen.1003447.t001

Figure 3. Variability in genetic risk for type 2 diabetes. Individuals are represented by vertical multicolored rectangles. Individual bars in each
rectangle represent one of the 16 SNPs associated with type 2 diabetes. Bar colors indicate the following: red: homozygosity for a risk allele;
blue:heterozygosity; green:homozygosity for a protective allele; white: missing genotype. The order of the SNPs is preserved across individuals. The x-
axis shows genetic risk and the y-axis shows each population. The purple line is a locally weighted linear regression curve displaying the general
direction of disease susceptibility as populations migrated from West to East. Genetic risk is lower in East Asians.
doi:10.1371/journal.pgen.1003447.g003

The Genetic Basis of Disease and Human Migration
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changed the genetic risk of certain diseases. If an environmental feature

affects multiple diseases, risk estimates for the diseases should correlate

across the same populations, even if no common genetic basis is

apparent. If the environment increases risk for one disease and

decreases it for another, a negative correlation is expected. Finding

diseases with genetic risk estimates correlated across worldwide

populations would represent a novel and potentially highly informative

approach to uncover shared pathophysiologies. This type of analysis

would benefit from the largest possible catalog of genetic variants. For

example, in the HGDP, East Asia is biased to detect more genetic risk

differentiation than the Americas, due to the increased sensitivity that

comes from 17 East Asian versus 5 American populations. In addition,

full genome sequence analysis enables the inclusion of copy number

polymorphisms and rare variants that may be found to contribute to

complex disease susceptibility. As sequencing costs decrease, analyses

expanding the scope of this study will occur.

Materials and Methods

Data and Cohorts
We investigated .650,000 SNPs from the HGDP-CEPH,

which has DNA from 1043 individuals in 51 populations on 8

continents [15]. We also used the HapMap Phase 3 cohort to

analyze 1.6 million SNPs from 11 populations [29]. Finally, we

used VARIMED, a database of disease-associated SNPs [37].

VARIMED was built by curating 5,478 published studies with

4,573 disease associations. At the time of this study, it contained

67,678 unique phenotype-associated SNPs, of which 51,404 were

associated with a disease. Of these, after filtering by p-value and

other methods, 723 unique SNPs were on the Illumina genotyping

array we used to represent disease phenotypes in the HGDP [15].

For this study, we used only GWAS SNPs that had been

detected across $2 populations with p-values,1026. SNPs were

excluded if information about them was insufficient to compute

likelihood ratios for the genotypes of associated SNPs. VARIMED

was used to compute genetic risk estimates of the resulting diseases

across all HGDP populations.

The HapMap Phase 3 cohort includes 11 populations with 1.6

million SNPs genotyped per person [29]. We used this cohort, in

combination with results from previous work [25], to check our

results in individual populations with elevated levels of genetic risk

differentiation. All the methods with the exception of multiple

hypothesis testing are applicable to this cohort.

The Combined Likelihood Ratio As a Measure of Genetic
Risk

In this paper, the sample genetic risk in a population is referred to

as genetic risk. Any computation of a population’s genetic risk is

inaccurate, due to the inability to genotype all individuals in a

population and the existence of many undiscovered disease-

associated variants.

Figure 4. Variability in genetic risk in biliary liver cirrhosis. Individuals are represented by vertical multicolored rectangles. Bar colors indicate
the following: red: homozygosity for a risk allele; blue: heterozygosity; green: homozygosity for a protective allele; white: missing genotype. The x-axis
shows risk and the y-axis shows each population. The purple line is a locally weighted linear regression curve displaying the general direction of
disease susceptibility as populations migrated from West to East. No trend is obvious, but risk appears to be higher in Cambodian, Yizu, Japanese,
and San populations.
doi:10.1371/journal.pgen.1003447.g004

The Genetic Basis of Disease and Human Migration

PLOS Genetics | www.plosgenetics.org 8 May 2013 | Volume 9 | Issue 5 | e1003447



The likelihood ratio (LR) represents the effect size of a particular

genotype on genetic disease risk. SNPs in linkage disequilibrium

(R2$0.2) in a population were excluded.

Computing Genetic Risk of a Disease in an Individual
For a given bi-allelic SNP, there are three possible genotypes:

homozygous for the major allele, homozygous for the minor allele,

or heterozygous. The function L(g) maps the genotype g to the

estimated likelihood ratio. The LR used in our calculations

represents the weighted mean LR reported across all studies [37].

Each LR was weighted by the square root of the sample size in

each association study.

The following is our method for combining multiple LRs from

multiple GWASs. A is the vector of all sample sizes in each study.

P(g | disease is present)i is the estimated probability that a

genotype g is in the disease population of the ith GWAS. P(g |

disease is not present)i is the estimated probability that a genotype

g is present in the non-disease population of the ith GWAS
.

A~½A1,A2,A3,:::,Ak�

L(g)~

Pk
i~1

ffiffiffiffiffi
Ai

p
|

P(gDdisease is present)i

P(gDdisease is not present)iPk
i~1

ffiffiffiffiffi
Ai

p

Once computed, the combined LR was used to compute the

genetic disease risk for each individual, as follows. G is the vector

of all genotypes in disease-associated SNPs in person m.

Gm~½G1m,G2m,G3m,:::,Gnm�

The predicted genetic risk r for person m is the log of the

combined likelihood ratios for all disease-associated variants

present in that person.

rm~log P
n

i~1
L(Gim)

� �
~
Xn

i~1

log L(Gim)ð Þ

Computing the Genetic Risk of Disease in a Population
The genetic risk for a population was the mean risk of all its

members. Derived populations created by combining multiple

populations in the HGDP were treated as single populations, and

the following computations applied equally. S is the vector of a

population.

S~ s1, s2, s3, . . . sz½ �

The predicted genetic risk R for an entire population P is the

mean predicted risk for everyone in the population:

Figure 5. Expected amount of genetic risk differentiation in ulcerative colitis. Random variation caused by genetic drift may alter genetic
risk between populations. The figure represents the expected amount of genetic risk difference between Sindhi and all other populations. A
randomly generated genetic risk score was computed by randomly picking SNPs to represent ulcerative colitis (see Materials and Methods). The red
vertical line represents the observed genetic difference between the Sindhi and all other populations combined. Only 15 out of 100,000 randomly
generated genetic risk values had a larger genetic risk difference than the observed.
doi:10.1371/journal.pgen.1003447.g005
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Rp~
1

DsD

XDSD

j~1

rsj

Computing the Difference in Genetic Risk across Two
Populations

In order to compare genetic risk (D) between two populations A and

B, we subtracted the genetic risk of one population from the other’s:

DAB~RA{RB

Population A’s risk for a disease is higher than B’s if DAB is

positive and lower if DAB is negative.

Modeling the Expected Difference in Genetic Risk
We constructed a distribution of the expected difference of

genetic risk between two populations in order to see if the observed

difference was larger than expected by random chance:.

The vector H represents all SNPs associated with a particular

disease.

H~½h1,h2,h3,::,hw�

Our goal was to assess the significance of a difference in risk DAB

across two populations A and B. Each element in H was replaced by a

SNP randomly drawn from the entire set of SNPs in the two

populations. The global major allele frequency of the randomly drawn

SNP was drawn to match original SNP’s global major allele frequency.

In every case, the risk allele’s major or minor allele status in the

randomly drawn SNP matched that of the SNP it replaced. In

addition, each SNP was placed in one of eight functional categories

(frameshift, nonsense, missense, untranslated, near-gene, intron,

coding-synonymous, or unknown). Each randomly drawn SNP also

matched the functional category of the SNP it replaced in vector H.

Once all elements of H had been replaced, the genetic risk of all

populations was recomputed, effectively assigning a randomly

generated genetic risk score to each population. Since each population

was assigned a genetic risk score from the same randomly drawn set of

SNPs, the expected amount of correlation between genetic risk values

among all populations was preserved. We created phylogenetic trees of

our results with each branch representing a migration event. We

computed the genetic risk difference of each migration event by

subtracting the genetic risk of all descendant populations from the risk

of all ancestral populations (those above the branch). Branches on the

human phylogenetic tree created from the HGDP populations were

tested for genetic risk differences. We computed the difference in risk

between all ancestral and descendant populations. A phylogenetic tree

of all the HGDP populations was used as described previously [1].

Each branch in the tree partitions an ancestral and descendant

population. The ancestral population is made up of populations above

a branch; the descendant population is below it. The expected

difference in genetic risk between all possible ancestral and descendant

comparisons was computed by randomly replacing all disease-

associated SNPs by performing a random draw of H 100,000 times.

We computed a matrix representing 100,000 randomly

generated phylogenetic trees and compared it with the observed

phylogenetic tree in the context of genetic risk. Let ri,k represent

the genetic risk difference between ancestral and descendant

populations in branch i computed from the kth randomly generated

H.

R~

r11 . . . r100,1

..

.
P

..

.

r1,100000 � � � r100,100000

0
BB@

1
CCA

This matrix of 100,000 randomly generated phylogenetic trees

was then compared to the observed tree. Oi is the observed genetic

risk difference between ancestral and descendant populations in

the ith branch of the phylogenetic tree.

O~ O1, O2, O3, . . . O100½ �

The probability of observing a genetic risk difference between

ancestral and descendant populations in the ith branch is as follows:

Pr(Oi)~

2

100,000z1
min

X100,000

k~1

I(ri,kƒOi)z1,
X100,000

k~1

I(ri,kwOi)z1

 !

This equation gave a probability for a specific genetic risk

difference observed on branch i. However, we tested multiple

strongly correlated populations simultaneously. In addition, the

genetic risk differences of nearby branches in the phylogenetic tree

were strongly correlated due to genetic similarity between

populations. One row in matrix R represented the genetic risk

difference of all branches in the tree between ancestral and

descendant populations in a single random draw. The genetic risk

difference was calculated with the same set of SNPs in every

branch in the phylogenetic tree in each row. This preserved the

correlation of genetic risk among closely related populations and

enabled us to detect independent genetic risk deviations.

To assess the significance of a p-value a in the context of the

entire tree, we first computed the number of branches having

equal or greater significance for genetic risk differentiation.

Significant genetic risk differentiation events were calculated

follows. N(a) is the observed number of branches with a p-value for

genetic risk differentiation at or below a.

N(a)~
X100

k~1

I(Pr(Oi)ƒa)

We next computed the expected number of branches with

genetic risk differentiation at significance a from the matrix

representing 100,000 randomly generated phylogenetic trees.

E(a)~

1z
P100,000

k~1

P100

i~1

I(P(ri,k)ƒa)

1z100,000

Q(a) (the q-value) for a branch with p-value a for genetic risk

differentiation was:

Q(a)~
E(a)

N(a)

While Q(a) can inform on the significance for a particular p-

value, it does not estimate the total number of distinct genetic risk

differentiation events in a phylogenetic tree. We estimated the

most likely number of migration events independently contributing
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to observed genetic risk deviation in a phylogenetic tree using a

maximum likelihood approach.

P is the vector containing all probabilities of the observed

genetic risk difference between ancestral and descendant popula-

tions of each branch of tree t.

P~½Pr(O1),Pr(O2),:::,Pr(O100)�

We defined a function that returns true if branch k is not a

descendant of branch z:

D(k,z)~
true, branch k is not a descendant of branch z

false, branch k is a descendant of branch z

�

Branch z represents the branch in which an independent genetic risk

differentiation event occurred. Applying the principle of maximum

likelihood, the branch z that maximizes the likelihood function in tree t

is shown below. The number of events refers to the number of

independent genetic risk differentiation events.

ln L(tD1 Event)ð Þ~ln L(PD1 Event)ð Þ~

XDPD

i~1

ln

P100,000

k~1

I P(ri,k)ƒpið ÞI P(rz,k)ƒpz _D(i,z)ð Þ

P100,000

k~1

I P(rz,k)ƒpz _D(i,z)ð Þ

0
BBB@

1
CCCA

The log likelihood function produces the branch most likely to

have undergone genetic risk differentiation, given that a single

genetic risk differentiation event occurred. The ‘_’ symbol

represents a logical disjunction that returns true if one or more of

the two operands is true. The branch that maximized likelihood

was the one most likely to have caused the risk differentiation.

However, there may have been multiple genetic risk differentiation

events. This maximum likelihood method can be generalized to

detect an arbitrary number of branches that underwent genetic

risk differentiation.

Find the indices z1, z2, …,zy for branches that maximize the

following likelihood function:

XjPj
i~1

ln

P100,000

k~1

I P(ri,k )ƒpið ÞI P(rz1 ,k )ƒpz1
_D(i,z1)

� �
I P(rz2 ,k )ƒpz2

_D(i,z2)
� �

,:::,I P(rzy ,k )ƒpzy
_D(i,zy )

� �
P100,000

k~1

I P(rz1 ,k )ƒpz1
_D(i,z1)

� �
I P(rz2 ,k )ƒpz2

_D(i,z2)
� �

,:::,I P(rzy ,k )ƒpzy
_D(i,zy )

� �
0
BBB@

1
CCCA

Due to the constraints this equation imposed, a very large

number of random draws was required to produce an accurate

estimate. All indicator functions in the numerator must return a

non-zero value for the count to be incremented by one; this was

computationally infeasible. In order to make the computation

tractable, we made a simplifying assumption that only a single

ancestral branch which has undergone de novo genetic risk

differentiation (as opposed to an arbitrary combination of

branches that have undergone de novo genetic risk differentiation)

can pass a significantly modified genetic risk for a disease to a

descendant branch. This led us to the method used for this study.

The following calculation was used to find all branches with

sufficient evidence of having undergone independent genetic risk

differentiation.

Find the indices z1,z2,…,zy that maximize the following

likelihood function:

XDPD

i~1

ln max

P100,000

k~1

I P(ri,k )ƒpi

� 	
I P(rz1,k )ƒpz1

_D(i,z1)

� �
P100,000

k~1

I P(rz1,k )ƒpz1
_D(i,z1)

� �
P100,000

k~1

I P(ri,k )ƒpi

� 	
I P(rz2,k )ƒpz2

_D(i,z2)

� �
P100,000

k~1

I P(rz2,k )ƒpz2
_D(i,z2)

� �
.

.

.P100,000

k~1

I P(ri,k )ƒpi

� 	
I P(rzy,k )ƒpzy_D(i,zy)

� �
P100,000

k~1

I P(rzy,k )ƒpzy_D(i,zy)

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0
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Supporting Information

Figure S1 Impact of individual SNPs on genetic risk differen-

tiation. The relative deviation from expected genetic risk

attributable to each SNP is shown in each pie chart. The branch

in the human phylogeny tree with the most significance for genetic

risk differentiation was used to assess the impact of individual

SNPs for each disease. The branch selected for alopecia areata

includes European, Central South Asian, East Asian, Oceaniac,

American, Palestinian, and Druze populations. The branch

selected for inflammatory bowel disease includes the Brahui and

Makrani populations. The branch selected for pancreatic cancer

includes Central South Asian, East Asian, Oceaniac, and

American populations. The branch selected for systemic lupus

erythematosus includes the Mayan and the Pima populations. The

branch selected for type 2 diabetes includes East Asian, Oceaniac,

and American populations. The branch selected for ulcerative

colitis includes the Brahui and Makrani populations. The branches

selected for biliary liver cirrhosis, bladder cancer, and membra-

nous nephropathy are the Druze, Tu, and French Basque

populations, respectively. Each branch is compared to all other

worldwide populations. Some SNPs have a disproportionate

impact on genetic risk. An example is rs13151961, associated

with inflammatory bowel disease.

(TIF)

Figure S2 Fst analysis for biliary liver cirrhosis. Global Fst values

using the HGDP cohort were calculated for the 44 high

confidence biliary liver cirrhosis SNPs used in this study. The

Fst score for each SNP was compared to all other SNPs with the

same minor allele frequency. The p-value represents the fraction

of SNPs with a lower Fst value. No individual lung cancer SNP

appeared to be significantly differentiated. Fst analysis failed to

capture the localized genetic-risk differentiation that has occurred

in the Japanese and Druze populations. Combining the p-values

revealed no signs that these SNPs have collectively undergone

differentiation (p-value = 0.91).

(TIF)

Figure S3 Fst analysis for type 2 diabetes. Global Fst values were

calculated for the 16 type 2 diabetes-associated SNPs used in this

study. The distribution of p-values did not reveal elevated type 2

diabetes genetic risk differentiation across worldwide populations

compared to non-disease associated SNPs. The Fst score for each

SNP was compared to all other SNPs with the same minor allele

frequency. The combined p-value for these SNPs failed to capture
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the extreme extent to which genetic-risk differentiation has

occurred at a global scale (p-value = 0.30).

(TIF)

Table S1 Type 2 diabetes-associated SNPs replication demo-

graphics. The number of times any publication has found each

type 2 diabetes SNP used in this study to be associated with the

disease is shown. European populations have the most replications

across the majority of SNPs associated with type 2 diabetes. Arabic

and American Indian populations have the lowest number of

replications.

(DOCX)

Table S2 Asian-specific type 2 diabetes effect size. The table

compares the overall likelihood ratio for each SNP associated with

type 2 diabetes against the Asian-specific likelihood ratio. The

Asian-specific likelihood ratio was computed by including only

GWASs based in Asian populations. While many of the observed

effect sizes did not differ, some were significantly different and may

lead to a modified risk estimate for Asian populations.

(DOCX)

Table S3 Genetic risk of type 2 diabetes using Asian GWASs.

Most GWASs are based on European cohorts. The effect size of an

associated variant may differ across distinct populations. This table

compares the combined likelihood ratio for type 2 diabetes

(computed using all available GWASs) with the combined

likelihood ratio using only GWASs in Asian populations. This

approach allowed us to base the effect size of each variant on

Asian populations as opposed to mainly European derived

populations. Genetic risk for type 2 diabetes is still significantly

lower in Asian populations when the effect size for each associated

variant is taken from GWASs exclusively based in Asian

populations (q-value,0.05).

(DOCX)

Table S4 Replication after removal of outliers. Outliers carry a

disproportionate number of risk alleles compared to the rest of

their population. For each population, we calculated the

interquartile range (IQR) of genetic risk for each individual and

removed persons with a genetic risk deviating more than 1.5 IQRs

from the population median. The table compares original p-values

to the p-value after removal of outliers. A total of 21 out of the

original 24 genetic risk differentiation events had p-values,0.006

after removing outliers.

(DOCX)

Table S5 Replication after resampling from known associations.

A resampling procedure is used to model the expected genetic risk

difference between a population and the rest of the worldwide set

of populations combined. However, a GWAS is more likely to

detect associations in regions with higher linkage disequilibrium,

which is a potential source for bias in detecting genetic risk

differentiation. We address this by reproducing the results after

randomly drawing only from SNPs previously reported to show

association to any phenotype during the resampling step. Genetic

risk differentiation is still detected after randomly drawing from

other known associations during the resampling step.

(DOCX)

Text S1 Analysis of the genetic basis of disease in the context of

worldwide human relationships and migration.

(DOC)
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